

# Water Resources Audit Report: Ketza River Mine

Water Resources Branch
June 2023



The Water Resource Branch strives for water stewardship in the Yukon and is committed to responsible and collaborative management, protection and conservation of the territory's valuable water. As technical scientific experts in water resources, we provide advice for compliance and inspection purposes, and conduct reviews of projects undergoing water licensing and environmental assessment processes.

One of the Branch's responsibilities is to conduct audits of various undertakings that use or deposit waste to water. Audits are undertaken to improve our knowledge and understanding of a project's effects on the receiving water environment, with the intention of identifying emerging issues and sharing enhanced understanding of existing water quality and quantity conditions to support technical advice and input into assessment, licensing, and post-licensing processes. The opinions and recommendations expressed in this report are based on relevant data, reports, field observations, interpretation/analyses of scientific information available to the Branch. Such opinions and recommendations are subject to evolve as further information becomes available. We are also acknowledging that indigenous ways of knowing are not included in this report, nonetheless, they are relevant and they support responsive care of the land and water.

While the Branch provides support to inspectors on enforcement and compliance matters related to water licences, it is not the Branch's role to determine or enforce compliance. As such, the findings of this report should not be considered as a determination of compliance with any existing permit or licence.

## **Executive Summary**

Water Resources Branch conducted an audit at the Ketza River Mine site, located approximately 80 km southeast of Ross River (by road), between August 30 and September 2, 2021. Information and conclusions contained in this audit are intended to support the Branch in the review process of a future water licensing renewal application for the closure and remediation phase.

The five primary objectives of the site audit were to:

- 1) Assess the hydrology monitoring network at site as requested by Assessment and Abandoned Mines (AAM),
- 2) Measure flow along of Cache Creek, Peel Creek, and Misery Creek,
- 3) Evaluate potential causes of elevated sulphate and arsenic levels observed in groundwater and surface water,
- 4) Determine if disturbed areas are influencing the water chemistry of Peel Creek, and,
- 5) Familiarize Branch staff with the site to provide support to AAM and future Water Licence application review

Surface water and groundwater samples were collected around the Ketza River Mine site to evaluate potential source(s) of elevated concentrations of contaminants of concern in site discharge. Sampled parameters included the full suite of parameters analyzed as a part of the mine's monthly sampling program as well as stable water isotopes to improve understanding of surface and groundwater flow paths on site.

Hydrology stations were investigated to determine required infrastructure for implementing a continuous monitoring program that would complement AAM's surface water monitoring. Discharge measurements and estimates were conducted to complement the surface water quality data collection for this audit.

Focused investigations of tributaries flowing into Cache Creek were conducted as a part of this audit. Sampling stations were selected based on desktop investigations and observations during the field investigation with focus on: previous sampling locations,

mine infrastructure/disturbances and key locations in the watershed (confluences & background locations)

Chemistry results were compared to the CCME Water Quality Guidelines (WQG) for the Protection of Freshwater Aquatic Life (CCME-FAL), Yukon Contaminated Site Regulation for Aquatic Life Standards (CSR-AW), British Columbia Ministry of Environment Water Quality Long-term Guideline for Freshwater Aquatic Life (BC MOE), Metal and Diamond Mine Effluent Regulations (MDMER) and the former Water Licence QZ04-063 Effluent Quality Standards (KEQS) (CCME 2021, YCSR 2002, GoC 2002). Isotope data was used to identify water provenances to further contribute to the understanding of the aquatic environment at Ketza Mine.

The key findings of the 2021 audit are the following:

- 1) Elevated concentrations (concentrations above CCME guidelines) of arsenic and sulfate were observed in headwater regions of five tributary creeks discharging into Cache Creek downstream of the Tailings Storage Facility. One of these tributaries, Peel Creek, may be affected by residual mine structures in the headwaters, but elevated concentrations observed in the other tributaries are likely representative of local background conditions. Concentrations of some contaminants contributed by these tributaries are reduced to below guideline levels through geochemical processes and dilution before Cache Creek discharges into the Ketza River.
- 2) Peel Creek may be influenced by the presence of Gully Zone Pit in its headwaters. In addition to the elevated concentrations of some contaminants in the site background water, it is likely that seepage contributing contaminants to Peel Creek is influenced by the presence of the QB Zone Pit located further down the creek's reach.
- 3) Water quality data for the Ketza River Mine site is in the process of being curated to form a complete historical record of all water data since monitoring began. Water Resources Branch analysed data from this preliminary database and other sources focused towards increasing understanding of site contaminant trends and potential for impacts to the receiving environment.

4) Improvements can be made to the current hydrology program to better inform contaminant loading into site waterways. The absence of continuous water level and flow monitoring since 2012 is detrimental to inform remediation planning (water balance modelling and monitoring).

Water Resources Branch recommends the following with respect to the Ketza River Mine site:

- Collect additional ongoing surface water quality and hydrology measurements in the vicinity of the headwaters of Cache Creek, between KR-20 and KR-01, specially, upstream and downstream of the Unnamed Creek (KR-16 Creek) confluence with Cache Creek.
- 2) Conduct a review of trends in dissolved constituents in groundwater upon completion of the Ketza geochemical database audit.
- 3) Incorporate six continuous hydrometric stage monitoring stations at the locations specified in section 4.4. The overarching goal of a continuous hydrometric network is to better quantify flowrates between in-person monitoring events. The dataset would help calibrate eventual water balance and water quality models at a wider scale along Cache Creek down to Ketza River.
- 4) Increase groundwater sampling frequency from annual to twice annually and monitor groundwater levels more monthly, if possible.

# Table of Contents

| ĽΧ  | ecuti              | ve S  | ummary                            | ∠   |
|-----|--------------------|-------|-----------------------------------|-----|
| Та  | ble o              | f Co  | ntents                            | 5   |
| Lis | st of <sup>-</sup> | Γable | 2S                                | 7   |
| Lis | st of F            | igur  | es                                | 8   |
| Lis | st of A            | ∆ррє  | endices                           | .10 |
| Lis | st of A            | 4cro  | nyms and Abbreviations            | .11 |
| 1.  | Intr               | odu   | ction and Background              | 1   |
|     | 1.1                | Pur   | pose and Objectives               | 1   |
|     | 1.2                | Site  | e Review                          | 4   |
| 2.  | Me                 | thod  | s and Materials                   | 5   |
|     | 2.1                | Des   | sktop Review                      | 5   |
|     | 2.2                | Sur   | face Water Quality                | 5   |
|     | 2.3                | Gro   | undwater Quality                  | .14 |
|     | 2.4                | Нус   | drology Measurements              | .17 |
|     | 2.4                | .1    | Discharge Measurements            | .17 |
|     | 2.4                | .2    | Hydrometric Station Assessments   | .20 |
|     | 2.5                | Qua   | ality Assurance / Quality Control | .23 |
|     | 2.5                | 5.1   | Surface Water Quality             | .23 |
|     | 2.5                | 5.2   | Groundwater Quality               | .24 |
|     | 2.5                | 5.3   | Hydrology                         | .24 |
|     | 2.5                | 5.4   | Laboratory QAQC                   | .24 |
| 3.  | Res                | sults |                                   | .25 |
|     | 3.1                | Des   | sktop Review                      | .25 |

| 3.1.1      | Groundwater                                                 | 25 |
|------------|-------------------------------------------------------------|----|
| 3.1.2      | Surface Water                                               | 25 |
| 3.1.3      | Draft Ketza River Mine Adaptive Management Plan             | 27 |
| 3.1.4      | Cache Creek Flow Path                                       | 28 |
| 3.1.5      | Summary of Arsenic Trends                                   | 31 |
| 3.1.6      | Summary of sulfate trends                                   | 34 |
| 3.1.7      | Groundwater                                                 | 34 |
| 3.2 Sit    | e Visit Results                                             | 37 |
| 3.2.1      | Surface Water Quality                                       | 37 |
| 3.2.2      | Groundwater Quality                                         | 46 |
| 3.2.3      | Hydrology                                                   | 48 |
| 3.2.4      | Stable Water Isotopes                                       | 56 |
| 3.2.5      | Audit QAQC                                                  | 56 |
| 4. Analys  | is and Discussion                                           | 61 |
| 4.1 Ch     | nemistry in Cache Creek                                     | 61 |
| 4.2 Ch     | nemistry in the Peel Creek Sub-catchment                    | 67 |
| 4.3 Ch     | nemistry in the Misery Creek sub-catchment                  | 71 |
| 4.4 Hy     | drometric monitoring network                                | 73 |
| 5. Conclu  | sions and Recommendations                                   | 75 |
| 6. Contac  | ct Information                                              | 78 |
| References | S                                                           | 79 |
| Appendice  | S                                                           | 82 |
| Appendi    | x A - Photo log                                             | 83 |
| Appendi    | x B - Site maps showing disturbance features and AECs/APECs | 84 |
| Appendi    | x C – Water Licence QZ04-063                                | 85 |

| Appendix D – Water Quality Lab Raw Data                                                                                        | 86 |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| Appendix E – 2021 Audit Field Notes – Hemmera and Water Resources Branch                                                       | 87 |
| Appendix F - Flow Measurements Datasheets                                                                                      | 88 |
| Appendix G - Hydrometric Network Assessment                                                                                    | 89 |
| Appendix H – Surficial Geology of the Ketza River Mine site                                                                    | 90 |
| Appendix I – Groundwater Contours (Hemmera, August 2021)                                                                       | 91 |
| Appendix J – Groundwater Monitoring Exceedance Summary (Hemmera, August 2021)                                                  |    |
| List of Tables                                                                                                                 |    |
| Table 1 - Surface water quality samples collected during the 2021 site audit                                                   | 6  |
| Table 2. Water quality parameters included in the 2021 Ketza Audit                                                             | 10 |
| Table 3. Surface water quality samples collected along Peel Creek during the 2021 audit                                        |    |
| Table 4. Surface water quality samples collected along Misery Creek during the 202 site audit                                  |    |
| Table 5. Groundwater quality samples and Isotopes collected by Hemmera during t                                                |    |
| Table 6. Hydrology assessment location information                                                                             | 21 |
| Table 7. QAQC samples included in the August 2021 site audit                                                                   | 23 |
| Table 8. Summary of historical water quality data that exceeded guidelines for regusampled stations between 2015 - 2020 (n=24) | •  |
| Table 9. Summary of AAM COPC Screening (adapted from Zajdlik and Van Gulck 2                                                   | •  |
| Table 10. Field parameters measured during the 2021 site audit                                                                 | 37 |

| Table 11. Alkalinity concentrations measured in the field during the 2021 site audit                                                                                                                                          | 39 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 12. Comparison of surface water quality taken by Water Resources Branch during the August 2021 site audit that had at least one exceedance against the BC MOE Long-term, CCME, CSR and KEQS standards/guidelines        | 45 |
| Table 13. Groundwater field parameters measured by Hemmera during the 2021 site audit                                                                                                                                         |    |
| Table 14. Summary of flow measurements and estimates during August 2021 site vis                                                                                                                                              |    |
| Table 15. Current conditions and recommendations for continuous stage and rating curve development (derived continuous discharge in open-water channel conditions) for Ketza River mine site hydrometric monitoring locations | 54 |
| Table 16. QAQC results from water quality parameters collected during the August 2021 audit                                                                                                                                   | 57 |
| Table 17. QAQC results from stable water isotope samples collected during the Augu 2021 site visit                                                                                                                            |    |
| Table 18. Comparison of alkalinity samples for in-situ measurements versus lab analysis during the August 2021 site visit                                                                                                     | 60 |
| List of Figures                                                                                                                                                                                                               |    |
| Figure 1 - Location of the Ketza River Mine                                                                                                                                                                                   | 3  |
| Figure 2 - Surface Water Sample Locations for the 2021 Ketza Audit                                                                                                                                                            | 9  |
| Figure 3 - Groundwater sampling locations (Hemmera, August 2021)                                                                                                                                                              | 16 |
| Figure 4. Hydrology assessment locations for the 2021 audit                                                                                                                                                                   | 22 |
| Figure 5 - Aerial photos of Tarn Lake showing region of white and red precipitates (Le – 1968; Right – 2019)                                                                                                                  |    |
| Figure 6 - Distribution of historical (2015-2020) total arsenic concentrations at the Ketza River Mine site.                                                                                                                  | 33 |

| Figure 7 - Piper plot showing major ion dominance trends40                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 8 - Total As concentrations in surface water samples collected by Water  ResourcesBranch43                                                                                                                                                                                                                                                                   |
| Figure 9. Dissolved sulfate concentrations in surface water samples collected by WRB                                                                                                                                                                                                                                                                                |
| Figure 10. Map of flow measurements and estimates (italicized) on 2021-08-31 and 2021-09-0149                                                                                                                                                                                                                                                                       |
| Figure 11. Flow ranges based on 2012 estimated minimum and peak discharge (EBA 2013) and prioritization of stations locations53                                                                                                                                                                                                                                     |
| Figure 12 - $\delta^2$ H and $\delta^{18}$ O ratios for surface water and groundwater samples (solid circles) collected during the Aug. & Sept. 2021 monitoring events and precipitation (hollow circles) from Whitehorse via the Global Network of Isotopes in Precipitation (GNIP; IAEA 2021)                                                                     |
| Figure 13 - $\delta^2$ H and $\delta^{18}$ O ratios for surface water and groundwater samples collected in the Cache Creek catchment (upstream of TSF) during the Aug. & Sept. 2021 monitoring events, presented alongside GNIP data (GNIP; IAEA 2021). H designations represent isotope samples collected by Hemmera, W those collected by Water Resources Branch. |
| Figure 14. Estimated waste rock dumps and pit shells at the Ketza River Mine (TetraTech 2016)                                                                                                                                                                                                                                                                       |
| Figure 15. Figure 1: $\delta^2$ H and $\delta^{18}$ O ratios for surface water and groundwater samples (solid circles) collected in the Cache Creek catchment (TSF area) during the Aug. & Sept. 2021 monitoring events and Whitehorse GNIP data (GNIP; IAEA 2021)65                                                                                                |
| Figure 16. Analytical results of surface water quality along Cache Creek from August 2021 site audit samples. Sample stations compared in order of flow direction. Orange highlighted area shows influence of Peel Creek. Blue highlighted area shows influence of Misery Creek. Zinc and Copper CCME guidelines are based on hardness values67                     |
| Figure 17 - Evolution in As(T/D) and Fe(T/D) along the Peel Creek flow path69                                                                                                                                                                                                                                                                                       |

| Figure 18. Analytical results of surface water quality along Peel Creek from August 2021 site audit samples. Sample stations compared in order of flow direction.  Highlighted area shows possible influence of QB Zone Pit. Zinc and Copper CCME guidelines are based on hardness values |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 19. Analytical results of surface water quality along Misery Creek from August 2021 site audit samples. Sample stations compared in order of flow direction.  Highlighted area shows possible influence of KR-18. Zinc CCME guidelines are based on hardness values                |
| List of Appendices                                                                                                                                                                                                                                                                        |
| Appendix A - Photo log                                                                                                                                                                                                                                                                    |
| Appendix B - Site maps showing disturbance features and AECs/APECs                                                                                                                                                                                                                        |
| Appendix C – Water Licence QZ04-063                                                                                                                                                                                                                                                       |
| Appendix D - WQ Lab Raw data                                                                                                                                                                                                                                                              |
| Appendix E – 2021 Audit Field Notes – Hemmera and WRB                                                                                                                                                                                                                                     |
| Appendix F - Flow Measurements Datasheets                                                                                                                                                                                                                                                 |
| Appendix G – Hydrometric Station Infrastructure and Technology Options                                                                                                                                                                                                                    |
| Appendix H – Surficial Geology of the Ketza River mine site                                                                                                                                                                                                                               |

Appendix J – Groundwater Monitoring Exceedance Summary (Hemmera, August 2021)

Appendix I – Groundwater Contours (Hemmera, August 2021)

# List of Acronyms and Abbreviations

| Acronym/<br>Abbreviation | Definition                                                            |  |  |
|--------------------------|-----------------------------------------------------------------------|--|--|
| AAM                      | Government of Yukon - Assessment and Abandoned Mines                  |  |  |
| AEC                      | Area of Environmental Contamination                                   |  |  |
| Al                       | Aluminum                                                              |  |  |
| AMP                      | Adaptive Management Plan                                              |  |  |
| APEC                     | Area of Potential Environmental Concern                               |  |  |
| ARD/ML                   | Acid Rock Drainage/Metal Leaching                                     |  |  |
| As                       | Arsenic                                                               |  |  |
| AW                       | Aquatic Wildlife                                                      |  |  |
| BCG-MR                   | Bromocresol Green/Methyl Red                                          |  |  |
| BC-MOE                   | British Columbia - Ministry of the Environment                        |  |  |
| Ca                       | Calcium                                                               |  |  |
| CCME                     | Canadian Council of Ministers of the Environment                      |  |  |
| Cd                       | Cadmium                                                               |  |  |
| COPC                     | Contaminant of Potential Concern                                      |  |  |
| CSR                      | Yukon Contaminated Sites Regulation                                   |  |  |
| Cu                       | Copper                                                                |  |  |
| F                        | Fluorine                                                              |  |  |
| FAL                      | Freshwater Aquatic life                                               |  |  |
| Fe                       | Iron                                                                  |  |  |
| FIGQFCS                  | Federal Interim Groundwater Quality Guidelines for Contaminated Sites |  |  |
| GW                       | Groundwater                                                           |  |  |
| GY                       | Government of Yukon                                                   |  |  |
| IAEA                     | International Atomic Energy Agency                                    |  |  |
| KEQS                     | Ketza Effluent Quality Standards                                      |  |  |
| MDL                      | Method Detection Limit                                                |  |  |
| MDMER                    | Metals and Diamond Mining Effluent Regulations                        |  |  |
| Mg                       | Magnesium                                                             |  |  |
| mL                       | Millilitre                                                            |  |  |
| N                        | Normality                                                             |  |  |
| NAG                      | Non Acid-Generating                                                   |  |  |

| Acronym/<br>Abbreviation | Definition                                                |  |  |
|--------------------------|-----------------------------------------------------------|--|--|
| ORP                      | Oxidation-Reduction Potential                             |  |  |
| PAG                      | Potentially Acid-Generating                               |  |  |
| рН                       | Inverse log of the activity of the hydrogen ion           |  |  |
| QAQC                     | Quality Assurance and Quality Control                     |  |  |
| RPD                      | Relative Percent Difference                               |  |  |
| Se                       | Selenium                                                  |  |  |
| SO <sub>4</sub>          | Sulfate                                                   |  |  |
| SW                       | Surface Water                                             |  |  |
| TSF                      | Tailings Storage Facility                                 |  |  |
| TSS                      | Total Suspended Solids                                    |  |  |
| UW-EIL                   | University of Waterloo - Environmental Isotope Laboratory |  |  |
| WQG                      | Water Quality Guideline                                   |  |  |
| WRB                      | Government of Yukon - Water Resources Branch              |  |  |
| Zn                       | Zinc                                                      |  |  |

# 1. Introduction and Background

Ketza River Mine is located in the traditional territory of the Ross River Dena Council, Liard First Nation and Teslin Tlingit Council. The site is accessible via a mine access road that connects to the Robert Campbell Highway southeast of Ross River (Figure 1). The site is situated in the Cache Creek mountain valley and is surrounded on all sides by steep rocky cliffs. Orange coloured rock is prevalent in the area due to the valley's high iron content. The mine site is located just below the tree line with gusty north winds blowing down the valley most days. The areas feels remote, rugged and wild but also is full of life with the high number of grizzly/black bears, moose, caribou and sheep in the region.

During operation, this site extracted and processed gold and silver ore from open pit operations and underground adits. Ketza River Holdings Ltd. held the last water licence (QZ04-063), which expired on December 31, 2009. The site went into care and maintenance in 2012 and was abandoned on April 10, 2015. Government of Yukon, Assessment and Abandoned Mines Branch (AAM) assumed responsibility for the site and continues to manage care and maintenance activities under Waters Act Section 37(1). Surface and groundwater quality are monitored on a monthly and annual basis, respectively. AAM is planning and preparing for remediation and site closure.

### 1.1 Purpose and Objectives

The purpose of this audit was to investigate potential source(s) of contaminants of concern, evaluate the existing hydrology monitoring network, and to familiarize Government of Yukon's Water Resources Branch with the site in anticipation of future regulatory processes during the closure phase.

The detailed purposes and objectives of this audit were to:

- 1) Assess the hydrology monitoring network at site as per request by AAM
  - a. Take inventory of existing hydrology stations (active and inactive).

    Evaluate the potential expansion of current monitoring scope to include discharge measurements from KR-12 (Ketza River), -13 (Cache Creek), -

- 22 (Misery Creek), and at the outlet of the water treatment station (KR-09A);
- Recommend infrastructure to reactivate continuous hydrometric monitoring (water level loggers and derived flow) based on the 2012 hydrological report (6 hydrometric stations); and
- c. Recommend a hydrology program for the site, including potential other locations or making the program more efficient for characterizing the hydrology.
- 2) Assess the hydrology of Cache and Peel Creeks:
  - a. Collect discharge measurements along Cache Creek at all accessible stations to assess contributions of surface water tributaries to inform future hydrometric station locations.
  - b. Measure discharge of Peel Creek at KR-15, KR-17, and in between to evaluate the contributions of two seeps observed by AAM in Summer 2021, and downstream of the Peel Creek confluence with Cache Creek (PCC).
- 3) Explore potential causes of elevated sulphate (SO<sub>4</sub>) and arsenic (As) concentrations in groundwater and surface water. Collect stable water isotope ( $\delta^2$ H and  $\delta^{18}$ O) samples from each regularly monitored groundwater station and several historic stations during the Aug 2021 field sampling event by AAM and their consultant. Collect water quality and isotope samples at three regularly sampled stations (KR-01, -08 and -15), ten non routine stations (KR-17, -18, -21, -22, -23, -26, -27, -28, PS1430 and PS1510), during the 2021 audit to investigate and assess potential contaminant sources.
- 4) Investigate the water chemistry within the Peel Creek catchment to determine if disturbed areas influence water chemistry. Collect water quality and isotope samples on Peel Creek downstream of Gully and QB Pits and the two seeps observed by AAM (PCS2 and PCS3).
- 5) Familiarize Branch staff with the site to provide support to AAM and future water licence application reviews.



Figure 1 - Location of the Ketza River Mine

#### 1.2 Site Review

Surface water at the Ketza River Mine consists of a primary flow system with several contributing tributaries (Figure 2). Cache Creek originates at the headwaters of Tarn Lake and flows north-east until it discharges into Ketza River. Oxo, Peel and Misery Creeks are the main tributary creeks with some smaller unnamed creeks joining along the flow path. All of the main tributaries flow into Cache Creek downstream of the Tailings Storage Facility (TSF).

Multiple potential sources of contamination to surface water quality in Cache Creek remain from exploration and operation phases at the mine. Remaining mine infrastructure includes an ore stockpile, underground adits, a tailings storage facility, a processing facility, open pit shells, and waste rock piles (Appendix B) (Tetra Tech EBA Inc. 2016). Four surface water sampling sites are used for background water quality comparison, although their validity as such is uncertain.

The Ketza River Mine has a network of surface water and groundwater monitoring stations that are monitored by consultants contracted by AAM. The frequency of monitoring is inconsistent across the historical record, but as of 2018 all surface water sites are monitored monthly, and all groundwater sites are monitored annually.

During the care and maintenance phase, AAM manages the Ketza River Mine's water quality based on the "Use-Protection Approach" to protect fish and aquatic life (YG, 2021).

## 2. Methods and Materials

This audit consisted of two sampling events:

- Stable water isotope, surface water quality, and groundwater quality samples
  were collected by Hemmera Environchem Inc., a consultant of AAM, at all of the
  routine surface water and groundwater monitoring stations during the August
  sampling event. Several groundwater monitoring wells not included in the
  routine were also sampled as part of this sampling event as requested by the
  Branch.
- 2. Twenty additional stable water isotope and surface water quality samples, as well as hydrology measurements, were collected by the Branch to characterize site water discharge. These locations included routine and non-routine surface water stations some of which were previously sampled by Hemmera.

#### 2.1 Desktop Review

Water Resources Branch carried out a review of site surface water and groundwater quality data to support the conclusions of this audit and inform comparisons with data from Hemmera's most recent monitoring event and the Branch's visit to the site. This review was comprised principally of documents supplied to the Branch by AAM, as enumerated in the 1985-2019 AAM Ketza Report Catalogue.

#### 2.2 Surface Water Quality

Hemmera collected stable isotope samples alongside routine surface water quality samples during the monthly sampling session from August 3 to 6, 2021. Air temperatures ranged from 14°C to 17°C. Weather conditions were a mix of clouds and sun with some precipitation on August 5 and 6. There was precipitation within 24hr of sampling on August 3, 2021 (Hemmera, 2021).

Water Resources Branch investigated eight routine sites (KR-01, -08 -15, -17, -21, -26, PS1430 and PS1510), five non – historic stations (KR-18, -22, -23, -27, and -28), two seeps on Peel Creek, and one former station downstream of the Peel-Cache

confluence (PCC) from August 31 to September 2, 2021 (Table 1, Figure 2). Air temperatures ranged from 3.3°C to 17.7°C. Weather conditions were a mix of cloud cover and sun. There was no precipitation at site during this period. Site conditions at each sample location and around the mine property are presented in Appendix A.

Water Resources Branch and Hemmera staff followed Canadian Council of Ministers of the Environment's (CCME) standard sampling methods for the collection of surface water samples (CCME 2011). Stable water isotope samples were collected according to the standard methods of International Atomic Energy Agency (IAEA undated).

Stable water isotopes are a valuable tool used in water provenance determination. Analysis of the proportion of  $\delta^2H$  and  $\delta^{18}O$  in a given sample provides an estimate of the degree of evaporation to which a sample has been subjected to. Generally, surface water samples with a longer residence time tend to be more rich in  $\delta^{18}O$ , given the lighter  $\delta^{16}O$  evaporates more readily. By comparing isotope ratios between water samples along flow paths, a rough estimate of hydraulic connectivity and water residence time can be hypothesized.

Water Resources Branch sample locations were selected based on the desktop review of water quality reports for this site and water quality data provided by AAM. These locations were selected with the goal of meeting the audit objectives. These sampling locations included five tributaries of Cache Creek which were sampled to delineate potential sources of elevated metals.

Table 1 - Surface water quality samples collected during the 2021 site audit

| Station ID | Description                                                         | Coordinates<br>(UTM Zone 8N) |          | Water<br>Quality | Isotopes<br>samples |  |  |
|------------|---------------------------------------------------------------------|------------------------------|----------|------------------|---------------------|--|--|
|            |                                                                     | Easting                      | Northing | Sample           | Samples             |  |  |
|            | Cache Creek                                                         |                              |          |                  |                     |  |  |
| KR-20      | upstream of mine site and Cache<br>Creek headwater lake (Tarn Lake) | 643567                       | 6824497  | W                | W                   |  |  |
| KR-01*     | upstream of mill and TSF                                            | 645088                       | 6824842  | W/H              | W                   |  |  |
| KR-13      | adjacent to mill/tailings                                           | 645863                       | 6825271  | -                | Н                   |  |  |
| KR-08*     | downstream of Oxo Creek                                             | 646891                       | 6826383  | W                | W                   |  |  |
| PCC        | downstream of Peel Creek confluence                                 | 646860                       | 6826425  | W                | W                   |  |  |

| C: :: ID   | Description                                                       | Coordinates<br>(UTM Zone 8N) |          | Water   | Isotopes |
|------------|-------------------------------------------------------------------|------------------------------|----------|---------|----------|
| Station ID |                                                                   |                              | 1        | Quality | samples  |
|            |                                                                   | Easting                      | Northing | Sample  |          |
| KR-26      | unnamed creek; discharges into<br>Cache Creek downstream of KR-08 | 647628                       | 6826931  | W       | W        |
| KR-27      | downstream of unnamed Creek confluence                            | 647669                       | 6827067  | W       | W        |
| KR-28      | downstream of Misery Creek confluence                             | 648506                       | 6827197  | W       | W        |
| CCT1       | unnamed tributary; upstream of road crossing                      | 650294                       | 6828123  | W       | W        |
| CCT2       | unnamed tributary; upstream of road crossing                      | 649821                       | 6827834  | W       | W        |
| ССТЗ       | unnamed tributary; upstream of road crossing                      | 648947                       | 6827422  | W       | W        |
| KR-10      | upstream of Ketza River confluence                                | 650611                       | 6828988  | -       | Н        |
|            | Tailings Sto                                                      | rage Facility                |          |         |          |
| KR-09      | tailings impoundment                                              | 645810                       | 6825380  | -       | Н        |
| KR-09A     | discharge from Tailings Impoundment                               | 645917                       | 6825298  | -       | Н        |
| KR-05-S1   | south dam seepage; Surface<br>discharge to Cache Creek            | 646090                       | 6825391  | -       | Н        |
| KR-05-S2   | south dam seepage; Surface<br>discharge to Cache Creek            | 646212                       | 6825355  | -       | Н        |
| KR-04-N2   | north Dam seepage discharge to<br>Cache Creek                     | 646124                       | 6825627  | -       | Н        |
| KR-04-N3   | north Dam seepage discharge to<br>Cache Creek                     | 646292                       | 6825707  | -       | Н        |
|            | Oxo                                                               | Creek                        |          |         |          |
| KR-14*     | upstream of Cache Creek Diversion                                 | 646330                       | 6825255  | -       | Н        |
|            | Peel Creek                                                        |                              |          |         |          |
| KR-17      | downstream of headwater seep                                      | 644885                       | 6826319  | W       | W        |
| KR17-DS    | Downstream of seeps from left bank                                | 645040                       | 6826278  | W       | W        |
| PCS2       | left bank seep (Peel Seep 2)                                      | 644909                       | 6826343  | W       | W        |
| PS2DS      | downstream of seep 2 confluence                                   | 645151                       | 6826291  | W       | W        |
| PCS3       | left bank seep (Peel Seep 3)                                      | 644983                       | 6826321  | W       | W        |
| PS3DS      | downstream of seep 3 confluence                                   | 645192                       | 6826301  | W       | W        |
| KR-15*     | upstream side of main road culvert                                | 646325                       | 6826284  | W/H     | W        |

| Station ID | Description                                                                       | Coordinates<br>(UTM Zone 8N) |          | Water<br>Quality | Isotopes |
|------------|-----------------------------------------------------------------------------------|------------------------------|----------|------------------|----------|
|            | ·                                                                                 | Easting                      | Northing | Sample           | samples  |
|            | Misery                                                                            | / Creek                      | l        |                  |          |
| KR-21      | near headwaters of Misery Creek                                                   | 644200                       | 6827875  | W                | W        |
| KR-18      | tributary of Misery Creek                                                         | 646931                       | 6828157  | W <sup>1</sup>   | -        |
| KR-22      | 500 m upstream of Cache Creek confluence                                          | 647794                       | 6827530  | W                | W        |
|            | Ketza                                                                             | River                        |          |                  |          |
| KR-11*     | upstream of Cache Creek confluence                                                | 650716                       | 6829150  | -                | Н        |
| KR-12*     | downstream of Cache Creek confluence                                              | 650139                       | 6830118  | -                | Н        |
| KR-50      | upstream of Campbell Highway culvert                                              | 641418                       | 6860090  | -                | Н        |
|            | Other S                                                                           | Stations                     |          |                  |          |
| Weir 2     | South of tailings storage facility,<br>within Lower Subsidiary Creek<br>Diversion | 645864                       | 6825310  | -                | Н        |
| PS1430     | Mine portal seepage at 1430 masl portal location                                  | 645437                       | 6825525  | W                | W        |
| PS1510     | Mine portal seepage at 1510 masl portal location                                  | 645306                       | 6825689  | dry              | dry      |
| KR-16      | Unnamed tributary of Cache Creek, above mine site                                 | 644274                       | 6825216  | -                | Н        |
| KR-23      | Old Iona silver portal run-off, 100m<br>from Ketza River                          | 651168                       | 6828153  | W                | W        |

Note: sites listed from upstream to downstream in the respective catchment; \* - Water Licence station; TSF – tailings storage facility; masl – meters above sea level; 1 – in-situ field data only; W-sampled by Water Resources, H – Sampled by Hemmera; W/H sampled by Hemmera and Water Resources



Figure 2 - Surface Water Sample Locations for the 2021 Ketza Audit

Observations recorded in field notes included brief descriptions of site conditions such as air temperature, cloud cover, and weather (Appendix E).

In-situ field measurements were collected at each station using a handheld digital thermometer for air temperature and a YSI Pro DSS multiparameter sonde for field aqueous geochemistry measurements. The thermometer was hung from vegetation in the shade while collecting the water samples at each station. The sonde was inserted into the water at each sample location so that the probes were submerged and left to equilibrate for at least 2 minutes. Parameters measured included water temperature (°C), dissolved oxygen (mg/L), pH (pH units), turbidity (NTU), specific Conductance (µS/cm) and oxidation reduction potential (ORP; mV) (Table 2). The YSI was calibrated by the Branch staff as per manufacturer specifications prior to use. Calibration was verified during and after field sampling.

Table 2. Water quality parameters included in the 2021 Ketza Audit

| Parameter                                      | Unit      | Method<br>Detection<br>Limit (MDL) |
|------------------------------------------------|-----------|------------------------------------|
| Field                                          |           |                                    |
| Н                                              | pH unit   | -                                  |
| Specific Conductivity (SPC)                    | μS/cm     | -                                  |
| Temperature                                    | °C        | -                                  |
| Dissolved Oxygen (DO)                          | mg/L      | -                                  |
| Turbidity                                      | NTU       | -                                  |
| Oxidation Reduction Potential (ORP)            | mV        | -                                  |
| Alkalinity (total)                             | mgCaCO3/L | -                                  |
| Laboratory                                     |           |                                    |
| На                                             | pH unit   | -                                  |
| Specific Conductivity (SPC)                    | μS/cm     | 2                                  |
| Alkalinity (bicarbonate, carbonate, hydroxide, | mgCaCO₃/L | 1                                  |
| phenolphthalein and total)                     |           |                                    |
| Total Suspended Solids (TSS)                   | mg/L      | 1                                  |
| Total Dissolved Solids (TDS)                   | mg/L      | 1                                  |
| Chloride                                       | mg/L      | 0.5                                |
| Sulphate (Dissolved)                           | mg/L      | 0.5                                |
| Fluoride                                       | mg/L      | 0.02                               |

|                                                 |           | Method      |
|-------------------------------------------------|-----------|-------------|
| Parameter                                       | Unit      | Detection   |
|                                                 |           | Limit (MDL) |
| Phosphorus (Total Phosphate and Dissolved)      | mg/L      | 0.001       |
| Ammonia                                         | mg/L      | 0.005       |
| Nitrate, Nitrite                                | mg/L      | 0.002       |
| Total Nitrogen                                  | mg/L      | 0.02        |
| Dissolved Organic Carbon (DOC)                  | mg/L      | 0.2         |
| Cyanide (SAD and WAD)                           | mg/L      | 0.005       |
| Metals (Total and Dissolved; including Mercury) | mg/L      | Various DLs |
| Chromium (Total, Dissolved, -III and -VI)       | mg/L      | Various DLs |
| Hardness (Total and Dissolved)                  | mgCaCO₃/L | 1.9*10-6    |

Note: SAD – strong acid dissociable; WAD – weak acid dissociable; DL – detection limit

Alkalinity was measured in the field for select sample sites using a HACH digital titrator to corroborate laboratory alkalinity measurements. Twenty millilitres of water was field filtered, measured volumetrically with a graduated cylinder, and transferred into a 30 mL Erlenmeyer flask, to which 4 drops of bromocresol green/methyl red indicator was added. Samples were titrated with 0.16 N sulfuric acid until the solution changed colour to bright pink, indicating the pH endpoint of 4.6 had been reached. The number of digital titrator units were recorded, converted to volume using the manufacturer-supplied conversion factor, and used to calculate total alkalinity.

Hemmera and Water Resources Branch collected 17 and 21 stable water isotope samples, respectively. Water Resources Branch submitted all isotope samples to the University of Waterloo-Environmental Isotope Laboratory. In-situ field measurements for pH and specific conductivity were submitted with the unfiltered samples for analysis (Appendix D). Isotope ratios were measured using a Los Gatos Research Liquid Water Isotope Analyser, model T-LWIA-45-EP with a precision ( $2\sigma$ ) of  $\delta^2H = \pm~0.8~\%$  and  $\delta^{18}O = \pm~0.2~\%$ .

Analysis of the Branch's samples for a suite of analytical parameters were conducted by Bureau Veritas Laboratories. Analysis of Hemerra samples for a suite of analytical parameters were conducted by CARO Laboratories. These parameters were selected to support the objectives of the Site audit, allow comparison to the current site specific sampling program, and allow comparison to water quality benchmarks and the standards outlined in the expired water licence QZ04-063 (Table 2, Appendix C). Water Resources Branch and Hemmera analytical results were compared to the CCME Water Quality Guidelines (WQG) for the Protection of Freshwater Aquatic Life (CCME-FAL), Yukon Contaminated Site Regulation for Aquatic Life Standards (CSR-AW), British Columbia Ministry of Environment Water Quality Long-term Guideline for Freshwater Aquatic Life (BC MOE), Metal and Diamond Mine Effluent Regulations (MDMER) and the former Water Licence QZ04-063 Effluent Quality Standards (KEQS) (CCME 2021, YCSR 2002, GoC 2002). Calculated guideline values for certain CCME and CSR thresholds were determined using in-situ parameters and dissolved hardness values. CSR guidelines were determined using a 1:10 dilution ratio to convert to surface water quality values. For the purposes of this audit, these benchmarks were used for comparison only. It is not the purpose of this audit to make conclusions regarding water quality exceedances with respect to standards, quidelines, or regulations.

#### 2.2.1.1 Peel Creek Seep Assessment

In order to assess the likelihood of waste rock dumps and pit shells in Peel Creek as potential sources of contaminants into Cache Creek, surface water quality samples and isotopes were collected along the entire flow path of Peel Creek (Table 3, Figure 2). Three major seeps were assessed as well as a region of minor seepage showing bright red colouration. These seeps were sampled downstream of their respective daylighting locations where sufficient flow and mixing with the main flow path was observed. Discharge measurements were collected at strategic points along the Peel Creek flow path.

The first major seep (Seep 1) was located at the headwaters of Peel Creek, but was sampled further downstream (KR-17) due to insufficient flow for sample collection at the seep source. This sample provides potential background water quality information regarding Peel Creek before water chemistry changes occur further downstream. The other two major seeps, "Seep 2" (PCS2) and "Seep 3" (PCS3), daylight on the north side of the creek valley and flow into Peel Creek. An additional sample was collected

from a small pool just downstream from the start of the minor red seep region (KR-17DS), where the stream bed was observed with a layer of bright red precipitate (photos 27-31, Appendix A).

A final sample was collected further downstream at station KR-15 to assess the water chemistry of Peel Creek prior to its confluence with Cache Creek.

Table 3. Surface water quality samples collected along Peel Creek during the 2021 site audit

| Station ID                         | Description                             | Rationale                                            |  |
|------------------------------------|-----------------------------------------|------------------------------------------------------|--|
| KR-17                              | downstream of headwater seep            | Potential background water quality of creek          |  |
| downstream of seeps observed along |                                         | Observed change in colour of stream substrate        |  |
| KN17-D3                            | south bank                              | downstream of seep entering from south slope         |  |
| Seep 2                             | daylighting of seep on north bank (Peel | Water quality representing the groundwater seepage   |  |
| Seep 2                             | Seep 2)                                 | entering from the north slope                        |  |
| PS2DS                              | downstream of seep 2 confluence         | Mixing of the creek and seep water to observe        |  |
|                                    | downstream of seep 2 confidence         | potential change in the creek water quality          |  |
| Seep 3                             | daylighting of seep on north bank (Peel | Water quality representing the groundwater seepage   |  |
| Seep 3                             | Seep 3)                                 | entering from the north slope                        |  |
| PS3DS                              | downstream of seep 3 confluence         | Mixing of the creek and seep water to observe        |  |
|                                    | downstream of seep 3 confidence         | potential change in the creek water quality          |  |
| KR-15                              | upstream side of main road culvert      | Characterize tributary before discharging into Cache |  |
| VK-12                              | upstream side of main road culvert      | Creek                                                |  |

#### 2.2.1.2 Misery Creek Seep Assessment

Misery Creek discharges into Cache Creek between historical stations KR-27 and KR-28. Three surface water stations are established in Misery Creek Valley, two of which were sampled by the Branch during the 2021 audit (Table 4, Figure 2). Misery Creek background water quality was sampled at KR-21, located where an access road crosses Misery Creek in the headwater region. KR-18 is located on a tributary to Misery Creek along the access road, for which only field data was obtained. KR-22 characterizes the water quality of Misery Creek upstream of its discharge into Cache Creek, where red and white precipitates were observed on the substrate. Discharge measurements were collected at strategic locations along the Misery Creek flow path.

Table 4. Surface water quality samples collected along Misery Creek during the 2021 site audit

| Station ID | Description                     | Rationale                                                         |
|------------|---------------------------------|-------------------------------------------------------------------|
| KR-21      | Near headwaters of Misery Creek | Potential background water quality of creek                       |
| KR-18      | Tributary of Misery Creek       | Observe water quality of tributary before mixing with creek       |
| KR-22      | 500 m upstream of Cache Creek   | Observe water quality of creek before joining with<br>Cache Creek |

## 2.3 Groundwater Quality

Stable water isotope and groundwater quality sample collection at routine groundwater monitoring stations was completed by AAM and Hemmera during the August 2021 sampling event, including seven additional non-routine stations requested by Water Resources Branch. A total of 22 samples were collected (Table 5, Figure 3). In-situ water pH and conductivity were provided for each sample submitted for stable water isotope analysis. All groundwater sampling carried out during this event followed the methodology outlined in Hemmera's Methodology Report (Hemmera, 2020). Some minor deviations occurred, including the exchange of a Grundfos pump for a Hydrolift pump for all samples.

Table 5. Groundwater quality samples and Isotopes collected by Hemmera during the 2021 site audit

| Station ID      | Coordinates<br>(UTM Zone 8N) |                  | Sample Date - (YYYY-MM-DD) | Location Notes <sup>1</sup>          |
|-----------------|------------------------------|------------------|----------------------------|--------------------------------------|
|                 | Easting Northing             | (1111-MIM-DD)    |                            |                                      |
|                 |                              | Ca               | ache Creek                 |                                      |
| GT-10-06A 6     | 643410 6824                  | 6824700          | 2021-08-05                 | Located in a pit shell upgradient of |
| G1-10-00A       | 043410                       | 043410   0624700 | 2021-06-05                 | Tarn Lake                            |
| HYD-08-17       | 643377                       | 6825173          | 2021-08-05                 | North of Tarn lake                   |
| HYD-08-01A      | 643940                       | 6825175          | 2021-08-05                 | Located in pit shell near Cache      |
| HYD-08-01B      | 643940                       | 6825175          | 2021-08-05                 | Creek                                |
|                 |                              |                  |                            | Located near top of slope            |
| HYD-08-02       | 644099                       | 6825829          | 2021-08-04                 | separating Cache Creek from Peel     |
|                 |                              |                  |                            | Creek                                |
| Core Shack Well | 644393                       | 6825242          | 2021-08-05                 | Well near Core Shack                 |

| Station ID             | Coordinates<br>(UTM Zone 8N) |          | Sample Date (YYYY-MM-DD) | Location Notes <sup>1</sup>        |  |
|------------------------|------------------------------|----------|--------------------------|------------------------------------|--|
|                        | Easting                      | Northing | (1111-MM-DD)             |                                    |  |
| KR-05-688              | 645094                       | 6825613  | 2021-08-04               | Located on south-facing slope      |  |
| KIY-03-000             | 043034                       | 0023013  | 2021-00-04               | across from camp area              |  |
| PS1430 Portal Well     | 645243                       | 6825551  | 2021-08-04               | Well discharging mine adit         |  |
| 1 31 130 1 Ortal VVCII | 0 132 13                     | 0023331  | 2021 00 01               | drainage                           |  |
|                        |                              |          |                          | Located on topographic high        |  |
| GT-10-01               | 644990                       | 6825921  | 2021-08-04               | between Cache Creek and Peel       |  |
|                        |                              |          |                          | Creek                              |  |
| BH-10-05               | 646387                       | 6825905  | 2021-08-03               | Located near confluence of         |  |
|                        | 0.0007                       |          |                          | unnamed creek with Cache Creek     |  |
| HYD-08-04A             | 645420                       | 6825500  | 2021-08-04               | Upgradient of TSF                  |  |
| HYD-08-06A             | 645836                       | 6825726  | 2021-08-05               | Cross gradient to the north of TSF |  |
|                        | Tailings Storage Facility    |          |                          |                                    |  |
| P90-7B                 | 646052                       | 6825385  | 2021-08-03               | Piezometer in TSF                  |  |
| P96-12A                | 646003                       | 6825599  | 2021-08-03               | Piezometer in TSF                  |  |
| P96-12B                | 646054                       | 6825397  | 2021-08-03               | Piezometer in TSF                  |  |
| P90-8                  | 646052                       | 6825537  | 2021-08-03               | Piezometer in TSF                  |  |
| BH-10-01A              | 646212                       | 6825597  | 2021-08-03               | Piezometer in TSF                  |  |
| BH-10-02               | 646239                       | 6825923  | 2021-08-03               | Located near confluence of         |  |
| DIT 10 02              | 040233                       | 0023323  | 2021 00 05               | unnamed creek with Cache Creek     |  |
| New Camp Water         | 644973                       | 6824713  | 2021-08-05               | Camp water supply well             |  |
| Well                   | 011070                       |          |                          | Camp water supply wen              |  |
| Peel Creek             |                              |          |                          |                                    |  |
| HYD-08-08              | 645289                       | 6826911  | 2021-08-03               | Near top of northern slope of Peel |  |
|                        | 0.0200                       | 0010011  | 2021-00-03               | Creek catchment                    |  |
| HYD-08-09A             | 645369                       | 6826441  | 2021-08-04               | Located in waste rock dump near    |  |
|                        |                              |          |                          | Peel Creek                         |  |
| HYD-08-10              | 645900                       | 6826622  |                          | Located in pit shell upgradient of |  |
|                        |                              |          |                          | Peel Creek                         |  |
| HYD-08-11A             | 646008                       | 6826363  | 2021-08-05               | Downgradient of HYD-08-10          |  |

<sup>&</sup>lt;sup>1</sup>Site descriptions are based on visual observation of site APECs and AECs

Groundwater monitoring wells were not sampled by WRB during the site visit.



Figure 3 - Groundwater sampling locations (Hemmera, August 2021)

#### 2.4 Hydrology Measurements

Water Resources Branch collected discharge measurements between Aug 30 and Sept 2, 2021 on at select locations to support the audit objectives (Table 6). Measurements specifically targeted Peel Creek, lower Cache Creek around the Peel Creek confluence, and Misery Creek (Figure 4).

The conditions of flow monitoring locations were also assessed in the context of reactivating a network of continuous hydrometric stations at the site. Locations included in the hydrology assessment are presented in Table 6.

#### 2.4.1 Discharge Measurements

Two methods were employed in the collection of stream flow data:

- Velocity-area method (mid-section) in medium size creeks (e.g Cache Creek), and
- Salt dilution method in small creeks (e.g. Peel Creek) that were too narrow, shallow or turbulent to accommodate a flowmeter.
- Estimate of tributary flow by calculating the difference between the discharge results of downstream and upstream measurements.
- Visual estimates made while observing the creek dimensions and water velocity.

#### 2.4.1.1 Velocity-Area mid-section methodology

Field crew used a Sontek FlowTracker 2 Acoustic Doppler Velocimeter (ADV) to complete discharge measurements in Cache Creek and Misery Creek. Reaches with close to evenly distributed laminar flow uninfluenced by the presence of side channels, debris or excessive turbulence were preferentially selected, as per standard guidance documents (Water Survey of Canada 1999, Resources Information Standards Committee 2018). Stream width and measurement panels were determined by setting up a tagline across the stream perpendicular to main flow. At least 20 panels over the full stream width were used to ensure that no single panel contained more than 10% of total flow. Panel width was adjusted during the measurement to respond to observed

velocities. Where possible, staff gauge readings were recorded at the start and end of measurements to get a sense of flow rate variation. Velocity was measured at 60% of depth from water's surface where total depths were <1m. Where depth was >1m, velocity measurements were collected at 20% and 80% of maximum depth. The instrument measured velocity for 40 seconds per panel to obtain a reliable average.

The ADV automatically calculated discharge using the following standard velocity-area mid-section equation (Xylem 2019) for discharge (Q):

$$Q = \sum \bar{v}_0 d_0 \left( \frac{b_1 - b_0}{2} \right) + \bar{v}_1 d_1 \left( \frac{b_2 - b_0}{2} \right) + \bar{v}_n d_n \left( \frac{(b_{n+1}) - (b_{n-1})}{2} \right)$$

Where,  $\bar{v}$  is the average velocity in the vertical or at the station,

d is the water depth measured at the station,

b is the location of the station

SI units of m<sup>3</sup>/s, m/s, and m are used for discharge, velocity, and depth/width, respectively.

Measurements are obtained for at least 20 panels across the metering cross-section. Edge calculations are handled differently from stations in open water with reference to the first component of discharge equation. The mean velocity at the edge is scaled from the adjacent station by a user defined correction factor (CF) of 1.

The Sontek FlowTracker 2 calculated overall discharge uncertainty using the inverse variance estimator method developed by the U.S. Geological Survey (Cohn et al. 2013). This method of calculating uncertainty accounts for width, depth and accuracy of FlowTracker2 calibration and the effects of channel variability on depth and velocity across the cross-section (Xylem 2019). Discharge uncertainty calculated by the FlowTracker2 on Cache Creek and Misery Creek ranged from 3.2 % to 6.0 % (Appendix F - forthcoming). The ADV also provided a variety of quality control and assurance assessments in real-time, reducing field measurement error.

#### 2.4.1.2 Salt dilution methodology

Salt dilution gauging method was used along Peel Creek sites where channel conditions were unsuitable for the velocity-area method of discharge measurement. Field crew used selection criteria and calculation methods provided by Gabe Sentlinger (2015). Criteria analyzed when selecting sites for salt dilution discharge gauging included turbulent flows; steep gradient; minimal pools and other backwater areas; no tributary inflows in the gauging reach; ability to perform a clean injection at a point that favours mixing; brine slug fully mixed with the flow at the point where electric conductivity is measured in the channel.

A Fathom Scientific Ltd. QiQuac salt dilution specific conductivity meter was used to collect salt dilution measurements. The QiQuac uses two very high resolution conductivity probes, reducing background noise and allowing the use of smaller quantities of salt and measurement of greater discharges compared to other conductivity meters. Calibration of the conductivity probes was conducted at the measurement locations before each reading. Given the assumption of complete mixing, the location of the probe in the stream is irrelevant. However, the location of each measurement, or each probe in the case of the QiQuac, should be on opposite sides of the stream as well as different distances along the reach to confirm complete mixing. The distance moved, or between probes, will be based on the size of the creek; 5 to 10 % of the overall distance is a good rule of thumb.

Dry salt was mixed in a 20L pail with 5-10L of water from the creek, stirred in a random fashion to keep the mixing turbulent and prevent the salt sludge concentration at the bottom of the pail. The QiQuac was set up to log in 5 second intervals. Mass of salt used at each location on Peel Creek was 100 g of Sifto Pool NaCl.

The audit team reviewed the field discharge results using the post processing spreadsheet template developed by Fathom Scientific. This report presents the post-processed discharge results and both field and QAQC results are available in Appendix F.

#### 2.4.2 Hydrometric Station Assessments

The audit team reviewed the EBA (2013) Ketza River Project Hydrological Report for familiarization with the previous hydrometric monitoring program. The 2021 assessment included the six stations of the 2012 monitoring scope (KR-13/14/15/22/10/12) as well as water licence compliance locations KR-01 and KR-08 (Table 6).

Site assessments in 2021 included the following actions for each station assessed to be activated or re-activated in a future hydrometric network (Appendix G):

- In-situ confirmation of locations
- Calculation of watershed areas using ESRI Spatial Analysis hydrology tools with the 30m Digital Elevation Model published by Government of Yukon
- Review of 2012 flow ranges and peak flow timing
- Review of rationale for station location and purpose
- Field visit photos
- Comparison with historical site sketches
- Inspection of channel conditions
- Post-field review of satellite imagery to investigate changes in channel morphology (2005-2021 period when imagery available)
- Inspection of current infrastructure (2012 installation)
- Recommend infrastructure replacements and/or upgrades
- Establish hydrometric monitoring objectives
- Recommend measurement methods for various flow levels (open water high/moderate/low flows, winter/under-ice flows)

The audit team did not review the current Hemmera hydrometric monitoring program as it was ruled out of the scope of this report.

Table 6. Hydrology assessment location information

| Station ID       | Coordinates (UTM Zone 8N) |            | Discharge method    | Station    |  |  |
|------------------|---------------------------|------------|---------------------|------------|--|--|
| Station ib       | Easting                   | Northing   | Discharge method    | Assessment |  |  |
|                  | Cache Creek               |            |                     |            |  |  |
| KR-01            | 645088                    | 6824842    | Visual Estimate     | Yes        |  |  |
| KR-13            | 645863                    | 6825271    | Visual Estimate     | Yes        |  |  |
| KR-08            | 646891                    | 6826383    | Velocity-Area       | Yes        |  |  |
| PCC              | 646860                    | 6826425    | Velocity-Area       | No         |  |  |
| KR-10            | 650611                    | 6828988    | Visual Estimate     | Yes        |  |  |
|                  |                           | Oxo Creek  |                     |            |  |  |
| KR-14            | 646330                    | 6825255    | Visual Estimate     | Yes        |  |  |
|                  |                           | Peel Creek |                     |            |  |  |
| KR-17            | 644885                    | 6826319    | Visual Estimate     | No         |  |  |
| PC-DS1 (or KR17- | 645040                    | 6826278    | Salt Dilution       | No         |  |  |
| DS)              | 043040                    | 0020270    | Sait Dilation       | 140        |  |  |
| PC-DS2           | 645151                    | 6826291    | Salt Dilution       | No         |  |  |
| PC-DS3           | 644983                    | 6826321    | Salt Dilution       | No         |  |  |
| KR-15            | 646325                    | 6826284    | Calculated Estimate | Yes        |  |  |
| Misery Creek     |                           |            |                     |            |  |  |
| KR-22            | 647794                    | 6827530    | Velocity-Area       | Yes        |  |  |
| Ketza River      |                           |            |                     |            |  |  |
| KR-12            | 650139                    | 6830118    | Visual Estimate     | Yes        |  |  |



Figure 4. Hydrology assessment locations for the 2021 audit

## 2.5 Quality Assurance / Quality Control

#### 2.5.1 Surface Water Quality

Calibration of the project YSI Pro DSS Sonde was completed by Water Resources Branch prior to the site visit. Calibration checks were conducted during and after the site visit to monitor instrument calibration drift. No issues were observed regarding measurement drift for any field parameters. Calibration of the YSI was carried out according to the manufacturer's protocols.

The Branch collected samples for quality assurance/quality control (QAQC) as required by CCME sampling requirements for water quality sampling (Table 7).

Table 7. QAQC samples included in the August 2021 site audit

| QAQC Sample<br>Type Collected | Procedure                                     | Purpose                             |
|-------------------------------|-----------------------------------------------|-------------------------------------|
|                               | Lab provides a sample bottle set prefilled    | Used to identify if any             |
|                               | with lab grade deionized water. This sample   | contamination of the samples was    |
| Travel Blank                  | is carried for the duration of the sampling   | introduced during or as a result of |
|                               | event then returned to the lab. The bottles   | the transportation process.         |
|                               | remain unopened until analysis.               |                                     |
|                               | A set of sample bottles is filled with lab    | Used to identify if any             |
|                               | grade deionized water in the field by         | contamination could be introduced   |
| Field Blank                   | sampling staff following the same standard    | into the sample from the            |
|                               | protocols and procedures of collecting a      | environment while collecting        |
|                               | regular sample.                               | samples or from sampling staff      |
|                               |                                               | handling protocols and procedures.  |
|                               | Two samples are collected consecutively at    | Identify the precision of sampling  |
|                               | the same station while adhering to the same   | technique and methods and           |
| Replicate                     | standard protocols and procedures. One        | provide an estimate of sampling     |
|                               | replicate is collected for every ten samples, | error and analytical error.         |
|                               | rounded up to the nearest ten samples.        |                                     |
|                               | Analytical results are compared and Relative  |                                     |
|                               | Percent Difference (RPD) is calculated.       |                                     |

Analytical results for the blanks were compared to the method detection limit by calculating the difference between the reported values and the MDL and reported as Difference Magnitude.

$$Difference\ Magnitude = Blank\ concentration - MDL$$

Duplicate water isotope samples were collected and analyzed alongside regular samples at a rate of one duplicate per ten samples.

### 2.5.2 Groundwater Quality

During Hemmera's August 2021 GW sampling program, two duplicate samples, a field blank, and a travel blank were submitted for analysis alongside collected samples. Information was not provided to the Branch regarding their instrument calibration protocols, but it is assumed that the standard calibration frequency of once per field day was followed.

# 2.5.3 Hydrology

No replicate or concurrent hydrometric measurements were collected during the 2021 Water Resources Branch audit. However, each salt dilution gauging measurements are replicates since two conductivity probes are in simultaneous use. Appendix F (forthcoming) displays QAQC indicators such as probe comparisons and uncertainty calculations for each field measurements.

# 2.5.4 Laboratory QAQC

Analytical results from all replicate water quality data obtained by the Branch (both lab and field) were compared by calculating Relative Percent Difference using the equation below:

Relative Percent Difference (%) = 
$$\left| \left( \frac{(S_1 - S_2)}{(S_1 + S_2)/2} \right) \right| * 100$$

Results are considered within acceptable limits when compared values show less than 25% difference (CCME 2011). The difference between replicated parameters was

calculated where RPD > 25%, referred to as Difference Magnitude (Table 7). When considering analyte concentrations in the minor or trace range (<0.001), a small difference between replicates can result in a large RPD value.

An RPD value was not calculated for parameters under the minimum detection limit (MDL).

# 3. Results

# 3.1 Desktop Review

#### 3.1.1 Groundwater

The Ketza River Mine has an intermittent surface water and groundwater sampling record spanning back to at least 1990. Varied collection methodologies, periodic renaming of sampling sites, and lack of consistent monitoring constrains analysis of temporal trends in site contaminants. A report by Arktis (2020) reviewed all historic data for surface water sites, but to date no similar review has been carried out for groundwater monitoring stations. As of February 2022, AAM is in the final stages of curating and reviewing a comprehensive water quality database file for the Ketza River Mine. This database, when complete, will facilitate analysis of long-term trends in sitewide surface water and groundwater contamination.

#### 3.1.2 Surface Water

Water Resources Branch's review of the period of record from 2015 to 2020 identified 15 chemical and physical parameters that occasionally or frequently exceeded at least one of the applicable site water quality benchmarks (Table 8). Arsenic was the parameter showing the highest frequency of exceedances, at 80.51 % (CCME guideline).

Table 8. Summary of historical water quality data that exceeded guidelines for regularly sampled stations between 2015 - 2020 (n=24)

|                       | \      | Water Qual   | ity Standaı<br>(mg/L) | rd/Guidelin | е     | % of samples                    | # of                        |
|-----------------------|--------|--------------|-----------------------|-------------|-------|---------------------------------|-----------------------------|
| Parameter             | вс мое | ССМЕ         | CSR                   | MDMER<br>1  | KEQS  | over<br>standard /<br>guideline | exceedance/<br># of samples |
| Aluminum <sup>2</sup> | N/A    | *            | N/A                   | N/A         | N/A   | 8.97                            | 70 / 780                    |
| Arsenic               | N/A    | 0.005        | 0.005                 | 0.20        | 0.5   | 80.51                           | 628 / 780                   |
| Cadmium               | N/A    | *            | *                     | N/A         | N/A   | 11.41                           | 89 / 780                    |
| Cadmium <sup>2</sup>  | *      | N/A          | N/A                   | N/A         | N/A   | 0.64                            | 5/780                       |
| Cobalt                | 0.004  | N/A          | 0.0009                | N/A         | N/A   | 23.72                           | 185 / 780                   |
| Copper                | N/A    | *            | *                     | 0.20        | 0.003 | 10.64                           | 83 / 780                    |
| Fluoride              | *      | N/A          | *                     | N/A         | N/A   | 1.15                            | 9/780                       |
| Iron                  | N/A    | 0.3          | N/A                   | N/A         | N/A   | 15.64                           | 122 / 780                   |
| Lead                  | N/A    | *            | *                     | 0.16        | 0.2   | 0.38                            | 3 / 780                     |
| Mercury               | N/A    | 0.00002<br>6 | 0.0001                | N/A         | N/A   | 0.22                            | 1 / 457                     |
| Selenium              | 0.002  | 0.001        | 0.001                 | N/A         | N/A   | 8.59                            | 67 / 780                    |
| Silver                | *      | 0.00025      | *                     | N/A         | N/A   | 0.26                            | 2/780                       |
| Sulphate              | *      | N/A          | 100                   | N/A         | N/A   | 76.05                           | 581 / 764                   |
| Total                 |        |              |                       |             |       |                                 |                             |
| Suspended             | N/A    | N/A          | N/A                   | 30.00       | 15.0  | 3.72                            | 29 / 780                    |
| Solids                |        |              |                       |             |       |                                 |                             |
| Zinc                  | *      | N/A          | *                     | 0.80        | 0.5   | 7.69                            | 60 / 780                    |

Note: n – number of stations; BC MOE – British Columbia Ministry of Environment Long-term Water Quality Guideline for Freshwater Aquatic Life; CCME - Canadian Council of Ministers of the Environment Protection of Freshwater Aquatic Life; CSR - Yukon Contaminated Sites Regulations Schedule 3 Protection of Aquatic Life; KEQS – Ketza Effluent Quality Standards; MDMER – Metal and Diamond Mine Regulations; '\*'- the standard is calculated (Appendix A); N/A – not applicable; 1- Schedule 4 Table 1 maximum authorized concentrations of prescribed deleterious substances; 2 – dissolved metal.

Assessment based on data provided by YG AAM between 2015-2020. Includes all parameters with exceedances and the percentage of samples that exceeded a guideline or standard. All metal parameters reported are total metals unless otherwise indicated. CSR standard values were divided by 10 to remove the dilution factor for surface water YG 2020). Dissolved hardness, field pH and field temperature were used to calculate CCME guidelines where required, as indicated by \*.

A 2020 study of historical surface water quality data from the Ketza River Mine over the entire period of record identified temporal trends of 11 parameters from the expired water licence (QZ04-063), and two additional parameters requested by Government of Yukon, as a part of the development of the site Adaptive Management Plan (AMP) (Arktis, 2020). NH<sub>3</sub>, As, Cu, CN, Pb, Ni, Se, SO<sub>4</sub>, TSS, pH and Zn were assessed to detect changes in concentrations throughout the entire sampling record. Concentrations were compared to either the KEQS or CCME long-term water quality guidelines for aquatic life depending on the proximity of the station to the mine site. SO<sub>4</sub> was compared to the BC MOE long-term water quality guideline.

A general decrease in concentrations was observed over time for these water quality parameters, except for SO<sub>4</sub>, along Cache Creek. Arsenic concentrations decreased after the installation of the water treatment plant in 2012, but remain generally above CCME guidelines (Arktis, 2020).

### 3.1.3 Draft Ketza River Mine Adaptive Management Plan

Surface water quality data at the Ketza River Mine was analyzed in 2021 to identify parameters for inclusion in the surface water AMP (Arktis, 2021). The screening process included parameters included all parameters with a CCME DWG or AL standard (Arktis, 2021). Thirteen parameters were assessed for their potential as indicators of changes in environmental conditions, referred to as contaminants of potential concern (COPC). Nine of the 13 parameters considered as COPCs were recommended for developing an adaptive management plan for the mine site (Table 9). Further investigation is recommended for four of the parameters to confirm if they should continue to be identified as COPCs.

Table 9. Summary of AAM COPC Screening (adapted from Zajdlik and Van Gulck 2021)

| Chemical  | Recommendation                                                   |  |  |  |  |  |  |
|-----------|------------------------------------------------------------------|--|--|--|--|--|--|
| Aluminum  |                                                                  |  |  |  |  |  |  |
| Chromium  | Requires additional investigation to confirm need to develop AMP |  |  |  |  |  |  |
| Cobalt    | Trequires additional investigation to commit need to develop Aim |  |  |  |  |  |  |
| Cyanide   |                                                                  |  |  |  |  |  |  |
| Arsenic   |                                                                  |  |  |  |  |  |  |
| Copper    | AMP Trigger required                                             |  |  |  |  |  |  |
| Fluoride  |                                                                  |  |  |  |  |  |  |
| Iron      |                                                                  |  |  |  |  |  |  |
| Zinc      |                                                                  |  |  |  |  |  |  |
| Cadmium   |                                                                  |  |  |  |  |  |  |
| Manganese | AMP trigger not required                                         |  |  |  |  |  |  |
| Mercury   | Aivii digger notrequired                                         |  |  |  |  |  |  |
| Sulphate  |                                                                  |  |  |  |  |  |  |

#### 3.1.4 Cache Creek Flow Path

This section presents a review of historic trends in key contaminants along the Cache Creek flow path, from the headwater region to its discharge into the Ketza River.

Historical concentrations of As, Fe and Se have been detected at elevated concentrations along the Cache Creek flow path. Elevated concentrations have been detected at the farthest upstream station, KR-01. Exceedances of As guidelines are consistent along the flow path to the confluence of Cache Creek and Ketza River. Selenium concentrations historically decline along the creek, resulting in fewer exceedances at confluence point KR-10. Aluminum and Cd concentrations increase as the creek progresses. Concentrations of Cu and Fe historically reach their highest values in Cache Creek downstream of the Peel and Misery Creek confluences. TSS consistently exceeds guidelines at all stations downstream of the TSF and shows strong seasonal variation (Higher in summer months and lower in winter months).

Background water quality for Cache Creek at station KR-20 (Tarn Lake) contains high levels of AI, Cd and Zn. These parameters frequently exceed CCME guidelines at this station. Water quality downstream of Tarn Lake and upstream of the TSF shows frequent CCME guideline exceedances for As, Fe and Se (Tetra Tech, 2016, App B).

The exceedances at the stations upstream the TSF (KR-16, -01 and -13) and the headwater station KR-20 suggest that these elements may occur naturally at high concentrations in the headwaters but this can be difficult to fully attribute to background conditions as there are several mining related disturbances in the vicinity (e.g. Tarn Lake Pit). A groundwater discharge area with precipitates can be seen along the northern shore of Tarn Lake, suggesting that Tarn Lake may be groundwater fed, which may be the source of some of these dissolved elements (Figure 5). Again, though, the proximity of the Tarn Lake Pit may be affecting the groundwater concentrations entering Tarn Lake. This makes it difficult to determine what background conditions are in the catchment. Aerial photos showing this precipitate area in 1968 and in 2019 in Figure 5.

There are four stations around the TSF to monitor seepage and assess related contamination that may influence Cache Creek (KR-04-N3, KR-04-N2, KR-05-S1, KR-05-S2). The TSF water prior to treatment has a history of CCME guideline exceedances



Figure 5 - Aerial photos of Tarn Lake showing region of white and red precipitates (Left – 1968; Right – 2019).

1968 – Photography provided by Energy Mines and Resources Aerial Photo Library

2019 - Imagery provided by GeoYukon.ca

for NH<sub>4</sub>, arsenic, and total CN.

Elemental concentrations in the two tributaries (Oxo and Unnamed) joining from the south side of Cache Creek immediately downstream of the TSF suggest that there are naturally elevated concentrations of some elements in surface water, as these tributaries flow through their respective catchments with very little exposure to anthropogenic disturbances. Samples from station KR-14 on Oxo Creek frequently

exceed CCME guidelines for Cd and Se concentrations, and intermittently exceed CCME guidelines for Al, As, Cu, Fe, and Zn (Arktis, 2021).

The Peel Creek sub catchment contains several disturbed areas associated with historical mining activity including pit shells, waste rock dumps, and access roads. These features present a high potential for water quality impacts, but due to the first observed daylighting of Cache Creek in previously disturbed areas, collecting suitable un-impacted surface water samples in the Peel Creek catchment was not feasible. Historical data indicates over 80% of all Peel Creek samples exceeded the CCME guidelines for As, Al, Cd, Cu, Fe and Zn. Selenium exceeded guidelines at the headwater station (KR-17) in 49% of samples but had fewer exceedances further downstream at KR-15. Inversely, TSS showed more exceedances at the KR-15 station when compared to KR-17 (62% of all samples). Seasonal trends indicate that groundwater is a major source of As to Peel Creek, as As concentrations are low in spring months and increase in summer months.

Water quality in Misery Creek appears to support elevated background levels of some geochemical parameters. Exceedances of CCME guidelines for As and Se are frequently observed along the entire stream. Arsenic concentrations increase as the flow progresses downstream, while Se concentrations decrease. Other parameters showing CCME exceedances at the KR-22 include Al, Cd, Cu and Zn. Surface water input appears to account for exceedances observed downstream as the majority occurred between May to December, surface water flows are the highest. A small tributary of Misery Creek, where station KR-18 is located, is below a natural talus slope and has shown evidence of acid rock drainage since the initiation of sampling in 2005. The pH of this tributary fluctuates between 4.1 and 4.3, well below the CCME guideline. However, this low pH does not appear to influence Misery Creek, as the pH at the downstream station remains higher than at the headwater station. Parameters exceeding CCME guidelines in this tributary include AI, As, Cd, Cu, Ni and Zn. These elevated metal concentrations appear to contribute to the greater concentrations of metals observed downstream in Misery Creek. High variability and poor consistency in the sampling record restricts interpretation of the potential effects of Misery Creek on Cache Creek (Arktis 2020). It should also be noted that there have been fewer samples

collected from the headwaters of Misery and Cache Creeks in the winter months due to avalanche risk in these locations.

Water quality in Ketza River is measurably influenced by Cache Creek (Tetra Tech 2016). Seasonal fluctuations and guideline exceedances in Ketza River resemble what is observed in lower stations on Cache Creek. Previous studies concluded that Peel and Misery Creeks are the main contributors of elevated As, Al, Cd and Cu concentrations in Ketza River downstream of the mine site. Fluctuations in Fe concentrations observed in Ketza River were less influenced by site discharge and were linked to upstream Ketza River concentrations.

# 3.1.5 Summary of Arsenic Trends

Arsenic was identified as the main COPC at the site (Arktis. 2021). Arsenic concentrations in surface water are elevated at most of the monitoring stations. Historical trend analysis shows that Tarn Lake has one of the lowest As concentrations among the stations located along the Cache Creek flow path, although it has had exceedances of the CCME guideline in the past. A significant source of As enters Cache Creek somewhere between the headwater station, Tarn Lake (KR-20) and the next downstream station (KR-01). The tributary to Cache Creek between KR-20 and KR-01 (KR-16) As concentrations are consistently below those of KR-01 and Tarn Lake indicating the source of As is likely a product of groundwater infiltration and not the KR-16 drainage. KR-01 usually has the highest As concentration observed along Cache Creek. Other monitoring stations with elevated As concentrations include the TSF seepage station KR-05S2, as well as stations in Oxo (KR-14) and Peel Creeks (KR-15, KR-17). Once Cache Creek discharges into Ketza River As concentrations (at KR-12) are reduced to the lowest values observed among all monitoring sites although remaining above the CCME guideline (Arktis 2020).

The range of As concentrations in surface water across the site between 2015 and 2020 is presented in Figure 6. Each box plot consists of three sections representing specific ranges within the dataset. The bottom of the box (lower quartile) represents the bottom 25% range of the data. Data within the box represent the middle 50% range, also known as the interquartile range. The top of the box represents the upper

25% range of the data, or the upper quartile. The top and bottom whisker represent the minimum and maximum values excluding outliers. The median is represented by the line inside the box. The "n" values indicate the number of historical data points used to create the box and whisker plots. The intent of this figure is to represent the range of concentrations across the site from 2015-2020.



Figure 6 - Distribution of historical (2015-2020) total arsenic concentrations at the Ketza River Mine site

# 3.1.6 Summary of sulfate trends

Sulfate was added by AAM to the COPC list as it can be used as an indicator of acid rock drainage / metal leaching (ARD/ML) (Arktis 2020). Water quality evidence of ARD has been observed at KR-18 in the Misery Creek sub catchment since August 2005 (Tetra Tech 2016), and increasing  $SO_4$  concentrations at most stations has been observed since approximately 2005 although concentrations generally remain well below the BC MOE WQG used for comparison. One of the exceptions is at the Cache Creek headwater station, KR-20, which shows a decreasing trend since 2005. Sulfate concentrations in Oxo Creek appear to be increasing. Peel Creek was determined not to contribute to increasing  $SO_4$  concentrations in Cache Creek. Historical reports have not reported ARD as a potential issue at Ketza River Mine.

#### 3.1.7 Groundwater

Groundwater wells are located throughout the site to monitor the impact of APECs on groundwater quality. Locations and boundaries of these site features differ slightly across reports. A comprehensive review of existing hydrogeological conditions at the Ketza River Mine site is represented in Appendix B6 of Tetra Tech's 2016 closure report.

Yukon CSR & FIGQFCS are the only guidelines that have been applied to monitor exceedances in groundwater on site by the Branch. However, the CSR specifically state that exceedances are only triggered when concentrations exceed background levels, which have not been conclusively determined for the site. Other guidelines including CCME, BC MOE and MDMER guidelines have been included in past analyses, but as they apply only to surface water their analysis in prior reports has been for reference purposes only. FIG

#### 3.1.7.1 General site hydrogeology

Lithologies underlying the site include argillite, limestone, mudstone, and shale. The distribution of these units is presented in Appendix H (Tetra Tech. 2016).

Drilling programs carried out in 2008 and 2010 advanced a series of boreholes across the site, which make up the majority of the groundwater monitoring network currently in place. Boreholes in the HYD-XX-XX series were drilled in 2008 using a combination of diamond drilling and augur drilling methodology, and boreholes in the GT-XX-XX and BHXX-XX series were advanced using Becker hammer drilling methodology in 2010. Since the installation of these monitoring wells, they have been monitored on an annual basis by consultants engaged by AAM.

Based on water level monitoring results, Hemmera calculated groundwater equipotential contours for the August 2021 site visit. The general hydraulic gradient appears to be from the topographic highs at the western edge of the site, decreasing towards the east-southeast. The resolution of the monitoring wells and piezometers was insufficient to draw detailed contours for each watershed, and may not be representative of the actual groundwater elevations across the site. These groundwater elevations are presented in Appendix I (Hemmera, 2021).

#### 3.1.7.2 Groundwater Geochemistry

The range in pH for site groundwater spans from acidic (2.68) to slightly basic (12.15). Calcium (Ca) and magnesium (Mg) are the dominant cations across the site, and bicarbonate ( $HCO_3$ ) and  $SO_4$  represent the dominant anions.

No statistically significant correlation has been proven between areas of high As exceedances and locations downgradient of historical mining activities. However, elevated dissolved metal concentrations in site groundwater indicate that the region may be affected by high local background dissolved metal concentrations in addition to any contributions from mine infrastructure (Tetra Tech, 2016).

No long-term analysis of groundwater geochemical trends has yet been undertaken. Geochemical database auditing and restructuring is currently being undertaken by AAM, with one of the primary goals of the audit being consolidation of all historic groundwater data which would facilitate trend analysis. Frequent CCME and CSR (surface water standards) exceedances of some dissolved metals have been observed in samples collected from groundwater sampling locations, including AI, As, Cd, Cr, Cu,

Fe, Hg, Ni, Ag, and Zn. These exceedances show a high degree of spatial variability across the site. No groundwater stations exist in the Misery Creek sub catchment.

#### 3.1.7.3 Groundwater in the Peel Creek Catchment

Three groundwater monitoring stations currently exist in the Peel Creek drainage area (HYD-08-08. -09A, and -11A), and one on the topographic high separating Peel and Cache Creeks. (GT-10-01). HYD-08-09 and 08-11 are located directly downgradient of ore handling areas QB Pit. HYD-08-10 is also directly downgradient of an ore handling (Gully Zone Pit) (Tetra Tech, 2016). HYD-08-11 is also downgradient of WB Pit and Gully Zone Pit but this well was found to be destroyed by a landslide during the August 2022 sampling event.

Peel Creek geochemistry is expected to be dominated by groundwater influences, as the principle flow channel is a spring source. Two large seeps between KR-17 and KR-15 further contribute to flow, as well as several smaller seeps in the upper regions.

All groundwater monitoring wells in the Peel Creek drainage show acidic pH values ranging from 2.68 to 6.02. No clear spatial trend was observed in the distribution of the exceptionally low pH values. However, HYD-08-10 is consistently observed to have one of the lowest pH values of any station at the site. All of these wells show exceedances of CCME-FAL, FIGQFCS, CSR-AW, or CSW-DW guidelines for several dissolved metals throughout the sampling record. In particular, HYD-08-09A and -11A have a history of guideline exceedances for As, Cd, and Cu.

To date, it has not been conclusively determined whether the low pH values in these wells and associated high dissolved metal concentrations result from natural groundwater contacts with local reactive minerals or whether mining-related subsurface perturbation has exacerbated these issues.

### 3.2 Site Visit Results

# 3.2.1 Surface Water Quality

#### 3.2.1.1 In-situ Field Measurements

In-situ field parameters measured by the Branch are presented in Table 10. All measurements are within guideline or licence values except for pH at KR-18 (4.17). Two measurements using different YSI's were recorded, confirming the acidic pH at this site. The pH value at KR-18 is outside the BC MOE long-term water quality guideline for freshwater aquatic life and the effluent quality standard for this mine.

Table 10. Field parameters measured during the 2021 site audit

| Station ID          |            | Air<br>Temp<br>(°C) | Water<br>Temp<br>(°C) | DO<br>(mg/L) | SPC<br>(µs/cm) | рН    | ORP<br>(mV) | Turbidity<br>(NTU) |  |  |  |
|---------------------|------------|---------------------|-----------------------|--------------|----------------|-------|-------------|--------------------|--|--|--|
| Water               | BC MOE     | N/A                 | 18                    | ≥8           | N/A            | 6.5-9 | N/A         | N/A                |  |  |  |
| Quality             | CCME       | N/A                 | N/A                   | N/A          | N/A            | N/A   | N/A         | N/A                |  |  |  |
| Standard /          | CSR        | N/A                 | N/A                   | N/A          | N/A            | N/A   | N/A         | N/A                |  |  |  |
| Guideline<br>(mg/L) | KEQS       | N/A                 | N/A                   | N/A          | N/A            | >6.5  | N/A         | N/A                |  |  |  |
|                     |            |                     | Ca                    | ache Creek   |                |       |             |                    |  |  |  |
| KR-2                | .0         | 6.5                 | 6.2                   | 10.53        | 274.4          | 8.0   | 185.1       | 1.31               |  |  |  |
| KR-0                | 1*         | 9.3                 | 5.4                   | 10.69        | 450.3          | 8.29  | 123.1       | 0                  |  |  |  |
| KR-0                | 8*         | 3.6                 | 4.2                   | 11.45        | 528            | 8.18  | 71.7        | 0.5                |  |  |  |
| PCC                 | 2          | 3.3                 | 3.7                   | 11.59        | 587            | 8.08  | -93.6       | 2.06               |  |  |  |
| KR-2                | .6         | 16.4                | 9.4                   | 10.18        | 586            | 8.5   | 179.5       | 1.16               |  |  |  |
| KR-2                | .7         | 14.4                | 7                     | 10.72        | 574            | 8.25  | 176.4       | 1.14               |  |  |  |
| KR-2                | .8         | 13.4                | 7.2                   | 10.7         | 597            | 8.23  | 197.6       | 1.83               |  |  |  |
| CCT                 | 1          | 8.3                 | 2.4                   | 12.23        | 623            | 8.29  | 225.7       | 0.44               |  |  |  |
| CCT                 | 2          | 12.2                | 3.5                   | 11.78        | 1044           | 8.36  | 195.6       | 1.85               |  |  |  |
| CCT                 | 3          | 12.3                | 4.9                   | 11.34        | 1776           | 8.34  | 209.5       | 0.33               |  |  |  |
|                     | Peel Creek |                     |                       |              |                |       |             |                    |  |  |  |
| KR-1                | KR-17 11.8 |                     | 3.2                   | 10.83        | 583            | 7.21  | 161.4       | 0                  |  |  |  |
| KR17-               | -DS 10.1   |                     | 3.6                   | 11.28        | 796            | 7.44  | -2          | 0.32               |  |  |  |
| PCS                 | 2          | 13.1                | 1.4                   | 10.92        | 505            | 7.4   | 130.9       | 0.15               |  |  |  |

| Station ID          |        | Air<br>Temp<br>(°C) | Water<br>Temp<br>(°C) | DO<br>(mg/L) | SPC<br>(µs/cm) | рН                           | ORP<br>(mV) | Turbidity<br>(NTU) |
|---------------------|--------|---------------------|-----------------------|--------------|----------------|------------------------------|-------------|--------------------|
| Water               | BC MOE | N/A                 | 18                    | ≥8           | N/A            | 6.5-9                        | N/A         | N/A                |
| Quality             | CCME   | N/A                 | N/A                   | N/A          | N/A            | N/A                          | N/A         | N/A                |
| Standard /          | CSR    | N/A                 | N/A                   | N/A          | N/A            | N/A                          | N/A         | N/A                |
| Guideline<br>(mg/L) | KEQS   | N/A                 | N/A                   | N/A          | N/A            | >6.5                         | N/A         | N/A                |
| PS2D                | S      | 14.3                | 4.2                   | 11.07        | 609            | 7.71                         | 99.4        | 1.48               |
| PCS:                | 3      | 17.7                | 1.4                   | 11.2         | 500            | 7.35                         | 81.6        | 9.62               |
| PS3D                | )S     | 12.5                | 3.7                   | 11.28        | 579            | 7.73                         | -87         | 2.44               |
| KR-1                | 5      | 12.7                | 3.4                   | 11.6         | 715            | 7.71                         | -122        | 2.98               |
|                     |        |                     | М                     | isery Creek  |                |                              |             |                    |
| KR-2                | 1      | 13.7                | 3.9                   | 10.77        | 685            | 7.74                         | 189.2       | 0.86               |
| KR-18               |        | 15.1                | 2.2                   | 11.00        | 1340           | 4.17<br>(BC<br>MOE,<br>KEQS) | 225.3       | 0.40               |
| KR-22               |        | 15.9                | 7.9                   | 10.45        | 634            | 8.22                         | 185.1       | 2.72               |
|                     |        |                     | Otl                   | ner Station  | S              |                              |             |                    |
| PS143               | 30     | 16.8                | 1.8                   | 11.61        | 1145           | 7.87                         | 233.2       | 1.76               |
| KR-2                | 3      | 10.2                | 4.1                   | 11.31        | 759            | 7.93                         | 235.3       | 0                  |

Note: Temp – temperature; DO – dissolved oxygen; SPC – specific conductivity; ORP – oxidation reduction potential;  $^{\circ}$ C – degrees Celsius; mg/L – milligrams per litre;  $\mu$ S/cm – micro Siemens per centimeter; mV – milli volts; NTU – nephelometric turbidity units; BC MOE – British Columbia Ministry of Environment Long-term Water Quality Guideline for Freshwater Aquatic Life; CCME - Canadian Council of Ministers of the Environment Protection of Freshwater Aquatic Life; CSR - Yukon Contaminated Sites Regulations Schedule 3 Protection of Aquatic Life; KEQS – Ketza Effluent Quality Standards; Highlighted values are in exceedance with the indicated standard/guideline in brackets.

The range in field-measured alkalinity values across the site is from 90.8 (KR-17DS) to 167.9 (KR-8) mg CaCO<sub>3</sub>/L (Table 11). The results of these measurements, carried out at select surface water sites as per the methods described in section 2.2, are presented in Table 11. Comparison of these values to lab-analyzed alkalinity is discussed in section 3.2.5.1.1.

Table 11. Alkalinity concentrations measured in the field during the 2021 site audit

| Sample<br>ID | Date<br>(YY-MM-<br>DD) | Titration<br>units | Titrant<br>Vol<br>(mL) <sup>1</sup> | Sample<br>Vol<br>(mL) | Bicarbonate<br>(eq/L) | Bicarbonate<br>(mg/L) | Alkalinity<br>(mg/L<br>CaCO₃) |
|--------------|------------------------|--------------------|-------------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------|
|              |                        |                    | (                                   | Cache Creek           |                       |                       |                               |
| KR-8         | 2021-08-<br>31         | 335.5              | 0.4                                 | 20.0                  | 0.003355              | 204.7                 | 167.9                         |
| PCC          | 2021-08-<br>31         | 303.0              | 0.4                                 | 20.0                  | 0.00303               | 184.9                 | 151.6                         |
|              |                        |                    |                                     | Peel Creek            |                       |                       |                               |
| KR-17        | 2021-08-<br>31         | 246.5              | 0.3                                 | 20.0                  | 0.002465              | 150.4                 | 123.3                         |
| KR-<br>17DS  | 2021-08-<br>31         | 181.5              | 0.2                                 | 20.0                  | 0.001815              | 110.7                 | 90.8                          |
| PCS2         | 2021-08-<br>31         | 253.5              | 0.3                                 | 20.0                  | 0.002535              | 154.7                 | 126.8                         |
| PC2-<br>DS   | 2021-08-<br>31         | 232.5              | 0.3                                 | 20.0                  | 0.002325              | 141.9                 | 116.3                         |
| PCS3         | 2021-08-<br>31         | 246.5              | 0.3                                 | 20.0                  | 0.002465              | 150.4                 | 123.3                         |
| PCS3-<br>DS  | 2021-08-<br>31         | 235.0              | 0.3                                 | 20.0                  | 0.00235               | 143.4                 | 117.6                         |
| KR-15        | 2021-08-<br>31         | 185.5              | 0.2                                 | 20.0                  | 0.001855              | 113.2                 | 92.8                          |

Note: YY-MM-DD – year month day;  $^1$  – 0.16 N sulphuric acid; mg/L – milligrams per liter;  $\mu$ S/cm – micro Siemens per centimeter; mV – milli volts; NTU – nephelometric turbidity units; mg CaCO<sub>3</sub>/L – milligrams calcium carbonate per litre

#### 3.2.1.2 Observed surface water chemistry

Analytical results for surface water quality and stable water isotopes are presented in Appendix D. Comparison of water quality data to guidelines, standards, and the previous effluent quality standard is for use only in surface water characterization, any exceedances are not indications of non-compliance and should not be used for any purpose beyond the present analysis.

Trends in major ion geochemistry align with expected compositions of groundwater and surface water for mine-influenced sites. Surface water across the site shows a

higher degree of Mg dominance than groundwater samples, which appear to be more Ca-dominated. Surface water samples appear to show a higher degree of  $SO_4$  dominance, whereas groundwater samples appear to be more  $HCO_3$  dominated. Major ion dominance trends for all samples collected over the course of the Branch's 2021 audit are presented in Figure 7.



Figure 7 - Piper plot showing major ion dominance trends

As anticipated, regulatory guidelines are exceeded numerous times in the sampling results of the present study (BC-MOE = 10 samples, CCME = 38 samples, CSR = 54 samples); however, there are no exceedances of the Ketza EQS. Arsenic and SO<sub>4</sub> (dissolved) show the most exceedances among the 13 parameters that had at least one exceedance of any guideline. This study observed exceedances for seven of the nine COPCs established for this site including Al, Co, As, Cu, F, Fe, and Zn. Chromium and cyanide are the two COPCs that do not exceed any guidelines. Exceedances of guidelines and standards are summarized in Table 12.

Arsenic exceeds the CCME guideline and CSR standard for As (0.005 mg/L) 16 times, whereas SO<sub>4</sub> exceeds the CSR standard (65 mg/L) 19 times. Among the Cache Creek samples, stations PCC and KR-28 show the highest rates of guideline and standard exceedances with seven parameters each. In Peel Creek, KR-15 exceeds guidelines for six parameters, the most in this tributary. Station KR-22 in Misery Creek shows eight parameter exceedances.

Arsenic concentration surpasses the CCME guideline (0.005 mg/L) somewhere between the Tarn Lake station (KR-20) and the first station downstream on Cache Creek (KR-01), increasing by 0.011 mg/L between these two stations. Four tributaries discharging into Cache Creek along the north bank after the TSF were sampled during the audit and were found not to contribute additional arsenic as flow progresses. The highest concentration of As in Cache Creek (0.0192 mg/L) occurred at a new station downstream of the confluence of Peel and Cache Creek (PCC). Peel Creek shows high As concentrations throughout the entire flow with the highest concentration occurring at KR-15 (0.0444mg/L As(total)). This station is the most downstream station on Peel Creek before discharging into Cache Creek. Misery Creek also shows high As throughout the entire flowpath, with the highest concentration occurring at KR-21 (0.0397mg/L As (total)), which exceeded CCME and CSR guidelines.

The distribution of total As concentrations from samples taken during the 2021 site visit are displayed in Figure 8. The highest concentrations of As amongst the sampled locations occured at PS1430, KR-15, KR-21 and KR-23. The highest concentration of As amongst all of the sampled locations occured at the seep emerging from the mine adit at PS1430 (0.269 mg/L).

An alternative guideline for As (0.025 mg/L) was established for the Giant Mine in the Northwest Territories in 2019 (CIRNAC 2019). This guideline uses the methodology defined most recently by CCME (CCME 2007) which uses the species sensitivity distribution (SSD) approach and was deemed to be a robust guideline in past licencing conversations in Keno, Yukon. This 0.025 mg/L guideline was incorporated into the analysis presented below (section 4.0). Based on this alternative guideline, the water quality in Cache Creek shows acceptable As concentrations throughout its entire flow path. However, Peel Creek exceeds this guideline four times from where the first minor

unnamed red seeps enter along the south bank (KR-17DS) until it discharges into Cache Creek. The two major seeps (PCS2, PCS3) remain slightly below this guideline value and do not provide sufficient flow to dilute concentrations below guideline levels.

Dissolved SO<sub>4</sub> concentrations exceed the CSR standard (100 mg/L) at all of the stations except for two. (Table 12, Figure 9). The discharge of Tarn Lake shows the lowest observed sulfate concentration of 65 mg/L. The second lowest reported concentration occurs in the water emerging from the abandoned adit located off site at KR-23 (85 mg/L). An unnamed tributary discharging into Cache Creek along the south bank (CCT3) shows the highest SO<sub>4</sub> concentration (830 mg/L) among all site stations. Adit PS1430 shows the second highest concentration of 410 mg/L. Within the Peel and Misery tributaries, KR-17DS and KR-21 show the highest SO<sub>4</sub> concentrations at 350 and 250 mg/L, respectively.



Figure 8 - Total As concentrations in surface water samples collected by Water ResourcesBranch



Figure 9. Dissolved sulfate concentrations in surface water samples collected by WRB

Table 12. Comparison of surface water quality taken by Water Resources Branch during the August 2021 site audit that had at least one exceedance against the BC MOE Long-term, CCME, CSR and KEQS standards/guidelines

|                        |           | Wate      | r Quality          |          |                  |                         |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                |                      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         | Station                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                     |                          |                                                                                                                                                                   |                                                                                                                                       |                               |                           |                               |                          |                         |
|------------------------|-----------|-----------|--------------------|----------|------------------|-------------------------|--------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-------------------------------|--------------------------|-------------------------|
| Parameter <sup>1</sup> | S         |           | d/Guideli<br>ng/L) | ne       | KR-20            | KR-01                   | KR-08                    | PCC                           | KR-26                                                                                                                                                                                                                                                                                                                                                                                                       | KR-27                          | KR-28                          | CCT1                 | ССТ2                                                                                                                                                                                                                                                                                                                | ССТЗ                                                                                                                                                                                                                                                                                    | KR-17                                                                                                                                                                                                                                                                 | KR-<br>17DS              | PCS2                                                                                                                                                                                                | PS2-DS                   | PCS3                                                                                                                                                              | PS3-<br>DS                                                                                                                            | KR-15                         | KR-21                     | KR-22                         | KR-23                    | PS143<br>0              |
|                        | BC<br>MOE | CC<br>ME  | CSR                | KEQ<br>S |                  |                         |                          |                               | Cache                                                                                                                                                                                                                                                                                                                                                                                                       | Creek                          |                                |                      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |                          | F                                                                                                                                                                                                   | eel Creek                |                                                                                                                                                                   |                                                                                                                                       |                               | Misery                    | Creek                         | Ad                       | lits                    |
| Aluminum <sup>2</sup>  | *         | N/A       | N/A                | N/A      | 0.043            | 0.00436                 | 0.00304                  | 0.0546<br>(BC<br>MOE)         | 0.00174                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0762<br>(BC<br>MOE)          | 0.14<br>(BC<br>MOE)            | 0.00154              | 0.00211                                                                                                                                                                                                                                                                                                             | 0.0031                                                                                                                                                                                                                                                                                  | 0.001                                                                                                                                                                                                                                                                 | 0.00662                  | 0.00133                                                                                                                                                                                             | 0.0277                   | 0.00126                                                                                                                                                           | 0.0162                                                                                                                                | 0.069<br>(BC<br>MOE)          | 0.00153                   | 0.228<br>(BC<br>MOE)          | 0.00152                  | 0.00156                 |
| Aluminum               | N/A       | *         | N/A                | N/A      | 0.0636           | 0.0055                  | 0.0046                   | 0.44<br>(CCME)                | 0.0028                                                                                                                                                                                                                                                                                                                                                                                                      | 0.262<br>(CCME)                | 0.987<br>(CCME)                | 0.0034               | 0.0085                                                                                                                                                                                                                                                                                                              | 0.0043                                                                                                                                                                                                                                                                                  | 0.0013                                                                                                                                                                                                                                                                | 0.0075                   | 0.0012                                                                                                                                                                                              | 0.0493                   | 0.0011                                                                                                                                                            | 0.0273                                                                                                                                | 0.422<br>(CCME)               | 0.0041                    | 2.69<br>(CCME)                | 0.014                    | 0.0032                  |
| Antimony               | N/A       | N/A       | 0.02               | N/A      | 0.00005          | 0.00039                 | 0.00022                  | 0.00019                       | 0.00028                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00022                        | 0.00020                        | 0.00092              | 0.00028                                                                                                                                                                                                                                                                                                             | 0.00021                                                                                                                                                                                                                                                                                 | 0.00010                                                                                                                                                                                                                                                               | 0.00018                  | 0.00007                                                                                                                                                                                             | 0.00013                  | 0.00007                                                                                                                                                           | 0.00012                                                                                                                               | 0.00016                       | 0.00038                   | 0.00022                       | 0.0411<br>(CSR)          | 0.00024                 |
| Arsenic                | N/A       | 0.00<br>5 | 0.005              | 0.5      | 0.00205          | 0.013<br>(CCME,<br>CSR) | 0.0145<br>(CCME,<br>CSR) | 0.0192<br>(CCME,<br>CSR)      | 0.00036                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0159<br>(CCME,<br>CSR)       | 0.0134<br>(CCME,<br>CSR)       | 0.00100              | 0.00014                                                                                                                                                                                                                                                                                                             | 0.00029                                                                                                                                                                                                                                                                                 | 0.0225<br>(CCME,<br>CSR)                                                                                                                                                                                                                                              | 0.0277<br>(CCME,<br>CSR) | 0.0209<br>(CCME,<br>CSR)                                                                                                                                                                            | 0.0353<br>(CCME,<br>CSR) | 0.0243<br>(CCME,<br>CSR)                                                                                                                                          | 0.0284<br>(CCME,<br>CSR)                                                                                                              | 0.0444<br>(CCME,<br>CSR)      | 0.0397<br>(CCME,<br>CSR)  | 0.0134<br>(CCME,<br>CSR)      | 0.0411<br>(CCME,<br>CSR) | 0.269<br>(CCME,<br>CSR) |
| Cadmium                | N/A       | *         | *                  | N/A      | 0.00016<br>(CSR) | 9.1*10 <sup>-6</sup>    | 0.00004                  | 0.00026                       | <mdl< td=""><td>0.00015</td><td>0.00034</td><td>5.8*10<sup>-6</sup></td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>7.3*10<sup>-6</sup></td><td><mdl< td=""><td>0.00001</td><td><mdl< td=""><td>6.2*10<sup>-6</sup></td><td>0.00020</td><td>6.5*10<sup>-6</sup></td><td>0.00076<br/>7 (CSR)</td><td>0.00002</td><td>0.00015</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | 0.00015                        | 0.00034                        | 5.8*10 <sup>-6</sup> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>7.3*10<sup>-6</sup></td><td><mdl< td=""><td>0.00001</td><td><mdl< td=""><td>6.2*10<sup>-6</sup></td><td>0.00020</td><td>6.5*10<sup>-6</sup></td><td>0.00076<br/>7 (CSR)</td><td>0.00002</td><td>0.00015</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td>7.3*10<sup>-6</sup></td><td><mdl< td=""><td>0.00001</td><td><mdl< td=""><td>6.2*10<sup>-6</sup></td><td>0.00020</td><td>6.5*10<sup>-6</sup></td><td>0.00076<br/>7 (CSR)</td><td>0.00002</td><td>0.00015</td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td>7.3*10<sup>-6</sup></td><td><mdl< td=""><td>0.00001</td><td><mdl< td=""><td>6.2*10<sup>-6</sup></td><td>0.00020</td><td>6.5*10<sup>-6</sup></td><td>0.00076<br/>7 (CSR)</td><td>0.00002</td><td>0.00015</td></mdl<></td></mdl<></td></mdl<>           | 7.3*10 <sup>-6</sup>     | <mdl< td=""><td>0.00001</td><td><mdl< td=""><td>6.2*10<sup>-6</sup></td><td>0.00020</td><td>6.5*10<sup>-6</sup></td><td>0.00076<br/>7 (CSR)</td><td>0.00002</td><td>0.00015</td></mdl<></td></mdl<> | 0.00001                  | <mdl< td=""><td>6.2*10<sup>-6</sup></td><td>0.00020</td><td>6.5*10<sup>-6</sup></td><td>0.00076<br/>7 (CSR)</td><td>0.00002</td><td>0.00015</td></mdl<>           | 6.2*10 <sup>-6</sup>                                                                                                                  | 0.00020                       | 6.5*10 <sup>-6</sup>      | 0.00076<br>7 (CSR)            | 0.00002                  | 0.00015                 |
| Cobalt                 | 0.004     | N/A       | 0.0009             | N/A      | 0.00146<br>(CSR) | 0.00002                 | 0.00003                  | 0.0151<br>(CSR,<br>BC<br>MOE) | 0.00003                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00789<br>(CSR,<br>BC<br>MOE) | 0.00994<br>(CSR,<br>BC<br>MOE) | 0.00002              | 0.00004                                                                                                                                                                                                                                                                                                             | 0.00003                                                                                                                                                                                                                                                                                 | 0.00002                                                                                                                                                                                                                                                               | 0.00068                  | 0.00002                                                                                                                                                                                             | 0.00144<br>(CSR)         | 0.00002                                                                                                                                                           | 0.00092<br>(CSR)                                                                                                                      | 0.0156<br>(CSR,<br>BC<br>MOE) | 0.00003                   | 0.0154<br>(CSR,<br>BC<br>MOE) | 0.00008                  | 0.00025                 |
| Copper                 | N/A       | *         | *                  | 0.003    | 0.00040          | 0.00016                 | 0.00015                  | 0.00131                       | 0.00005                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00076                        | 0.00651<br>(CCME)              | 0.00008              | 0.00006                                                                                                                                                                                                                                                                                                             | <mdl< td=""><td>0.00008</td><td>0.00016</td><td><mdl< td=""><td>0.00012</td><td><mdl< td=""><td><mdl< td=""><td>0.00398</td><td>0.00011</td><td>0.0185<br/>(CCME,<br/>CSR)</td><td>0.00366</td><td>0.00016</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                              | 0.00008                                                                                                                                                                                                                                                               | 0.00016                  | <mdl< td=""><td>0.00012</td><td><mdl< td=""><td><mdl< td=""><td>0.00398</td><td>0.00011</td><td>0.0185<br/>(CCME,<br/>CSR)</td><td>0.00366</td><td>0.00016</td></mdl<></td></mdl<></td></mdl<>      | 0.00012                  | <mdl< td=""><td><mdl< td=""><td>0.00398</td><td>0.00011</td><td>0.0185<br/>(CCME,<br/>CSR)</td><td>0.00366</td><td>0.00016</td></mdl<></td></mdl<>                | <mdl< td=""><td>0.00398</td><td>0.00011</td><td>0.0185<br/>(CCME,<br/>CSR)</td><td>0.00366</td><td>0.00016</td></mdl<>                | 0.00398                       | 0.00011                   | 0.0185<br>(CCME,<br>CSR)      | 0.00366                  | 0.00016                 |
| Iron                   | N/A       | 0.3       | N/A                | N/A      | 0.0821           | 0.0078                  | 0.0039                   | 1.09<br>(CCME)                | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                      | 0.592<br>(CCME)                | 0.375<br>(CCME)                | 0.0196               | 0.0291                                                                                                                                                                                                                                                                                                              | 0.0027                                                                                                                                                                                                                                                                                  | <mdl< td=""><td>0.246</td><td><mdl< td=""><td>2.56<br/>(CCME)</td><td><mdl< td=""><td>1.38<br/>(CCME)</td><td>3.23<br/>(CCME)</td><td>0.0133</td><td>0.0465</td><td>0.188</td><td>0.256</td></mdl<></td></mdl<></td></mdl<>                                           | 0.246                    | <mdl< td=""><td>2.56<br/>(CCME)</td><td><mdl< td=""><td>1.38<br/>(CCME)</td><td>3.23<br/>(CCME)</td><td>0.0133</td><td>0.0465</td><td>0.188</td><td>0.256</td></mdl<></td></mdl<>                   | 2.56<br>(CCME)           | <mdl< td=""><td>1.38<br/>(CCME)</td><td>3.23<br/>(CCME)</td><td>0.0133</td><td>0.0465</td><td>0.188</td><td>0.256</td></mdl<>                                     | 1.38<br>(CCME)                                                                                                                        | 3.23<br>(CCME)                | 0.0133                    | 0.0465                        | 0.188                    | 0.256                   |
| Fluoride               | *         | N/A       | *                  | N/A      | 0.028            | 0.046                   | 0.048                    | 0.11                          | 0.027                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09                           | 0.12                           | 0.12                 | 0.084                                                                                                                                                                                                                                                                                                               | 0.16                                                                                                                                                                                                                                                                                    | 0.029                                                                                                                                                                                                                                                                 | 0.067                    | 0.023                                                                                                                                                                                               | 0.055                    | 0.026                                                                                                                                                             | 0.046                                                                                                                                 | 0.21                          | 0.04                      | 0.17                          | 0.5<br>(CSR)             | 0.81<br>(CSR))          |
| Lead                   | *         | *         | *                  | 0.2      | 0.00003          | 0.00003                 | 0.00001                  | 0.00042                       | 0.00004                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00023                        | 0.00023                        | 0.00060              | 0.00014                                                                                                                                                                                                                                                                                                             | 0.00004                                                                                                                                                                                                                                                                                 | <mdl< td=""><td>5.8*10<sup>-6</sup></td><td>6.5*10<sup>-6</sup></td><td>0.00001</td><td><mdl< td=""><td><mdl< td=""><td>9.2*10<sup>-6</sup></td><td>0.00002</td><td>0.00028</td><td>0.0133<br/>(CCME)</td><td>5.6*10<sup>-6</sup></td></mdl<></td></mdl<></td></mdl<> | 5.8*10 <sup>-6</sup>     | 6.5*10 <sup>-6</sup>                                                                                                                                                                                | 0.00001                  | <mdl< td=""><td><mdl< td=""><td>9.2*10<sup>-6</sup></td><td>0.00002</td><td>0.00028</td><td>0.0133<br/>(CCME)</td><td>5.6*10<sup>-6</sup></td></mdl<></td></mdl<> | <mdl< td=""><td>9.2*10<sup>-6</sup></td><td>0.00002</td><td>0.00028</td><td>0.0133<br/>(CCME)</td><td>5.6*10<sup>-6</sup></td></mdl<> | 9.2*10 <sup>-6</sup>          | 0.00002                   | 0.00028                       | 0.0133<br>(CCME)         | 5.6*10 <sup>-6</sup>    |
| Selenium               | 0.002     | 0.00      | 0.001              | N/A      | 0.00007          | 0.00035                 | 0.00070                  | 0.00064                       | 0.00047                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00075                        | 0.00074                        | 0.00086              | 0.00098                                                                                                                                                                                                                                                                                                             | 0.00102<br>(CCME,<br>CSR)                                                                                                                                                                                                                                                               | 0.00139<br>(CCME,<br>CSR)                                                                                                                                                                                                                                             | 0.00063                  | 0.00117<br>(CCME,<br>CSR)                                                                                                                                                                           | 0.00096                  | 0.00096                                                                                                                                                           | 0.00104<br>(CCME,<br>CSR)                                                                                                             | 0.00060                       | 0.00195<br>(CCME,<br>CSR) | 0.00095                       | 0.00019                  | 0.00061                 |
| Sulphate <sup>2</sup>  | *         | N/A       | 100                | N/A      | 65               | 110<br>(CSR)            | 140<br>(CSR)             | 190<br>(CSR)                  | 130<br>(CSR)                                                                                                                                                                                                                                                                                                                                                                                                | 160<br>(CSR)                   | 180<br>(CSR)                   | 160<br>(CSR)         | 370<br>(CSR)                                                                                                                                                                                                                                                                                                        | 830<br>(CSR)                                                                                                                                                                                                                                                                            | 190<br>(CSR)                                                                                                                                                                                                                                                          | 350<br>(CSR)             | 150<br>(CSR)                                                                                                                                                                                        | 260<br>(CSR)             | 170<br>(CSR)                                                                                                                                                      | 240<br>(CSR)                                                                                                                          | 280<br>(CSR)                  | 250<br>(CSR)              | 210<br>(CSR)                  | 85                       | 410<br>(CSR)            |
| Zinc <sup>2</sup>      | N/A       | *         | N/A                | N/A      | 0.00704          | 0.00056                 | 0.00208                  | 0.0366<br>(CCME)              | 0.00016                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0173<br>(CCME)               | 0.0131                         | 0.0007               | 0.00115                                                                                                                                                                                                                                                                                                             | 0.0018                                                                                                                                                                                                                                                                                  | <mdl< td=""><td>0.00053</td><td><mdl< td=""><td>0.00183</td><td><mdl< td=""><td>0.00122</td><td>0.0188</td><td>0.0012</td><td>0.0107</td><td>0.00653</td><td>0.0472<br/>(CCME)</td></mdl<></td></mdl<></td></mdl<>                                                    | 0.00053                  | <mdl< td=""><td>0.00183</td><td><mdl< td=""><td>0.00122</td><td>0.0188</td><td>0.0012</td><td>0.0107</td><td>0.00653</td><td>0.0472<br/>(CCME)</td></mdl<></td></mdl<>                              | 0.00183                  | <mdl< td=""><td>0.00122</td><td>0.0188</td><td>0.0012</td><td>0.0107</td><td>0.00653</td><td>0.0472<br/>(CCME)</td></mdl<>                                        | 0.00122                                                                                                                               | 0.0188                        | 0.0012                    | 0.0107                        | 0.00653                  | 0.0472<br>(CCME)        |

Note: 1-All metals reported are as total metals unless labelled otherwise; ;2 – dissolved parameter; mg/L – milligrams per litre; BC MOE – British Columbia Ministry of Environment Long-term Water Quality Guideline for Freshwater Aquatic Life; CCME - Canadian Council of Ministers of the Environment Protection of Freshwater Aquatic Life; CSR - Yukon Contaminated Sites Regulations Schedule 3 Protection of Aquatic Life; KEQS – Ketza Effluent Quality Standards; <MDL – concentration below method detection limit; N/A – not applicable; '\*' - calculated standard (Appendix A). Only parameters with exceedance or potential exceedance with the indicated standard/guideline in brackets; CSR standard values were divided by 10 to remove the dilution factor for surface water (YG 2020). Dissolved hardness, field pH and field temperature were used to calculate CCME guidelines where required.

#### 3.2.1.3 Peel and Misery Creek Seeps

All of the major seeps flowing into Peel Creek in the headwaters consisted of clear water and the substrate was not discoloured from any precipitates in the flow section from seep source to confluence with Peel Creek. Algal growth was observed on the substrate and mosses growing along the flow path (photos 101-111, Appendix A). At the furthest downstream station on Peel Creek before its confluence with Cache Creek (KR-15), sediments and vegetation at this station were completely covered in red precipitate sourcing from the region of red seeps located between KR-17DS and PS2-DS. This is likely due to the groundwater seeps slowly reacting to oxygen upon daylighting from ground and ferric precipitates forming further along the creek.

In the Misery Creek sub catchment, the water appeared clear and the substrate unstained at the furthest upstream sampling site in the catchment (KR-21) (photos 47-50, Appendix A). A large seep area was observed on the uphill side of the access road leading to KR-21, at which the water was a milky white colour changing to a rusty orange (photos 51-56, Appendix A). Substrate in the Misery Creek tributary sampled by KR-18 was stained red, and no noticeable growth of periphyton was observed (photos 36-41, Appendix A). White and brown precipitates were observed to be covering the streambed sediments in Misery Creek after the confluence of the tributary and the main flow path, persisting to the lowest reaches of Misery Creek (photo 132, Appendix A).

# 3.2.2 Groundwater Quality

#### 3.2.2.1 In-situ Field Measurements

Hemmera collected groundwater and stable isotope samples at each of the routine groundwater monitoring stations during the monthly sampling session from August 3 to 6, 2021. Comparison of field parameter measurements with applicable site guidelines was not a part of the reporting requirements for the site groundwater monitoring. In-situ field parameters measured by Hemmera are provided in Table 13.

Table 13. Groundwater field parameters measured by Hemmera during the 2021 site audit

| Station ID          | Air<br>Temp<br>(°C) | Water<br>Temp<br>(°C) | DO<br>(mg/L) | SPC<br>(µs/cm) | рН    | ORP<br>(mV) | Turbidity<br>(NTU) |
|---------------------|---------------------|-----------------------|--------------|----------------|-------|-------------|--------------------|
| 1510 Portal Well    |                     | 8                     | 8.72         | 885            | 7.59  | 157.5       | 1.72               |
| BH-10-01A           |                     | 5.5                   | 6.47         | 1090           | 7.3   | 72.3        | 784                |
| BH-10-02            |                     | 2.6                   | 2.53         | 895            | 7.7   | -101.5      | 97.63              |
| BH-10-05            |                     | 2.4                   | 7.35         | 686            | 7.49  | 46.9        | 618                |
| Core Shack Well     |                     | 8.7                   | 9.37         | 436            | 7.72  | 9.37        | 0                  |
| GT-10-01            |                     | 7.1                   | 1.95         | 1532           | 7.47  | 124.9       | 17.28              |
| GT-10-06A           |                     | 6.8                   | 7.36         | 3089           | 12.19 | -41         | 48.6               |
| HYD-08-01A          |                     | 6                     | 3.58         | 1067           | 7.21  | 116         | 24.75              |
| HYD-08-01B          |                     | 7.6                   | 0.37         | 1043           | 7.17  | -34.6       | 62                 |
| HYD-08-02           |                     | 6.7                   | 6.83         | 523            | 7.03  | 148.1       | 56.65              |
| HYD-08-04A          |                     | 4.1                   | 5.35         | 1143           | 7.36  | 283         | 133                |
| HYD-08-06A          |                     | 3.4                   | 3.69         | 1961           | 7.36  | -9.6        | 188.7              |
| HYD-08-08           |                     | 5.5                   | 3.32         | 1183           | 6.02  | 143.7       | 0                  |
| HYD-08-09A          |                     | 6.9                   | 10.59        | 653            | 5.09  | 146.2       | 0                  |
| HYD-08-10           |                     | 8.2                   | 5.36         | 1667           | 2.68  | 581.2       | 39.65              |
| HYD-08-11A          |                     | 3.7                   | 7.59         | 753            | 3.74  | 474.9       | 114.85             |
| HYD-08-17           |                     | 3.4                   | 1.1          | 1061           | 6.82  | -55.9       | 147.97             |
| KR-05-688           |                     | 4.6                   | 6.21         | 1304           | 7.26  | 152.2       | 0                  |
| New Camp Water Well |                     | 29.5                  | 5.71         | 764            | 7.46  | 72.6        | 0                  |
| P90-7B              |                     | 9.8                   | 5.9          | 337            | 7.64  | 133.8       | 62.36              |
| P90-8               |                     | 9.6                   | 2.48         | 926            | 7.49  | -142.7      | 386                |
| P96-12A             |                     | 3.8                   | 3.07         | 916            | 7.48  | 134.3       | 93.13              |
| P96-12B             |                     | 4.4                   | 3.69         | 981            | 7.59  | 47.8        | 7.7                |
| Upper Mill Well     |                     | 6.2                   | 5.2          | 964            | 7.83  | -78.9       | 0                  |

Note: Temp – temperature; DO – dissolved oxygen; SPC – specific conductance (converted from Hemmera's field notes, which were recorded in conductivity); ORP – oxidation reduction potential;  $^{\circ}$ C – degrees Celsius; mg/L – milligrams per litre;  $\mu$ S/cm – micro Siemens per centimeter; mV – milli volts; NTU – nephelometric turbidity units

Although guidelines for GW field parameters were not applied by Hemmera, field readings differ greatly from those collected at surface water sites. Most notably, the pH measured at the GT-10-06A is basic (12.19). Inversely, the pH values measured at wells HYD-08-09A, HYD-08-10, and HYD-08-11A are acidic, with values ranging from 2.68 to 5.09. The cause of the high pH values is not known, but the low pH values

associated with the aforementioned wells, accompanied by their generally higher dissolved metal concentrations, are likely indicative of acid rock drainage.

#### 3.2.2.2 Analytical Results

A summary of the analytical results of the August 2021 GW sampling program carried out by Hemmera area is attached as Appendix J (Hemmera, 2021). Arsenic exceeds one or more applicable guidelines at the majority of the sampled sites, as does SO<sub>4</sub>. The wells with lower pH values show generally the highest concentrations of dissolved As, followed by the wells with the highest pH. Measured SPC values and dissolved concentrations of other elements generally followed the same trend of lower pH resulting in higher concentrations. Other prominent exceedances of one or multiple applicable guidelines occurring across several wells included the COPCs Al, Cu, Fe, and Zn.

Wells in the Peel Creek catchment (HYD-08-08, -09A, -10, -11A, and GT-10-01) show some of the highest occurrences of guideline exceedances. In particular, the three wells closest to Peel Creek (-09A, -10, -11A) exceed guidelines for Al, As, Cd, F, and Zn.

# 3.2.3 Hydrology

#### 3.2.3.1 Flow Measurements

Water Resources Branch conducted flow measurements and estimates in the Cache Creek basin from above the Peel Creek confluence to above the Ketza River confluence (Figure 10, Table 14). Weather and flow conditions were likely representative of typical late-summer at the site. Heavy rain occurred in the region during the week prior to the visit and there was moderate rainfall in the evening of 2021-08-30. The following two days were dry, with air temperatures ranging from 3°C to 14°.

Detailed information for every flow measurement collected by Branch staff between August 31 and September 1, 2021 is presented in Appendix F.

#### 3.2.3.1.1 Peel Creek

Water Resources Branch used salt dilution gauging measurements in the upper section of Peel Creek to estimate the contribution of seepages on the northern slope of the creek (Figure 10, Table 14) on 2021-08-31. The uppermost station, KR-17, had low

flow (3L/s) and the flowrate seeping out of an iron-rich-looking talus slope 50 m downstream of KR-17 was approximately 5 L/s. The other two major seeps contribute about 10 L/s each to Peel Creek flow. Salt dilution gauging results at KR-15 were rejected since measurement quality did not meet quality standards; however, discharge was estimated in the lower reach of Peel Creek (44 L/s) by calculating the difference between discharge measurements in Cache Creek above and below Peel confluence (Table 14). At the time of sampling, Peel Creek contributed approximately 9% of Cache Creek flow after its confluence, based on pre- and post-confluence discharge results.



Figure 10. Map of flow measurements and estimates (italicized) on 2021-08-31 and 2021-09-01

#### 3.2.3.1.2 Misery Creek

Velocity-area cross-section measurements downstream of station KR-22 on 2021-09-01 (Figure 10, Table 14) indicate that Misery Creek (0.337 m³/s) contributed

approximately 42% of Cache Creek flow downstream of their confluence (estimated  $0.800 \text{ m}^3\text{/s}$ ) at the time of sampling.

#### 3.2.3.1.3 Cache Creek

Two standard measurements were completed in Cache Creek above and below Peel Creek confluence. In combination with other measurements and estimates (Figure 10, Table 14), we aim at representing flow patterns in late-summer conditions between stations KR-08 (approximately 1.5 km downstream of TSF - 0.388 m³/s measured) and KR-10 (approximately 0.2 km U/S of the Cache/Ketza confluence - 0.900 m³/s estimated).

Table 14. Summary of flow measurements and estimates during August 2021 site visit

| Sample ID – Description<br>(upstream to<br>downstream order) | Observation<br>date-time | Discharge<br>(m³/sec) | Measurement<br>Method                                  | Contribution to downstream sites (% of Q post-confluence) |  |
|--------------------------------------------------------------|--------------------------|-----------------------|--------------------------------------------------------|-----------------------------------------------------------|--|
| KR-08 - Cache Creek<br>upstream of Peel                      | 2022-08-31<br>10:24      | 0.388                 | Velocity-Area                                          | 90% of PCC-1                                              |  |
| KR-17 – Peel Creek<br>Upper                                  | 2021-08-31<br>18:15      | 0.003                 | Estimate (visual)                                      | 7% of KR-15                                               |  |
| PC-DS1 – Peel Creek<br>upstream of Seep 2                    | 2021-08-31<br>18:15      | 0.008                 | Salt Dilution                                          | 18% of KR-15                                              |  |
| Seep 2 (Peel Creek<br>Valley)                                |                          |                       | Estimate (visual)                                      | 23% of KR015                                              |  |
| PC-DS2 – Peel Creek<br>downstream of Seep 2                  | 2021-08-31<br>14:35      | 0.021                 | Salt Dilution                                          | 48% of KR-15                                              |  |
| Seep 3 (Peel Creek<br>Valley)                                | 2021-08-31<br>14:00      | 0.010 E               | Estimate (visual)                                      | 23% of KR-15                                              |  |
| PC-DS3 – Peel Creek<br>downstream of Seep 3                  | 2021-08-31<br>13:53      | 0.035                 | Salt Dilution                                          | 80% of KR-15                                              |  |
| KR-15 - Peel Creek at<br>Road                                | 2021-08-31<br>11:55      | 0.044 E               | Estimate<br>(difference<br>between PCC-1<br>and KR-08) | 10% of PCC-1                                              |  |
| PCC-1 - Cache Creek<br>downstream of Peel                    | 2021-08-31<br>9:23       | 0.432                 | Velocity-Area                                          | 94% of KR-27                                              |  |
| KR-26 - East Tributary<br>Unnamed                            | 2021-09-01<br>13:20      | 0.030 E               | Estimate (visual)                                      | 6% of KR-27                                               |  |

| Sample ID – Description<br>(upstream to<br>downstream order) | Observation<br>date-time | Discharge<br>(m³/sec) | Measurement<br>Method                          | Contribution to downstream sites (% of Q post-confluence) |
|--------------------------------------------------------------|--------------------------|-----------------------|------------------------------------------------|-----------------------------------------------------------|
| KR-27 – Cache Creek at<br>Bridge                             | 2021-09-01<br>12:40      | 0.460 E               | Estimate (visual with combined upstream meas.) | 58% of KR-28                                              |
| KR-22 - Misery Creek                                         | 2021-09-01<br>15:34      | 0.337                 | Velocity-Area                                  | 42% of KR-28                                              |
| KR-28 – Cache Creek<br>downstream of Misery                  | 2021-09-01<br>12:10      | 0.800 E               | Estimate (visual with combined upstream meas.) | 89% of KR-10                                              |
| CCT3 - Small tributary<br>east unnamed                       | 2021-09-01<br>11:30      | 0.010 E               | Estimate (visual)                              | 1% of KR-10                                               |
| CCT2 - Small tributary<br>east unnamed                       | 2021-09-01<br>10:50      | 0.040 E               | Estimate (visual)                              | 4% of KR-10                                               |
| CCT1 - Small tributary<br>east unnamed                       | 2021-09-01<br>10:50      | 0.025 E               | Estimate (visual)                              | 3% of KR-10                                               |
| KR-10 – Cache Creek<br>upstream of Ketza River<br>confluence | 2021-09-01<br>09:45      | 0.900 E               | Estimate (visual with combined upstream Q      | -                                                         |
| KR-23                                                        | 2021-09-01<br>09:15      | 0.002 E               | Estimate (visual)                              | -                                                         |

## 3.2.3.2 Assessment of Hydrology Monitoring Locations

A complete summary of the assessment of the hydrometric monitoring network at the Ketza River Mine site is presented in Appendix G.

In our desktop and on-the-ground assessment, we have identified six essential locations (KR-12, -10, -22, -15, -08, -13) for continuous hydrometric monitoring and two locations that would be beneficial (KR-14 and KR-01) to complement the network (Figure 11 and

Table 15). The current equipment at every hydrometric station that was installed on site in 2012 was too deteriorated to be re-used in a future network. New infrastructure, stilling wells, staff gauges and pressure transducers are required.

In addition to the six essential stream locations, discharge logs (recorded by care and maintenance staff) of the water treatment plant by the tailings storage facility (TSF) should also be incorporated in the hydrometric dataset (site KR-09A located immediately downstream of KR-13). The dataset consists of daily entries for the pump flowrate and total treated volume from 2015 to present.

Figure 11 presents locations where continuous monitoring of stage and rating curve development are needed. Three priority ranks, (1) Essential, (2) Beneficial and (3) Not required, have been assigned with best judgment based on flow patterns observed and estimated in order to represent hydrological conditions on site with reasonable accuracy. Following the 2022 field visit, we have also identified substantial changes in channel morphology at Peel Creek station KR-15 and Cache Creek stations KR-10 and KR-12. Table 15 summarizes assessment findings and recommendations for each stations, where Appendix G presents further details on the stations and channel conditions, and recommendations for continuous hydrometric monitoring redeployment.

Current Ketza River location KR-12 in the middle of a wetland and/or flood plain does not appear adequate for hydrometric monitoring (site labelled "KR-12 old" in Figure 11). Substantial bank erosion immediately downstream of KR-12 would also be detrimental for establishing a stable stage-discharge relationship. Water Resources Branch investigated an alternative location downstream (site labelled "KR-12 new" in Figure 11 at coordinates 1.57907°, -132.17929°) that presents a long, straight reach with no sign of gravel bars, braiding, bank erosion or flood plain. The proposed location "KR-12 new" would include an additional small tributary entering Ketza River below "KR-12 old" on the right downstream edge, as well as the flow through the wetland possibly not captured at the current location.



Figure 11. Flow ranges based on 2012 estimated minimum and peak discharge (EBA 2013) and prioritization of stations locations.

Table 15. Current conditions and recommendations for continuous stage and rating curve development (derived continuous discharge in open-water channel conditions) for Ketza River Mine site hydrometric monitoring locations

| Station name –<br>Location                    | Continuous<br>Monitoring<br>Priority | Rationale for location, condition and recommendation (continuous hydrometric network)                                                                                                                                                                                                 |
|-----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KR-12 –<br>Ketza River<br>d/s Cache           | 1 – Essential                        | Quantify Cache Creek contribution to Ketza River. Current location inadequate (wetland floodplain). Relocate hydro station downstream channel is more stable and contained. Develop Rating Curve to derive continuous discharge.                                                      |
| KR-11 –<br>Ketza River<br>u/s Cache           | 3 – Not<br>required                  | Could be beneficial for KR-12 & KR-10 QAQC.  Discrete flow measurements in conjunction to WQ sampling should suffice.                                                                                                                                                                 |
| KR-10 –<br>Cache Creek u/s<br>Ketza           | 1 – Essential                        | Monitor total flow leaving the mine property.  Relocate hydro station upstream nearby: find better gauging pool for sensor.  Develop Rating Curve to derive continuous discharge.                                                                                                     |
| KR-28 –<br>Cache Creek<br>d/s Misery          | 3 – Not<br>required                  | Redundant (estimate flow with sum of KR-08,-15,-26,-22).                                                                                                                                                                                                                              |
| KR-22 – Misery<br>Creek                       | 1 – Essential                        | Significant tributary (WQ & Q).  Contributes to Arsenic loading of Cache Creek.  Current location needs infrastructure improvements.  Develop Rating Curve to derive continuous discharge.                                                                                            |
| KR-27 –<br>Cache Creek<br>u/s Misery          | 3 – Not<br>required                  | Redundant (estimate flow with sum of KR-08,-15,-26)                                                                                                                                                                                                                                   |
| KR-26 –<br>Unnamed<br>Tributary from<br>South | 3 – Not<br>required                  | Not a substantial tributary (minimal impact on Cache WQ & Q).                                                                                                                                                                                                                         |
| KR-15 – Peel<br>Creek at Road                 | 1 – Essential                        | Significant tributary (WQ & Q).  Contributes to Arsenic and Sulfates loading of Cache Creek.  Current gauging pool subject to aggradation: remove sediment accumulation and tweak hydraulic conditions to mitigate aggradation.  Develop Rating Curve to derive continuous discharge. |

| Station name –  | Continuous     |                                                                       |
|-----------------|----------------|-----------------------------------------------------------------------|
| Location        | Monitoring     | Rationale for location, condition and recommendation                  |
|                 | Priority       | (continuous hydrometric network)                                      |
| KR-08 – Cache   | 1 – Essential  | Pending inspection of new compliance station upstream: KR-08 is       |
| Creek upstream  |                | likely a more suitable spot for continuous stage monitoring in terms  |
| of Peel         |                | of channel stability.                                                 |
| Confluence      |                | Current location needs new infrastructure.                            |
|                 |                | Develop Rating Curve to derive continuous discharge.                  |
| KR-29 Cache     | 3 – Not        | Proposed new WQ compliance station removing some of the               |
| Creek New WQ    | required       | distance between site impacts and the current water quality           |
| Compliance      |                | objective station.                                                    |
| Location        |                | The location would have to be downstream of where the south           |
|                 |                | seepage and north seepage enter Cache Creek (e.g. downstream of       |
|                 |                | Oxo Creek), but upstream of the next unnamed creek.                   |
|                 |                | Satellite imagery not conclusive for assessing channel conditions     |
|                 |                | relating to continuous stage monitoring.                              |
|                 |                | Difference with flow monitored at KR-08 likely not substantial        |
|                 |                | enough to justify dedicated hydrometric station.                      |
| KR-14 – Oxo     | 2 – Beneficial | Substantial tributary in upper basin in flow volume but less in terms |
| Creek           |                | of contaminants. Priority rank pending detailed analysis of upper     |
|                 |                | basin.                                                                |
|                 |                | Current location needs infrastructure improvements.                   |
|                 |                | Develop Rating Curve to derive continuous discharge.                  |
| KR-09A – TSF    | Special Record | Quantify discharge from water treatment station using existing        |
| discharge       | (Daily)        | pump flowmeter logs and daily total treated volume. Existing          |
|                 |                | record from 2015 to present and to be continued as is. Flowrate       |
|                 |                | ranging from 0.009 m3/s to 0.015 m3/s when operating in 2020          |
|                 |                | and 2021. Outlet in Cache Creek located downstream of KR-13           |
|                 |                | station.                                                              |
| KR-13 – Upper   | 1 – Essential  | Reach upstream of TSF discharge outlet and diversion channel, but     |
| Cache before    |                | downstream of mine influence (waste rock piles, mill, camp).          |
| South Diversion |                | Location more suitable than KR-01 (1.1 km upstream of KR-13) for      |
| and WTF         |                | continuous hydrometric installation (constricted channel).            |
| discharge       |                | Current location needs infrastructure improvements.                   |
| KR-01           | 2 – Beneficial | Reach upstream of waste rock piles, mill and camp.                    |
|                 |                | Location assessed against KR-13 (1.1 km downstream of KR-01).         |
|                 |                | Steep gradient and braiding channel not ideal for continuous          |
|                 |                | station. Locations upstream of KR-01 not evaluated.                   |
|                 |                |                                                                       |

Note: hydrometric network assessment details presented in Appendix G.

# 3.2.4 Stable Water Isotopes

Water Resources Branch analyzed samples for stable water isotopes  $\delta^2H$  and  $\delta^{18}O$  to support interpretations of site water movement. Stable water isotope ratios ( $\delta^2H$  and  $\delta^{18}O$ ) for the samples collected during the 2021 audit, alongside Whitehorse's Global Network of Isotopes in Precipitation (GNIP) data are presented in Figure 12. The local meteoric water line may not be fully applicable to the Ketza River Mine site due to Whitehorse's distance from the site, but no closer stations exist. The significance of these isotope data relative to the audit objectives is discussed in section 4.



Figure 12 -  $\delta^2$ H and  $\delta^{18}$ O ratios for surface water and groundwater samples (solid circles) collected during the Aug. & Sept. 2021 monitoring events and precipitation (hollow circles) from Whitehorse via the Global Network of Isotopes in Precipitation (GNIP; IAEA 2021)

# 3.2.5 Audit QAQC

Quality assurance/quality control analyses did not identify any significant issues with data collection or analysis for this project.

# 3.2.5.1 Surface Water QAQC

The project travel blank and field blank showed 5 and 10 parameters above detection limit respectively. However, the concentration of these parameters is small enough to limit concerns regarding sample contamination during transportation or collection.

Duplicate analysis between collected replicate samples suggest good sampling and analytical practices. Average RPD values for the two replicate surface water samples are 8.43% and 8.73% (

Table 16). Individual parameters with RPD values greater than 25% showed sufficiently low magnitudes of difference; therefore, the use of the data is acceptable.

Table 16. QAQC results from water quality parameters collected during the August 2021 audit

| QAQC<br>Sample | Parameter <sup>1</sup>  | unit      | MDL      | Difference<br>Magnitude <sup>2,3</sup> | RPD |  |
|----------------|-------------------------|-----------|----------|----------------------------------------|-----|--|
|                | Sulphate <sup>4</sup>   | mg/L      | <0.50    | 0.7                                    |     |  |
| Travel         | Strontium <sup>4</sup>  | mg/L      | <0.00005 | 0.000008                               |     |  |
| Blank          | Strontium               | mg/L      | <0.00005 | 0.000009                               |     |  |
| Didiik         | Total Suspended Solids  | mg/L      | <1.0     | 0.6                                    |     |  |
|                | Zinc <sup>4</sup>       | mg/L      | <0.0001  | 0.00007                                |     |  |
|                | Aluminum <sup>4</sup>   | mg/L      | <0.0005  | 0.00067                                |     |  |
|                | Aluminum                | mg/L      | <0.0005  | 0.00056                                |     |  |
|                | Alkalinity-B            | mgCaCO3/L | <1.0     | 0.5                                    | N/A |  |
|                | Alkalinity              | mgCaCO3/L | <1.0     | 0.2                                    |     |  |
| Field          | Total Kjeldahl Nitrogen | mg/L      | <0.020   | 0.002                                  |     |  |
| Blank          | Nitrogen                | mg/L      | <0.020   | 0.002                                  |     |  |
|                | Strontium               | mg/L      | <0.00005 | 0.000007                               |     |  |
|                | Total Dissolved Solids  | mg/L      | <1.0     | 1.0                                    |     |  |
|                | Uranium <sup>4</sup>    | mg/L      | <0.00002 | 0.000004                               |     |  |
|                | Zinc <sup>4</sup>       | mg/L      | <0.0001  | 0.00003                                |     |  |

| QAQC<br>Sample | Parameter <sup>1</sup>      | unit | MDL      | Difference<br>Magnitude <sup>2,3</sup> | RPD              |
|----------------|-----------------------------|------|----------|----------------------------------------|------------------|
| Replicate<br>1 | Aluminum <sup>4</sup>       | mg/L | <0.0005  | 0.00066                                | 49.62            |
|                | Aluminum                    | mg/L | <0.0005  | 0.00068                                | 40.96            |
|                | Total Kjeldahl Nitrogen     | mg/L | <0.020   | 0.033                                  | 39.05            |
|                | Total Dissolved             | mg/L | <0.0010  | 0.0005                                 | 32.26            |
|                | Phosphorus                  |      |          |                                        |                  |
|                | Organic Carbon <sup>4</sup> | mg/L | <0.20    | N/A <sup>5</sup>                       | N/A <sup>5</sup> |
|                | Iron                        | mg/L | <0.001   |                                        |                  |
|                | Lead                        | mg/L | <0.00005 |                                        |                  |
|                | Total Suspended Solids      | mg/L | <1.0     |                                        |                  |
|                | Zinc                        | mg/L | <0.0001  |                                        |                  |
| Replicate<br>2 | Copper <sup>4</sup>         | mg/L | <0.00005 | 0.000077                               | 41.51            |
|                | Iron <sup>4</sup>           | mg/L | <0.001   | 0.0012                                 | 70.59            |
|                | Total Kjeldahl Nitrogen     | mg/L | <0.020   | 0.045                                  | 73.17            |
|                | Nitrogen                    | mg/L | <0.020   | 0.044                                  | 39.64            |
|                | Thallium <sup>4</sup>       | mg/L | <0.00005 | 0.000018                               | 48.65            |
|                | Thallium                    | mg/L | <0.00005 | 0.0000023                              | 50.55            |
|                | Tungsten                    | mg/L | <0.00001 | N/A <sup>5</sup>                       | N/A <sup>5</sup> |

Note: 1 – reported as total parameter unless otherwise indicated; 2 –values calculated using analytical method detection limit for blanks; 3 – calculated values reflect comparison between paired replicate samples; 4 - dissolved parameter; 5 – one of the reported concentrations is below detection; N/A – not applicable

Stable water isotope replicate samples also showed acceptable RPD values. Average RPD values for  $\delta^{18}$ O and  $\delta^{2}$ H were 0.19% and 0.45% respectively (Table 17).

Table 17. QAQC results from stable water isotope samples collected during the August 2021 site visit

| Sub-watershed                | QAQC Sample      | RPD               |      |
|------------------------------|------------------|-------------------|------|
|                              |                  | δ <sup>18</sup> O | δ²H  |
| Analytical Duplicate Samples |                  |                   |      |
| Cache Creek                  | KR-20            | 0.10              | 0.16 |
|                              | 1510 Portal Well | 0.09              | 0.11 |
|                              | HYD-08-02        | 0.23              | 0.02 |
|                              | Core Shack Well  | 0.09              | 0.10 |
|                              | KR-13            | 0.14              | 0.06 |
|                              | KR-09            | 0.65              | 0.43 |
|                              | P90-7B           | 0.51              | 0.01 |
|                              | P96-12D          | 0.14              | 0.04 |
|                              | KR-04-N2         | 0.09              | 0.08 |
|                              | BH10-2D          | 0.74              | 0.23 |
|                              | KR-08            | 0.29              | 0.05 |
|                              | CCT2             | 0.65              | 0.24 |
| Oxo Creek                    | KR-14            | 0.28              | 0.33 |
| Peel Creek                   | KR-17            | 0.32              | 0.31 |
|                              | HYD-08-10        | 0.09              | 0.06 |
|                              | KR-15            | 0.14              | 0.14 |
| Unnamed Tributary            | KR-26            | 0.46              | 0.33 |
| Field Replicate Samples      |                  |                   |      |
| Cache Creek                  | KR-20            | 0.33              | 0.16 |
|                              | KR-01            | 1.46              | 0.56 |
|                              | KR-09            | 0.91              | 0.55 |
|                              | P96-12B          | 0.93              | 0.07 |
|                              | BH-10-02         | 1.28              | 0.08 |
|                              | KR-08            | 0.24              | 0.40 |
| Peel Creek                   | KR-17            | 0.60              | 0.11 |

Note: QAQC – quality assurance and quality control; RPD – Relative Percent Difference;  $\delta$  –isotope notation called delta

### 3.2.5.1.1 Field vs. lab alkalinity measurements

Field titrations were carried out on select surface water quality samples using the methods outlined in section 2.2 to corroborate laboratory results. Measurements were converted to mg/L CaCO<sub>3</sub> to facilitate comparison with lab-reported results. Lab and field values were found to closely align with all the samples within the acceptable 25% range (Table 18).

Table 18. Comparison of alkalinity samples for in-situ measurements versus lab analysis during the August 2021 site visit

| Sample ID | Difference Magnitude <sup>1</sup> | RPD    |
|-----------|-----------------------------------|--------|
| KR-8      | 17.9                              | 11.24% |
| KR-15     | 0.8                               | 0.88%  |
| KR-17     | 3.3                               | 2.74%  |
| KR-17-DS  | 0.2                               | 0.21%  |
| PCC       | 8.4                               | 7.96%  |
| PCS2      | 6.8                               | 5.54%  |
| PCS3      | 3.3                               | 2.74%  |
| PS2-DS    | 6.3                               | 5.59%  |
| PS3-DS    | 2.3                               | 2.04%  |

Note: 1 –values calculated as difference between the field and lab alkalinity concentrations; RPD – Relative Percent Difference;  $\delta$  –isotope notation called delta

#### 3.2.5.2 Groundwater QAQC

All laboratory QAQC parameters analyzed by Hemmera, calculated from field blanks, travel blanks, and replicate samples collected alongside regular samples, were within the acceptable range according to the August 2021 monitoring report. No systemic issues were identified with the field or travel blanks collected during the course of the sampling program.

# 4. Analysis and Discussion

### 4.1 Chemistry in Cache Creek

Cache Creek is the main water body draining the Ketza River Mine, joining Ketza River approximately 5 km east/southeast of the mine itself.

Upstream station KR-20, at the discharge of Tarn Lake, has a historical record of exceedances for Al, Cd, and Zn. Samples collected by the Branch also showed high Al concentrations at this station.

One waste rock dump (thought to be non acid generating) and one pit shell exist immediately upgradient of the lakeshore region of Tarn Lake with visible red and white precipitates. Figure 14 shows the locations of these residual mine structures (TetraTech, 2016).

Groundwater monitoring well GT-10-06A is screened in these disturbance features. Monitoring well GT-10-06A exceeds CCME guidelines for Al and Zn, among other parameters, whereas HYD-08-17, located approximately 250m north of GT-10-06A shows lesser concentrations. Isotope analysis shows similar stable water isotopic signatures between GT-10-06A, HYD-08-17, and surface water site KR-20, suggesting a potential hydraulic connection between these wells and the lake. The isotopic signature of KR-01 resembles a mixture of KR-20, KR-16, and groundwater influences. KR-13 resembles a mixture of KR-01 with seepage from the 1430 portal (PS1430) and the 1510 Portal Well. The isotope signal of KR-20 indicates that Tarn Lake is not subject to significant evaporation, suggestive of a short residence time (Figure 13). The dashed red circle indicates the discrepancy between the KR-01 samples collected by Water Resources Branch and Hemmera.



Figure 13 -  $\delta^2$ H and  $\delta^{18}$ O ratios for surface water and groundwater samples collected in the Cache Creek catchment (upstream of TSF) during the Aug. & Sept. 2021 monitoring events, presented alongside GNIP data (GNIP; IAEA 2021). H designations represent isotope samples collected by Hemmera, W those collected by Water Resources Branch.





△ Groundwater Monitoring Stations

• Surface Water Monitoring Stations



FIGURE 14

2021 KETZA AUDIT SAMPLE LOCATIONS
WITH ESTIMATED ROCK DUMPS
AND PIT SHELLS

DECEMBER 2022

Figure 14. Estimated waste rock dumps and pit shells at the Ketza River Mine (TetraTech 2016)

Based on historical records and Branch sampling results, a source of As enters Cache Creek somewhere between headwater station KR-20 and the next station downstream (KR-01). This source of As has not been conclusively identified, though the only obvious surface water input is the unnamed creek in which KR-16 is located. Figure 14 shows the hypothesized locations of waste rock dumps and pit shells, and identifies a Potentially Acid-Generating (PAG) waste rock dump on the northern slope immediately adjacent to the creek between these stations. Additional water quality samples and hydrology measurements upstream and downstream of KR-16 Creek confluence with Cache Creek could help distinguish this creek's impacts on Cache.

Cache Creek surface water quality in the TSF area has historically been characterized by elevated NH4, arsenic, and CN concentrations. Arsenic appears to be the only contaminant to persist in concentrations exceeding CCME guidelines downstream of the TSF, as per the historical record and Branch surface water quality sampling results. Downstream monitoring station KR-08, the station prior to the Peel - Cache confluence, shows high As and SO<sub>4</sub> (though not exceeding WQO's or CCME guidelines) in the historical sampling record and Branch water quality sample results. Oxo Creek and an unnamed tributary entering Cache Creek in the section of stream prior to the Peel/Cache confluence have shown elevated As and SO<sub>4</sub> concentrations in the historical sampling record, and are believed to be indicative of high background concentrations due to their lack of contact with any known mine infrastructure. Between stations KR-13 and KR-08, comprising Cache Creek's entire TSF flow section, As increases from 0.013 to 0.0145 mg/L, and SO<sub>4</sub> increases from 110 to 140 mg/L. This suggests a moderate source of SO<sub>4</sub> and a lesser source of As from the two unnamed tributaries.

Groundwater in the periphery of the TSF, based on limited data available from piezometer and monitoring well samples, does not appear to be impacted by TSF waters. The lack of background wells directly upstream of the TSF limits determination of pre-TSF contaminant levels. Wells HYD-08-04A and HYD-08-06A, cross-gradient from the TSF, show similar arsenic concentrations and higher sulfate concentrations than the piezometers in the TSF. The isotope signatures for the wells in the TSF and those located cross-gradient are relatively similar (ie. highly evaporated, enriched in heavier isotopes), which may indicate some hydrogeological connection. This hydraulic

connection has been observed within the tailings pond as upwellings in several locations as well as water level increases in the pond during winter months

The isotopic signature of KR-08, the station downstream of the TSF but upstream of PCC, appears to be a mix of several sampling sites local to the TSF including KR-13, KR-09A, TSF seepage KR-05-S1, Oxo Creek (KR-14), and local groundwater. The isotope sample collected from P90-8 appears to closely resemble rain water, indicative of poor isolation of the screened piezometer interval from infiltrating rain water.



Figure 15. Figure 1:  $\delta^2$ H and  $\delta^{18}$ O ratios for surface water and groundwater samples (solid circles) collected in the Cache Creek catchment (TSF area) during the Aug. & Sept. 2021 monitoring events and Whitehorse GNIP data (GNIP; IAEA 2021).

Although Peel Creek contributes only approximately 9% of the Cache Creek flow following their confluence, Cache Creek's geochemistry is significantly influenced by the influx of Peel Creek at station PCC (located just downstream of the confluence mixing zone of the two watercourses). Peel Creek shows frequent historical guideline

exceedances for As, Al, Cd, Cu, Fe, and Zn, and moderate seasonal fluctuations in these concentrations. Samples collected by Water Resources Branch showed guideline exceedances for Al, As, Co, Fe, SO4, and Zn at Peel Creek Station KR-15 and Cache Creek station PCC. These exceedances indicate Peel Creek exerts a strong influence over contaminant concentrations in Cache Creek, further discussed in section 4.2. After station PCC, the streambed of Cache Creek was covered in an orange precipitate, decreasing in prevalence as flow progressed downstream.

Peel Creek does not appear to strongly impact the isotopic composition of Cache Creek after station PCC based on the close isotopic proximity of stations KR-08 and PCC, stations showing Cache Creek's pre-mixing and post-mixing conditions respectively.

Misery Creek enters Cache Creek between stations KR-27 and KR-28. Misery Creek is characterized by high As and Se along the entire flow path in the historical sampling record. Samples collected by the Branch showed increases in Cu and Al between the two stations, and comparable concentrations of As, Fe, SO<sub>4</sub>, and Zn, which is consistent with historic data. KR-22, the furthest downstream station on Misery Creek before its confluence with Cache Creek, shows elevated Al, Cd, and Co concentrations in the historical record and in Branch 2021 samples. The concentrations of these parameters are reduced (although remaining above guideline levels) through dilution after confluence with Cache Creek. Misery Creek, and the other tributaries joining Cache Creek between stations KR-28 and KR-10 do not appear to strongly impact the isotopic composition of Cache Creek. Misery Creek exerts an influence on Cache Creek geochemistry, further discussed in section 4.3.

KR-10 is the final monitoring station before Cache Creek enters the receiving environment via Ketza River. This station shows a strong history of exceedances for As and Zn in the sampling record.

The progression in concentrations of various elements along the Cache Creek flow path is presented in Figure 16.



Figure 16. Analytical results of surface water quality along Cache Creek from August 2021 site audit samples. Sample stations compared in order of flow direction. Orange highlighted area shows influence of Peel Creek. Blue highlighted area shows influence of Misery Creek. Zinc and Copper CCME guidelines are based on hardness values.

### 4.2 Chemistry in the Peel Creek Sub-catchment

Most historical records pertaining to the Peel Creek sub-catchment identify KR-17 and KR-15 as background water quality sites for the Ketza River Mine due to their lack of contact with the tailings containment facility and distance from most major mine workings in the surrounding area (Tetra Tech, 2016). The validity of these sites as background water quality indicators is uncertain, as certain maps show these two sites in close proximity to PAG waste rock dump, (Gully Zone Waste Rock Dump/Pit and QB

Zone Pit) (Tetra Tech, 2016). KR-17 appears to be located topographically above any expected influence from these pits and dumps suggesting its chemistry may be a product of local area conditions in the mineralized Peel Creek Valley, though conclusions regarding trends are limited by an irregular sampling record, with fewer than 50 observations recorded for these sites from 2005-2009, largely due to winter avalanche risks in the valley

At sampling site KR-17, 100% of samples have exceeded the CCME guidelines for As (T) since sampling began in 2005. Historical concentrations of As were speculated to show a potentially increasing trend, but no level of statistical certainty could be applied (Arktis, 2020). Sulfate (T) concentrations showed a potentially decreasing trend over the same sampling record, approximately asymptotic at 200 mg/L (max 500mg/L, 2008) (Arktis, 2020). During the 2021 Branch audit, As(T) exceeded BC MOE, CCME, and CSR guidelines at KR-17 but As (D) did not exceed any guidelines. Sulfate (D) exceeded the Yukon CSR guideline.

At sampling site KR-15, 100% of samples have exceeded the CCME guidelines for As (T) since sampling began in 2005, with no evident trend (Arktis, 2020). Sulfate did not show any observable trends over the same time period, but has been observed to regularly exceed guidelines. During the 2021 Branch audit, As(T), and  $SO_4$  (D) exceeded guidelines at KR-15.

A region showing multiple red-coloured seeps was observed originating on the south side of the stream between KR-17-DS and PCS2-DS. Discharge measurements were collected before and after these seeps joined Peel Creek, and field parameters were measured as close to the daylighting location as possible. KR-17 exact location had little flow, visually estimated at 0.003 m³/s. Immediately below KR-17, a waterfall and coarse rocky streambed caused most of the water to infiltrate in the ground, with only a trickle remaining on the surface. While there was a progressive resurgence up to 0.002 m³/s directly in the channel in the 100 m distance past the waterfall, most the flow upstream of PCS2 confluence was then coming for the red-coloured seeps, which contribution was estimated at up to 0.006 m³/s (salt dilution gauging upstream in Peel Creek upstream of PCS2 confluence returned a result of 0.008 m³/s).

A thick (~1 cm) coating of an orange precipitate was observed covering all streambed sediments in Peel Creek after the influx of the red-coloured seeps. These precipitates were observed for the entire length of Peel Creek after the influx of these seeps, and

persisted in diminishing quantities into Cache Creek after the Peel-Cache confluence. The bright red colouration of these seeps is indicative of high concentrations of Fe, among other elements. The elements contained in these red seeps may be products of the dissolution of reactive primary minerals associated with, or representative of, ore minerals. A decrease in As(D) but increase in As(T) concentrations in Peel Creek after these seeps daylight may result from an immobilization of the dissolved As from the seep and headwater as it flows onto the rocks covered by iron precipitate. Removal of dissolved As by coprecipitation or adsorption onto Fe-oxyhydroxide minerals is a well known and documented natural attenuation mechanism and seems likely in Peel Creek (Drahota 2012.). Filtration of water samples through the standard filter size used for water sampling would likely remove the majority of As associated with these Fe mineral assemblages, leaving low concentrations of As(D).

Even though there is a significant decrease of As (D), by an order of magnitude between KR-17 and KR-15 (0.022 to 0.00481 mg/L As(D) respectively), As (T) increases steadily in that section of Peel Creek. It seems that there is a source of both arsenic and iron near KR-17, which is further increased by the influx of the two red seeps.

Dissolved and total Fe concentrations also increase in the vicinity of PCS2-DS and remain consistently elevated though KR-15. Concentrations of dissolved and total As and Fe along the Peel Creek flow path are shown in Figure 17.



Figure 17 - Evolution in As(T/D) and Fe(T/D) along the Peel Creek flow path

Iron was not included in the trends analysis document produced by Arktis (2020), but if a similar relationship is observed in the sampling record between Fe and As concentrations, it is possible that the relative rates of mobilization of these elements from local reactive primary minerals will remain constant under current conditions. Dissolved and total Fe concentrations observed at KR-15 indicate a functional Fe surplus, suggesting that even if As concentrations were to increase independently of Fe in the upper reaches of Peel Creek, the As attenuation capacity of Fe has not yet been reached. The geochemical favourability of As-Fe coprecipitation or adsorption reactions will likely result in a strong reduction in dissolved As concentration as the flow path progresses if the Fe-rich conditions remain.

The red precipitates formed in Peel Creek can still be seen into Cache Creek after the confluence. It is likely that the Fe-As precipitate will continue to migrate downstream into Cache Creek. Groundwater well HYD-08-09A, located in close proximity to the upper reaches of Peel Creek, showed an isotopic and geochemical signature distinct from those of the SW sites in the area. However, groundwater wells HYD-08-10 and -11A, both upgradient of KR-15, showed similar isotopic signatures to the surface water samples. These similarities and differences may be due to the units in which these wells are screened. HYD-08-09A appears to be screened in an aquifer unit isolated from the waste rock dump, whereas HYD-08-10 and -11A appear to be screened in hydraulically connected units. The isotopic composition of KR-17DS may be the result of a mix of upstream station KR-17 with groundwater seepage (Figure 15).

All Peel Creek surface water sites assessed as part of the 2021 Branch audit (except KR-17) are located down gradient of Gully Zone Pit (Figure 14). Groundwater well HYD-08-09A, located directly down gradient of Gully Zone Pit, shows an isotopic and geochemically distinct signature from any of the SW sites in the area. If the boundaries for this rock dump proposed by Tetra Tech are correct, it is likely that the influx of contaminants into Peel Creek are the result of the QB Zone Pit.

The progression of various elements along the Peel Creek flow path is presented in Figure 18.



Figure 18. Analytical results of surface water quality along Peel Creek from August 2021 site audit samples. Sample stations compared in order of flow direction. Highlighted area shows possible influence of QB Zone Pit. Zinc and Copper CCME guidelines are based on hardness values.

### 4.3 Chemistry in the Misery Creek sub-catchment

There is a relative lack of historical data available on Misery Creek to assess its contribution to contaminants in Cache Creek.

Surface water quality monitoring stations KR-21, KR-18, and KR-22 are the only stations located in the Misery Creek sub-catchment, all three of which were assessed

as a part of this audit. KR-21 is located near the headwaters of the creek and is the only monitoring site out of the three previously mentioned which is currently incorporated in the C&M Monitoring Program. KR-22 is located 500 m upstream of its confluence with Cache Creek, while KR-18 is located in the headwaters of a small tributary that feeds into Misery Creek between the two other stations. A sparse historical sampling record exists for these sites, with less than one third of the number of total samples collected compared to the main sampling stations on Cache Creek (Tetra Tech 2016), largely due to avalanche risk in winter months and KR-18 and KR-22 which are no longer sampled as part of the current monitoring program. KR-18 was not sampled by Water Resources Branch or Hemmera during the 2021 audit but field parameters were collected. At both stations KR-21 and KR-22, guidelines were exceeded for As (BC-MOE, CCME, CSR), SO<sub>4</sub> (CSR), and Zn (CCME). Elements including Al, Cd, Co, and Cu did not exceed guidelines at KR-21, but did at KR-22. The isotopic signature between KR-21 and KR-22 appears to become less evaporated, potentially indicative of groundwater influx between the two stations. These trends suggest the tributary sampled at KR-18 is a source of Al, Cd, Co, and Cu to Misery Creek and subsequently Cache Creek as these contaminants were not observed in the upstream station KR-21. The pH at KR-18 was low (4.1-4.3 in the sampling record), which is also where the concentrations of metals were elevated. This low pH does not appear to influence Misery Creek after the convergence of the tributary and the main flow path, although the elevated concentrations of dissolved metals appear to persist into Cache Creek. As alkalinity does not undergo any drastic changes from KR-21 to KR-22, this pH neutralization is likely attributable to dilution. Figure 19 shows the progression in concentrations of various elements along the Misery Creek flow path.

A white precipitate was observed from seep sources near KR-18, persisting through the diffuse tributary flow path through local alpine wetlands into the main Misery Creek channel. Al concentrations at KR-22 were fairly high (2.69 mg Al-T/L and 0.228 mg Al-D/L) and may contribute to the production of the observed white precipitate as the pH increases from acidic to neutral. If that is the case, it is expected that other metal elements would co-precipitate along with aluminum along the Misery Creek flow path.

No groundwater monitoring stations exist in the Misery Creek sub-catchment.



Figure 19. Analytical results of surface water quality along Misery Creek from August 2021 site audit samples. Sample stations compared in order of flow direction. Highlighted area shows possible influence of KR-18. Zinc CCME guidelines are based on hardness values.

### 4.4 Hydrometric monitoring network

The hydrometric stations proposed by Water Resources Branch provide a means of measuring continuous stage (i.e. water level) data in addition to the regular collection of discrete discharge measurements using velocity-area method or salt dilution to inform flow rates at discrete points in time, but stage data informs overall flow over continuous time intervals.

Flow measurements should be conducted monthly alongside surface WQ sample collection at every routine monitoring site as per The Yukon Guide for Developing Water Quality Objectives and Effluent Quality Standards for Quartz Mining Projects (Yukon Government 2021B). Collection of high-quality flow measurements is critical for understanding contaminant loading and interpreting variability in water quality results.

The infrastructure described in this audit is designed to capture the full range of stage throughout the open water season on a 15 minute sampling schedule. Building a stage-discharge relationship will require regular field visits to capture accurate discharge measurements and surveying water level to benchmarks in order to correct drift and shifts in the continuous stage record. A minimum of approximately 10 hydrometric field visits at each location and at diverse flow levels (including extremes) would be necessary to establish a robust stage-discharge relationship and develop the corresponding rating curve equation that allows inference of flow between field visits, derived from the 15minute interval water level logs. Calculated continuous discharge records are also used by industry and regulators to understand overall contaminant loads in site catchments. Flow and water level data collection should follow methods and standards described in the Manual of British Columbia Hydrometric Standards, Version 2.0 (R.I.S.C. 2018).

Incorporation of continuous stage monitoring stations should be considered for at least these six essential hydrometric stations:

- KR-12 Ketza River downstream of Cache Creek
- KR-10 Cache Creek Lower
- KR-22 Misery Creek
- KR-15 Peel Creek at Road
- KR-08 Cache Creek downstream of TSF and upstream of Peel Creek
- KR-13 Cache Creek Upper

We also recommend to re-activate station KR-14 – Oxo Creek since its continuous discharge record would be beneficial to explain the increase in flow between KR-13 and KR-08 alongside other Cache Creek contributors such as the water treatment discharge (KR-09A location), diversion channels around the TSF and tailings dam seepage.

Discharge records at location KR-01 upstream of the Mill and Mine Camp are also important and we recommend collecting discrete flow measurements at the same frequency as at KR-13. However the location is not ideal for continuous stage monitoring and we have reasonable confidence in the possibility to establish a strong relationship between flows measured at KR-13 and at KR-01 and therefore produced a derived continuous discharge record at KR-01 with the KR-13 series acting as the proxy.

Discrete discharge measurements will also be important at the proposed WQ compliance station to be located between where the tailings dam seepage enters Cache Creek and station KR-08. There as well, we have reasonable confidence in the possibility to establish a strong relationship between flows measured at KR-08 and at the upstream location, eliminating the need for continuous stage monitoring at the new WQ Compliance station.

Additional continuous stations could be added later however, upon identification of further knowledge gaps; the list above is a conservative recommendation to work within resource allocation constraints.

# 5. Conclusions and Recommendations

Water Resources Branch carried out the 2021 Audit of the Ketza River Mine over the period of August and September 2021. Hemmera Envirochem Inc, a contractor engaged by AAM, sampled all routine surface water and groundwater monitoring sites during their August 2021 sampling event. As per the request of the Branch, stable water isotope samples were also collected from all of these sites by Hemmera to support the site investigation. Water Resources Branch collected water quality and stable water isotope samples as well as hydrology measurements at all routine and several non-routine surface water monitoring sites from August 31 to September 2, 2021, focused towards accomplishing the following objectives:

- 1) Assess the hydrology monitoring network at site as per request by AAM,
- 2) Assess the hydrology of Cache and Peel Creeks,

- 3) Evaluate potential causes of elevated sulphate (SO<sub>4</sub>) and arsenic (As) levels observed in groundwater and surface water,
- 4) Determine if disturbed areas are influencing the chemistry of Peel Creek and,
- 5) Familiarize Branch staff with the site to provide support to AAM and future water licence application review.

A review of available historical site data was undertaken to support audit objectives. Background surface water quality sites include KR-20 (discharge from Tarn lake), KR-17 and KR-15 (Peel Creek stations), and KR-21 (Misery Creek headwaters), although the validity of these sites as unimpacted background surface water quality is uncertain. Sampling station KR-20 has historically elevated concentrations of Al, Cd, and Zn, whereas the stations on Peel Creek have elevated concentrations of As and  $SO_4$  throughout the sampling record. The unnamed tributaries joining Cache Creek between KR-28 and KR-10 showed elevated  $SO_4$  and dissolved metal concentrations throughout the sampling record. No mine infrastructure has yet been developed in the catchments of these three unnamed tributaries, suggesting that this region is characterized by elevated background concentrations of  $SO_4$  and dissolved metals.

The results of the 2021 audit corroborated historical sampling records. Elevated concentrations of metals were observed in most sampling stations spread across the site.

Elevated concentrations of dissolved AI, Cd, and Zn at background station KR-20 are likely attributable to high background concentrations of these elements, or may be influenced by a pit shell located just upgradient of Tarn Lake. Groundwater monitoring wells screened in or below this pit shell showed similar geochemical and isotopic compositions to Tarn Lake, KR-20.

The Peel Creek sub catchment showed elevated concentrations of As and SO<sub>4</sub> at both routine stations (KR-17 and KR-15) and all non-routine stations in the main Peel Creek flow path. The three assessed major headwater seeps showed guideline exceedances of As and SO<sub>4</sub>. These concentrations further increase in the main Peel Creek flow path after a region of minor seepage showing bright red colouration, which contributes elevated concentrations of As, Co, Fe, SO<sub>4</sub>, and Zn. The presence of the Zone Gully Pit up gradient of these seeps suggests elevated concentrations of these elements may be the result of weathering of reactive primary minerals exposed in the waste rock dump. Trends in dissolved vs. total As, as well as the presence of red-brown precipitates

along the length of the creek, suggest that concentrations of As may be reduced between KR-17 and KR-15 through coprecipitation and adsorption of As onto Fe oxyhydroxide secondary minerals. Concentrations of total As decrease to their lowest levels in the Peel Creek flow path (although remaining above guidelines) at the point at which Peel Creek joins Cache Creek (PCC). The Fe-oxyhydroxide precipitates containing adsorbed As persist well into the Cache Creek flow path. Low As(D) concentrations (below guidelines) but high As(T) concentrations (above guidelines) persist at station KR-28, the furthest downstream site over the course of this audit.

The Misery Creek sub catchment contributes elevated concentrations of Al, As, Co, Cu, Fe, SO<sub>4</sub>, and Zn to Cache Creek at confluence point KR-28. The majority of these elements source from a tributary creek flowing into Misery sampled by KR-18. These elements are likely representative of elevated background concentrations, as no mine structures are known to exist in the Misery Creek sub catchment.

Implementation of a continuous hydrometric stage monitoring network across the site would pair continuous water level data with data collected during routine monitoring events. High-detail hydrometric data would be provided through implementation of this network and would inform conclusions regarding contaminant loading to Ketza River and the receiving environment. However, creating a continuous flow datasets for these locations will be difficult due to the steepness and unstable channel morphology of the streams on site. Prior to proceeding with this network implementation, it is necessary to clarify the actual need for a continuous hydrometric baseline with partners and regulators of the remediation project.

Water Resources Branch recommends the following based on the results of the 2021 audit:

- 1) Collect a water sample from the creek in the adjacent watershed to Tarn Lake to see if the As exceeds the guidelines, informing background concentrations in the vicinity of Tarn Lake.
- Collect additional (quarterly) surface water quality and hydrology measurements (Velocity/Area or salt dilution Methods) upstream and downstream of the KR-16 confluence with Cache Creek to determine this tributaries effects on Cache Creek.
- 3) Conduct a review of trends in dissolved constituents in groundwater upon completion of the Ketza geochemical database audit.

- 4) Incorporate six continuous hydrometric stage monitoring stations at locations KR-12, -10, -22, -15, -08 (or -29 if location is suitable) and KR-13.
- 5) Increase groundwater sampling frequency from annual to twice annually, specifically in the spring and fall.

# 6. Contact Information

For more information about this report contact:

- Cole Fischer, Groundwater Technologist (Cole.Fischer@yukon.ca)
- Aaron Barker, Water Quality Technologist (<u>Aaron.Barker@yukon.ca</u>)
- Alexandre Mischler, Hydrology Technologist (alexandre.mischler@yukon.ca)
- Brendan Mulligan, Senior Scientist Groundwater (Brendan.Mulligan@yukon.ca)
- Amelie Janin, Senior Scientist Water Quality (<u>Amelie Janin@yukon.ca</u>)

### References

- Arktis, 2020. Temporal Trend Analyses of Selected Surface Water Quality Analytes Ketza River Mine. Arktis Solutions and Zajdlik & Associates Inc. June 2020.
- Arktis,f 2021. Screening Contaminants of Potential Concern Ketza River Mine. Arktis solutions and Zajdlik & Associates Inc. July 2021.
- British Columbia Ministry of Environment and Climate Change Strategy. 2021. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- Canadian Council of Ministers of the Environment. 2011. Protocols Manual for Water Quality Sampling in Canada. https://ccme.ca/en/res/protocolsdocument\_e\_final1.0.pdf. Last accessed November 2021.
- Canadian Council of Ministers of the Environment. 2014. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Retrieved from Canadian Environmental Quality Guidelines: <a href="http://ceqg-rcqe.ccme.ca/en/index.html">http://ceqg-rcqe.ccme.ca/en/index.html</a>. Last accessed November 2021.
- Canadian Council of Ministers of the Environment (CCME) (2007). A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life 2007. <a href="https://ccme.ca/en/res/protocol-for-the-derivation-of-water-quality-guidelines-for-the-protection-of-aquatic-life-2007-en.pdf">https://ccme.ca/en/res/protocol-for-the-derivation-of-water-quality-guidelines-for-the-protection-of-aquatic-life-2007-en.pdf</a>
- CIRNAC (2019). Giant Mine Remediation Project Effluent Quality Criteria Report. Version 1.0, January 2019.
- Cohn TA, Kiang JE, Mason Jr RR. 2013. Estimating discharge measurement uncertainty using the interpolated variance estimator. Journal of Hydraulic Engineering; 139(5):502-10.
- Drahota, Filippi, Ettler, Rohovec, Mihaljvic, Sebek. 2012. Natural Attenuation of Arsenic in Soils Near a Highly Contaminated Historical Mine Waste Dump. Science of the Total Environment. Vol 414, 546-555p.
- EBA. 2013. Ketza River Project 2012 Hydrological Report. EBA File: V15101019.204.
- Hudson, R. and J. Fraser. 2002. Alternative methods of flow rating in small coastal streams. B.C. Ministry of Forests, Vancouver Forest Region, Nanaimo, BC. Extension Note EN-014 Hydrology. 11 p.

- International Atomic Energy Agency. Undated. Sampling Procedures for Isotope Hydrology. 8p. <a href="http://www-naweb.iaea.org/napc/ih/documents/other/Sampling%20booklet%20web.pdf">http://www-naweb.iaea.org/napc/ih/documents/other/Sampling%20booklet%20web.pdf</a>. Last accessed November 2021.
- International Atomic Energy Agency (IAEA). (2020). Global Network of Isotopes in Precipitation (GNIP). Data accessed via the Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER) portal: <a href="https://www.iaea.org/services/networks/gnip">https://www.iaea.org/services/networks/gnip</a>
- Kendall and Doctor. (2004). Stable isotope applications in hydrologic studies, in Drever, J.I., ed., Surface and ground water, weathering, and soils: Treatise on Geochemistry, v. 5, p. 319-364.
- Government of Canada (GoC). 2002. Metal and Diamond Mining Effluent Regulations. SOR 2002-222. Fisheries Act. <a href="https://laws-lois.justice.gc.ca/eng/regulations/sor-2002-222/FullText.html">https://laws-lois.justice.gc.ca/eng/regulations/sor-2002-222/FullText.html</a>. Last accessed December, 2021.
- Moore, R.D. 2005. Introduction to salt dilution gauging for streamflow measurement Part III: Slug injection using salt in solution. Streamline Watershed Management Bulletin 8(2):1–6.
- Sentlinger G. 2015. Introduction to Salt Dilution Gauging for Streamflow Measurement. Online: <a href="https://www.fathomscientific.com/introduction-to-sd-gauging/">www.fathomscientific.com/introduction-to-sd-gauging/</a>
- Tetra Tech EBA Inc. 2016. Water and Geochemistry Overview for Ketza River Phase I ESA Update and Conceptual Mine Reclamation Plan.
- Yukon Government (YG). 2002. Contaminated Sites Regulation. OIC 2002/171. Environment Act. Whitehorse. <a href="https://laws.yukon.ca/cms/images/LEGISLATION/regs/oic2002\_171.pdf">https://laws.yukon.ca/cms/images/LEGISLATION/regs/oic2002\_171.pdf</a>. Last accessed 25 November 2021.
- Yukon Government. 2020. Protocol for the Contaminated Sites Regulation under the Environment Act. https://yukon.ca/sites/yukon.ca/files/env/env-protocol-6.pdf. Last accessed 25 November, 2021
- Yukon Government (YG). 2021A. Discussion Paper to the Ketza River Working Group: Assessment and Abandoned Mines; Strategy for Protecting Receiving Waters during Care and Maintenance at Ketza River Mine. Assessment and Abandoned Mines.
- Yukon Government. 2021B. Yukon Guide for Developing Water Qulaity Objectives and Effluent Quality Standards for Quartz mining Projects. https://yukon.ca/sites/yukon.ca/files/env/env-yukon-guide-developing-water-quality-objectives-effluent-quality-standards-quartz-minig-projects.pdf. Last accessed 25 November, 2021.

Yukon Water Board. 2009. Ketza River Holdings Ltd, QZ04-063 License Conditions.

# Appendices

## Appendix A - Photo log

### Appendix A: Photo Log

Photo 1. (KR)KR-01.

Upstream view from the left bank at the water sample station on September 2, 2021.



Photo 2. (KR) KR-01.

Downstream view from the left bank at the water sample station on September 2, 2021.



**Photo 3.** (KR)KR-01. Substrate at the water sample station on September 2, 2021.



**Photo 4.** (KR)KR-01. Right bank view from the left bank across from the water sampling station on September 2, 2021.



Photo 5. (KR)KR-01.

Left bank view from the left bank and looking downstream at the water sampling station on September 2, 2021.



**Photo 6.** (KR)KR-08. Upstream view from the left bank at the water sample station on August 31, 2021.



**Photo 7.** (KR)KR-08. Downstream view from the left bank at the water sample station on August 31, 2021.



**Photo 8.** (KR)KR-08. Substrate at the water sample station on August 31, 2021.



Photo 9. (KR)KR-08.

Right bank view from left bank from the water sampling station on August 31, 2021.



Photo 10. (KR)KR-08.

Left bank view from the right bank looking upstream towards the water sampling station on August 31, 2021.



**Photo 11.** (KR)KR-09. View of the Tailings Storage Facility towards the water treatment plant from the access road near (KR)KR-09A on September 2, 2021.



Photo 12. (KR)KR-09A. View looking upstream towards the discharge pipe at (KR)KR-09A and at (KR)KR-13 from the right bank looking upstream on September 2, 2021.



**Photo 13.** (KR)KR-13. Upstream view from routine sample station at the discharge of the diversion ditch into Cache Creek on September 2, 2021.



**Photo 14.** (KR)KR-13. Downstream view along Cache Creek from the diversion ditch discharge culvert towards routine sample stations (KR)KR-09A and (KR)KR-13 on September 2, 2021.



**Photo 15.** (KR)KR-14. Upstream view from the left bank at the routine sample station on September 2, 2021.



**Photo 16.** (KR)KR-14. Downstream view from the left bank at the routine water sample station on September 2, 2021.



Photo 17. (KR)KR-15.

Upstream view from the left bank at the water sample station on September 2, 2021.



Photo 18. (KR)KR-15.

Downstream view from the left bank at the water sample station on September 2, 2021.



**Photo 19.** (KR)KR-15. Substrate at the water sample station on September 2, 2021.



**Photo 20.** (KR)KR-15. Right bank view from left bank at the water sampling station on September 2, 2021.



Photo 21. (KR)KR-15.

Left bank view from the left bank looking towards downstream at the water sampling station on September 2, 2021.



Photo 22. (KR)KR-17.

Upstream view from the left bank at the water sample station on September 2, 2021.



**Photo 23.** (KR)KR-17. Downstream view from the left bank at the water sample station on August 31, 2021.



**Photo 24.** (KR)KR-17. Substrate at the water sample station on August 31, 2021.



Photo 25. (KR)KR-17.

Right bank view from left bank at the water sampling station on August 31, 2021.



Photo 26. (KR)KR-17.

Left bank view from the left bank looking towards downstream at the water sampling station on September 2, 2021.



Photo 27. (KR)KR-17DS.

Upstream view from the left bank at the water sample station on August 31, 2021.



Photo 28. (KR) KR-17DS.

Downstream view from the left bank at the water sample station on August 31, 2021.



Photo 29. (KR)KR-17DS.

Substrate at the water sample station on August 31, 2021.



**Photo 30.** (KR)KR-17DS. Right bank view from left bank at the water sampling station on August 31, 2021.



Photo 31. (KR) KR-17DS.

Left bank view from the left bank looking downstream at the water sampling station on August 31, 2021.



**Photo 32.** (KR)KR-17DS. Seep daylighting along right bank approximately 5 meters upstream of the water sample station on August 31, 2021.



Photo 33. (KR) KR-17DS.

Seep daylighting along the right bank approximately 1 meter upstream of the water sample station on August 31, 2021.



**Photo 34.** (KR)KR-17DS. Exposed right bank along Peel Creek adjacent to the water sample station on August 31, 2021.



Photo 35. (KR) KR-17DS.

Panoramic view of the exposed substrate on the right bank upstream of the water sample station on August 31, 2021.



**Photo 36.** (KR)KR-18. Upstream view from the right bank at the water sample station on September 1, 2021.



**Photo 37.** (KR)KR-18. Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 38.** (KR)KR-18. Substrate at the water sample station on September 1, 2021.



Photo 39. (KR)KR-18.
Right bank view from left bank at the water sampling station on September 1, 2021.



Photo 40. (KR)KR-18. Left bank view from the right bank at the water sampling station on September 1, 2021.



Photo 41. (KR)KR-18.

Downstream view from the access road downstream of the water sample station looking towards Misery Creek on September 1, 2021.



**Photo 42.** (KR)KR-20. Upstream view from the left bank looking towards the water sample station on September 2, 2021.



**Photo 43.** (KR)KR-20. Downstream view from the left bank at the water sample station on September 2, 2021.



**Photo 44.** (KR)KR-20. Substrate at the water sample station on September 2, 2021.



**Photo 45.** (KR)KR-20. Right bank view from left bank at the water sampling station on September 2, 2021.



**Photo 46.** (KR)KR-20. Left bank view from the left bank looking towards downstream at the water sampling station on September 2, 2021.



**Photo 47.** (KR)KR-21. Upstream and right bank view from the right bank at the water sample station on September 1, 2021.



**Photo 48.** (KR)KR-21. Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 49.** (KR)KR-21. Substrate at the water sample station on September 1, 2021.



**Photo 50.** (KR)KR-21. Left bank view from the left bank looking towards downstream at the water sampling station on September 1, 2021.



**Photo 51.** (KR)KR-22. Upstream view from the right bank at the water sample station on September 1, 2021.



**Photo 52.** (KR)KR-22. Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 53.** (KR)KR-22. Substrate at the water sample station on September 1, 2021.



**Photo 54.** (KR)KR-22. Right bank view from the right bank at the water sampling station on September 1, 2021.



Photo 55. (KR)KR-22.

Left bank view from the right bank looking towards downstream at the water sampling station on September 1, 2021.



Photo 56. (KR)KR-22.

Substrate upstream along right bank about 5 meters upstream from the right bank looking upstream on September 1, 2021.



**Photo 57.** (KR)KR-23. Upstream view from the right bank at the water sample station on September 1, 2021.



**Photo 58.** (KR)KR-23. Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 59.** (KR)KR-23. Substrate at the water sample station on September 1, 2021.



Photo 60. (KR)KR-23.
Right bank view from the right bank looking downstream at the water sampling station on September 1, 2021.



Photo 61. (KR)KR-23.

Left bank view from the right bank looking towards downstream at the water sampling station on September 1, 2021.



**Photo 62.** (KR)KR-23. Collapsed adit upstream of the water sample station on September 1, 2021.



Photo 63. (KR)KR-23.

Water emerging from the adit upstream of the water sample station on September 1, 2021.



Photo 64. (KR)KR-23.

Downstream view of the water emerging from the adit looking towards the water sample station on September 1, 2021.



Photo 65. (KR)KR-23.

Downstream view of water flowing along the access road downstream of the water sampling station on September 1, 2021.



Photo 66. (KR)KR-23.

Collapsed culvert downstream of the water sampling station causing diversion of water flow down the access road on September 1, 2021.



**Photo 67.** (KR)KR-26. Upstream view from the right bank at the water sample station on September 1, 2021.



**Photo 68.** (KR)KR-26. Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 69.** (KR)KR-26. Substrate at the water sample station on September 1, 2021.



**Photo 70.** (KR)KR-26. Right bank view from right bank looking downstream at the water sampling station on September 1, 2021.



**Photo 71.** (KR)KR-26. Left bank view from the right bank at the water sampling station on September 1, 2021.



**Photo 72.** (KR)KR-27. Upstream view from the right bank at the water sample station on September 1, 2021.



**Photo 73.** (KR)KR-27. Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 74.** (KR)KR-27. Substrate at the water sample station on September 1, 2021.



Photo 75. (KR)KR-27.

Right bank view from right bank looking upstream towards the water sampling station on September 1, 2021.



**Photo 76.** (KR)KR-27. Left bank view from the right bank looking upstream towards the water sampling station on September 1, 2021.



**Photo 77.** (KR)KR-28. Upstream view from the right bank at the water sample station on September 1, 2021.



**Photo 78.** (KR)KR-28. Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 79.** (KR)KR-28. Substrate at the water sample station on September 1, 2021.



**Photo 80.** (KR)KR-28. Right bank view from right bank looking upstream at the water sampling station on September 1, 2021.



**Photo 81.** (KR)KR-28. Left bank view from the right bank at the water sampling station on September 1, 2021.



Photo 82. PS1430. Upstream view looking towards the water sample station where the water emerges from the adit on September 1, 2021.



Photo 83. PS1430.

Downstream view from the right bank at the water sample station on September 1, 2021.



Photo 84. PS1510. Entrance of adit on September 1, 2021.



**Photo 85.** (KR)KR-28. Drainage pipe from adit with no discharge on September 1, 2021.



**Photo 86.** PCC. Upstream view from the leftt bank at the water sample station on August 31, 2021.



Photo 87. PCC.

Downstream view from the left bank at the water sample station on August 31, 2021.



**Photo 88.** PCC. Substrate at the water sample station on August 31, 2021.



**Photo 89.** PCC. Right bank view from the left bank looking downstream at the water sampling station on August 31, 2021.



Photo 90. PCC. Left bank view from the right bank at the water sampling station on August 31, 2021.



Photo 91. PS2DS.

Upstream view from the left bank at the water sample station on August 31, 2021.



Photo 92. PS2DS.

Downstream view from the right bank at the water sample station on August 31, 2021.



**Photo 93.** PS2DS.

Substrate at the water sample station on August 31, 2021.



**Photo 94.** PS2DS. Right bank view from left bank at the water sampling station on August 31, 2021.



Photo 95. PS2DS. Left bank view from the right bank at the water sampling station on August 31, 2021.



**Photo 96.** PS3DS. Upstream view from the right bank at the water sample station on August 31, 2021.



Photo 97. PS3DS.Downstream view from the left bank at the water sample station on August 31, 2021.



**Photo 98.** PS3DS.

Substrate at the water sample station on August 31, 2021.



Photo 99. PS3DS.

Right bank view from the left bank at the water sampling station on August 31, 2021.



Photo 100. PS3DS. Left bank view from the right bank at the water sampling station on August 31, 2021.



Photo 101. Seep 2. View of seep on left bank and where it merges with Peel Creek from the right bank on August 31, 2021.



**Photo 102.** Seep 2. View of seep on the left bank and the uphill area on August 31, 2021.



Photo 103. Seep 2.

Upstream view where the seep daylights from the left bank at the water sample station on August 31, 2021.



Photo 104. Seep 2.

Downstream view from the left bank at the water sample station on August 31, 2021.



**Photo 105.** Seep 2. Substrate at the water sample station on August 31, 2021.



**Photo 106.** Seep 2. Right bank view from left bank at the water sampling station on August 31, 2021.



Photo 107. Seep 3. Upstream view where seep daylights from the left bank at the water sample station on August 31, 2021.



Photo 108. Seep 3.

Downstream view from the left bank at the water sample station on August 31, 2021.



Photo 109. Seep 3.
Substrate at the water sample station on August 31, 2021.



Photo 110. Seep 3. Right bank view from the left bank at the water sampling station on August 31, 2021.



Photo 111. Seep 3. Left bank view from the left bank looking downstream at the water sampling station on August 31, 2021.



Photo 112. Cache Creek Tributary 1 (CCT1). Upstream view from the left bank at the water sample station on September 1, 2021.



Photo 113. Cache Creek Tributary 1 (CCT1).

Downstream view from the left bank at the water sample station on September 1, 2021.



**Photo 114.** Cache Creek Tributary 1 (CCT1). Substrate at the water sample station on September 1, 2021.



Photo 115. Cache Creek Tributary 1 (CCT1).

Right bank view from the left bank looking downstream at the water sampling station on September 1, 2021.



Photo 116. Cache Creek Tributary 1 (CCT1). Left bank view from the Left bank at the water sampling station on September 1, 2021.



Photo 117. Cache Creek Tributary 2 (CCT2).

Upstream view from the left bank approximately 5 meters upstream from the water sample station on September 1, 2021.



**Photo 118.** Cache Creek Tributary 2 (CCT2). Downstream view from the left bank towards the water sample station on September 1, 2021.



**Photo 119.** Cache Creek Tributary 2 (CCT2). Substrate at the water sample station on September 1, 2021.



**Photo 120.** Cache Creek Tributary 2 (CCT2). Right bank view from right bank looking downstream towards the water sampling station on September 1, 2021.



Photo 121. Cache Creek Tributary 2 (CCT2).

Left bank view from the left bank looking downstream towards the water sampling station on September 1, 2021.



Photo 122. Cache Creek Tributary 3 (CCT3). Upstream view from the right bank at the water sample station on September 1, 2021.



Photo 123. Cache Creek Tributary 3 (CCT3).

Downstream view from the right bank at the water sample station on September 1, 2021.



**Photo 124.** Cache Creek Tributary 3 (CCT3). Substrate at the water sample station on September 1, 2021.



Photo 125. Cache Creek Tributary 3 (CCT3).

Right bank view from right bank looking downstream at the water sampling station on September 1, 2021.



Photo 126. Cache Creek Tributary 3 (CCT3). Left bank view from the right bank at the water sampling station on September 1, 2021.



Photo 127. Tarn Lake.
Precipitates observed along shoreline on September 2, 2021.



**Photo 128.** Tarn Lake. Precipitates observed along shoreline on September 2, 2021.



**Photo 129.** Tarn Lake. Precipitates observed along shoreline on September 2, 2021.



**Photo 130.** Tarn Lake. Precipitates observed along the shoreline on September 2, 2021.



### Photo 131. Tarn Lake.

View from the access road adjacent to the lake looking towards the tailings storage facility on September 2, 2021.



**Photo 132.** Seep in the Misery Creek valley. View from the access road adjacent to the lake looking towards the tailings storage facility on September 2, 2021.



Appendix B - Site maps showing disturbance features and AECs/APECs





# Appendix C – Water Licence QZ04-063

#### YUKON WATER BOARD

Pursuant to the Waters Act and Regulation, the Yukon Water Board, hereinafter referred to as the Board, hereby grants to

Ketza River Holdings Ltd. Suite 540 - 688 West Hastings St. Vancouver, BC V6P 1P1

hereinafter called the Licensee, the right to use water and deposit a waste subject to the restrictions and conditions contained in the *Waters Act* and *Regulation* made hereunder and subject to and in accordance with the conditions specified in this licence.

| Licence Number: QZ04-06     | Water Management Area: 02 Yukon                                                     |
|-----------------------------|-------------------------------------------------------------------------------------|
| Licence Type: A             | Nature of Undertaking: Quartz Mining                                                |
| Water Source: Cache Creek   | Tributary of: Ketza River                                                           |
| Minimum Latitude: 61° 25    | Maximum Latitude: 61° 26'                                                           |
| Minimum Longitude: 132°     | 14' Maximum Longitude: 132° 19'                                                     |
| Purpose: To store water in, | and discharge water from, an existing tailings impoundment.                         |
| Effective Date of Licence:  | The date that the signature of the Chairperson of the Yukon Water Board is affixed. |
| Expiry Date of Licence:     | December 31, 2009                                                                   |
| Approved this day           |                                                                                     |
| of, 2007 Witness            | Minister, Executive Council Office                                                  |
| Issued this day of , 2007   | YUKON WATER BOARD                                                                   |
| Witness                     | Chairperson                                                                         |

#### PART A - GENERAL CONDITIONS

#### 1. Definitions

a) "Act" means the Waters Act and any amendments thereto.



"Application" collectively means Water Use Application QZ04-063 and any additional submissions and/or revisions submitted to the Board by the Licensee up to the date of the Board's decision to issue this licence.

- c) "Board" means the Yukon Water Board.
- d) "Inspector" means any person designated as an Inspector under the Act.
- e) "Regulation" means the Waters Regulation.
- f) "Spill Response Plan" means the Emergency Response Plan (ERP), Ketza River Mine Site, that was submitted as a component of the Application and included in Water Use Register QZ04-063 as exhibit 1.5.5, and any subsequent revisions.
- g) "Waste" means any substance defined in Section 2 of the Act.
- h) "Dam Safety Guidelines" means the Dam Safety Guidelines issued by the Canadian Dam Association (1999) or its most recent revision.

### Representations, Warranties and Undertakings



The Board has relied on the representations, warranties and undertakings provided by the Licensee in the material filed in the Application. Such representations, warranties and undertakings are considered by the Board to be a part of the licence, but shall be subject to, and may be modified by, the conditions of the licence.

3. Where there is a discrepancy between the Application and the conditions of this licence, the conditions of this licence shall prevail. - Ricensee review many documentation

#### Other Uses

- 4. If, subsequent to the issuing of this licence, the Licensee uses water and/or deposits waste in one or more ways not authorized in this licence, and the combined effect of those uses and/or deposits of wastes, as determined by an inspector:
  - a) has no potential for significant adverse environmental effects;
  - b) does not interfere with existing rights of other water users or waste depositors; and

# Ketza River Holdings Ltd. QZ04-063 Licence Conditions

c) satisfies the criteria set out in column 2 of Schedule 7 of the Regulation, then no amendment to this licence will be required for that use of water and/or deposit of waste.

- No condition of this licence limits the application of any other federal, territorial, first Other Laws
- All work authorized by this licence shall occur on property that the Licensee has the right to enter upon and use for that purpose.

- Where any direction, notice, order, or report under this licence is required to be in Writing, it shall be given: Correspondence shall be given:
- a) To the Licensee, if delivered, faxed or mailed by registered mail to the following address:

Ketza River Holdings Ltd. Suite 540 - 688 West Hastings St. Vancouver, BC V6P 1P1

fax: 604 688 9426

and shall be deemed to have been given to the Licensee on the day it was delivered or faxed, or seven days after the day it was mailed, as the case may be.

b) To the Board, if delivered, faxed or sent by registered mail to the following address:

Yukon Water Board Suite 106, 419 Range Road Whitehorse, Yukon Y1A 3V1

fax: 867 456 3890

and shall be deemed to have been given to the Board on the day it was delivered or faxed, or seven days after the day it was mailed, as the case may be.

## Non-Compliance

8. In the event that the Licensee fails to comply with any condition of this licence, the Board may, subject to the Act, cancel the licence.

#### Deleterious Substances

 Except as otherwise authorized by this licence, deleterious substances shall be used, transported, stored and disposed of in such a manner that they are not deposited in, or allowed to be deposited in, any waters.

#### Term of Licence

10. The term of this licence is from the effective date to December 31, 2009.

#### Reports

- 11. All monitoring data, reports, plans, studies, study results, designs or manuals required by this licence shall be submitted to the Board in an unbound printed form that is reproducible by standard photocopier and shall be accompanied by 5 copies.
- 12. All monitoring data, reports, plans, designs or manuals shall also be submitted in digital form, using an IBM compatible format that is readable using commonly available software.

### Annual Reports

- 13. Annual reports shall be submitted to the Board by the Licensee. The first report shall be for the period from the effective date of the licence to December 31, 2008, and the next report will be for the calendar year 2009. Annual reports will be submitted to the Board on or before February 28 of the following year.
- 14. Annual reports shall include the information required by this licence and by the Regulation, including, but not necessarily limited to:
  - a) summaries of all data generated as a result of the monitoring requirements of this licence, including analysis and interpretation by a qualified individual or firm and a discussion of any variances from base line conditions or from previous years' data; and
  - a detailed record of any major maintenance work carried out or planned to be carried out that could have an impact on water.

## Monthly Reports

15. Unless otherwise specified in this licence, the Licensee shall forward to the Board a copy of all data collected as part of the monitoring programs of this licence no more than 30 days after the conclusion of the month in which that data was collected.

#### Ketza River Holdings Ltd. OZ04-063 Licence Conditions

#### Spills and Unauthorized Discharges

- 16. The Licensee shall keep the Spill Response Plan current Any revisions to the plan will be submitted to the Board within 10 days of the revision.
- 17. The Licensee shall immediately contact the 24-hour Yukon Spill Report telephone number (867) 667-7244 and implement the most recent spill contingency plan that has been filed with the Board, should a spill or an unauthorized discharge occur. A detailed written report on any such event, including but not limited to, dates, quantities, parameters, causes and other relevant details and explanations, shall be delivered to the Board not later than 10 days after its occurrence.

### Hazardous Materials Storage

- 18. A complete inventory of chemicals, fuels, oils, lubricants and other hazardous materials relating to the water uses authorized by this licence shall be maintained by the Licensee.
- Hazardous materials shall be stored or transferred a minimum of 30 metres from any watercourse.

#### Care and Maintenance

20. Throughout the term of this licence, the Licensee shall maintain all works in good order.

#### PART B - SECURITY

21. Within 60 days of the effective date of this licence, the Licensee shall provide security in the amount of three million, eighty seven thousand, six hundred dollars (\$3,087,600). The form of security shall be in accordance with the Regulation.

#### PART C - OPERATING CONDITIONS

- 22. The Licensee is hereby authorized to store water within an existing tailings impoundment and to deposit a waste in the form of controlled discharge from the tailings impoundment, as described in the Application, and subject to the conditions of this licence. Where there is a discrepancy between the Application and this licence, the terms of this licence shall prevail.
- Except as authorized by this licence, no Waste shall enter any watercourse as a result of any operation carried out by the Licensee.

### PART D - EFFLUENT QUALITY STANDARDS

24. At monitoring stations KR-04-N3, KR-05-S2 and KR-9a, no waste discharge shall exceed the following limits:

| Parameter              | Maximum Concentration in a Grab Sample |           |  |
|------------------------|----------------------------------------|-----------|--|
| Total Arsenic          | 0.5 mg/L                               | di daw    |  |
| Total Copper           | 0.3 mg/L                               |           |  |
| Total Cyanide          | 1.0 mg/L                               | after it  |  |
| Total Lead             | 0.2 mg/L                               | enolousal |  |
| Total Nickel           | 0.5 mg/L                               | entra A P |  |
| Total Zinc             | 0.5 mg/L                               | mission   |  |
| Total Ammonia          | 1.0 mg/L                               | nazati 0  |  |
| Total Suspended Solids | 15.0 mg/L                              | watero    |  |
| рН                     | >6.5                                   | M hou sag |  |

25. Any discharge to a watercourse must meet a bioassay standard of a 96-hour LC<sub>50</sub> bioassay using Rainbow Trout.

#### PART E - MODIFICATION AND CONSTRUCTION

- 26. Where modifications are required to be made to existing facilities and structures authorized by this licence, and providing that those modifications would not otherwise require a water use licence, then the Licensee shall submit plans, specifications and construction schedules for any such modifications no less than 90 days prior to the start of the construction work.
- 27. All designs shall be sealed by a Professional Engineer licenced to practice in Yukon.
- 28. At least 10 days prior to the proposed date of commencement of construction of minor modifications, the Licensee shall submit to the Board a written notification, together with a detailed construction schedule and the name and contact number(s) of the construction superintendent.
- 29. Where site conditions require minor modifications to the designs submitted to the Board, the Licensee shall notify the Board, in advance, of the details of the modifications or variations from final detailed designs, specifications and quality assurance/quality control procedures previously submitted to the Board. The notice shall include an explanation of the

reasons for the change and an assessment of the potential impact on the performance of the works. The notice shall be sealed by a Professional Engineer licenced to practice in Yukon.

- 30. As-constructed (record) drawings and construction reports, including quality assurance and quality control documentation, for all structures and facilities shall be submitted to the Board within ninety days of the completion of construction. Each submission shall be sealed by a Professional Engineer licenced to practice in Yukon.
- No later than September 30, 2008, the Licensee shall complete the construction of a supporting toe berm along the North Dam, as described in the Application.

#### PART F - DECOMMISSIONING

#### Final Closure and Reclamation Plan

- 32. A Final Closure and Reclamation Plan shall be prepared and submitted to the Board by January 31, 2009. The plan shall define the conditions under which final closure and reclamation will commence. The plan shall be premised on the following objectives:
  - a) Maintain the long term physical stability of the North and South Dams;
- b) Maintain the long term physical stability of water diversions; and
  - Ensure that effluent standards required by this licence are met at all discharges to any receiving waters.
- Subject to required assessments, authorizations or approvals, the Licensee shall implement the Final Closure and Reclamation Plan.
- 34. In the event that final closure occurs prior to the submission of the Final Closure and Reclamation Plan, then the Licensee will, at a minimum, and subject to the appropriate authorizations and approvals:
  - a) drain the tailings pond;
  - b) recontour the tailings to promote surface shedding of precipitation;
  - c) construct a dry cover over the tailings;
  - d) lower the spillway invert to allow the tailings pond to be free draining; and
  - e) upgrade the diversions to accommodate extreme precipitation events.

#### PART G - MONITORING AND SURVEILLANCE

 The Licensee shall comply with the water quality monitoring program contained in Schedule A of this licence.

#### Ketza River Holdings Ltd. QZ04-063 Licence Conditions

36. Monitoring and sampling shall be carried out in accordance with the procedures and standards described in:

Murray 1

- a) Guidance Document for the Sampling and Analysis of Metal Mining Effluents, April 2001, (Report: EPS 2/MM/5), Minerals and Metals Division, Environment Canada, and
- Guidance Document for Flow Measurement of Metal Mining Effluents, April 2001, (Report: EPS 2/MM/4), Minerals and Metals Division, Environment Canada, and.
- Standard Guide for Sampling Ground-Water Monitoring Wells, ASTM D4448-01, ASTM International, PA, USA.
- 37. Within 60 days of the effective date of this licence, the Licensee shall provide coordinates for any monitoring points listed in Schedule A, Part 1 for which coordinates are not already indicated.

#### Sediment, Periphyton and Benthic Invertebrate Monitoring

- 38. Once during the term of the licence, the Licensee shall carry out a sediment, periphyton and benthic invertebrate monitoring program, with sampling and analysis conducted as described below at sampling stations KR-08, KR-10, KR-11, KR-12 and KR-14. The study will be carried out by persons qualified to do so by education and/or experience. The results of the program will be included in the next annual report.
  - a) Sediment sampling shall be carried out as follows:
    - i) sediment samples shall be collected in replicates of three from within the active channel, directly into high density plastic sample jars, using an aluminum or Teflon scoop.
    - Samples shall be dried and screened, using sieves at ASTM mesh numbers 10, 20, 40, 60, 100, 140 and 270 (ASTM-E11-61) and the fraction weights shall be recorded.
    - iii) A sub-sample composed of material passing through the 100 mesh number sieve shall be analyzed for metals by a 33 element ICP scan. Loss on ignition shall also be determined by heating the sample to 600 degrees C.
  - b) Benthic invertebrate sampling shall be carried out as follows:
    - Three replicate samples shall be taken by a circular Hess sampler (0.0934 m²) or Waters and Knapp sampler (0.089 m²) equipped with a 250 μm mesh net.
    - Samples shall be preserved with 10% formalin solution, and identified to the lowest possible taxon (usually genus) and counted.

### Ketza River Holdings Ltd. QZ04-063 Licence Conditions

- iii) Stream information collected at the time of the benthos collection shall include velocity, depth, temperature, substrate conditions and riparian conditions.
- c) Periphyton sampling shall be carried out as follows:
  - Samples shall be collected from rock by surface scraping (3 or more rocks combined) and the total surface area of rock scraped at that station shall be recorded.
  - ii) Each sample shall be preserved with Lugols solution.
  - iii) Each sample shall be enumerated and identified to the lowest taxonomic level.
  - iv) The results shall include the date of completion, the company performing the identification, enumerations and identifications per station, method used to perform sorting and analysis of data, and resources used for identifications.

#### Physical Inspections and Monitoring

- 39. An annual inspection of all earthworks shall be carried out in accordance with the Dam Safety Guidelines by a Professional Engineer licenced to practice in Yukon. A report on the inspection, prepared by the Professional Engineer, shall be submitted as a part of the annual report. The report shall document the inspection locations and methodologies, the results of the inspection, all problems identified, and remedial measures recommended. The status of any remedial measures recommended in the previous year's report shall be appended to the report together with an explanation regarding any recommendation not implemented.
- 40. Details of any maintenance, inspection and/or surveillance activities undertaken in the previous year in relation to dam safety shall be included in the annual report.

### QZ04-063 SCHEDULE A

### SCHEDULE A, PART I MONITORING STATIONS

### Surface Water Monitoring Stations

| Station  | Description                                                | Latitude            | Longitude      |
|----------|------------------------------------------------------------|---------------------|----------------|
| KR-01    | Cache Creek, upstream of mill and tailings pond            | 61° 31.7912'        | 132° 16.1384'  |
| KR-04-N2 | North Dam seepage discharge to Cache<br>Creek              | 61° 32.2104'        | 132° 14.6078'  |
| KR-04-N3 | South Dam seepage discharge to Cache<br>Creek              | 61° 32.21'          | 132° 15.2'     |
| KR-05-S1 | Surface discharge to Cache Creek                           | 61° 32.0582'        | 132° 14.9534'  |
| KR-05-S2 | Surface discharge to Cache Creek                           | 61° 32.052'         | 132° 15.157'   |
| KR-08    | Cache Creek, downstream of Oxo Creek                       | 61° 32.5808'        | 132° 14.0366′  |
| KR-09    | Tailings Impoundment                                       | 61° 32.0204'        | 132° 15.1976'  |
| KR-09A   | Discharge from Tailings Impoundment                        | oriumique na filiva | radiagos magar |
| KR-10    | Cache Creek, upstream of Ketza River                       | 61° 32.8995'        | 132° 9.7545'   |
| KR-11    | Ketza River, upstream of Cache Creek confluence            | 61° 33.9895'        | 132° 9.6051'   |
| KR-12    | Ketza River, downstream of Cache Creek confluence          | 61° 34.5685'        | 132° 10.1996′  |
| KR-13    | Cache Creek adjacent to mill/tailings                      | 61° 32.0174'        | 132° 15.2018'  |
| KR-14    | Oxo Creek above Cache Creek                                | 61° 32.0102'        | 132° 14.7302'  |
| KR-15    | Peel Creek above Cache Creek                               | 61° 32.552'         | 132° 14.7062'  |
| KR-16    | Unnamed tributary of Cache Creek, above mine site          | 61° 32.0192′        | 132° 17.0486'  |
| KR-50    | Cache Creek at upstream end of Campbell<br>Highway culvert |                     |                |

### Ketza River Holdings Ltd. QZ04-063 Licence Conditions

### Groundwater Monitoring Stations

| Station  | Description        | Latitude         | Longitude |
|----------|--------------------|------------------|-----------|
| P90-7A   | South Dam          |                  | Stations  |
| P90-7B   | South Dam          | Months and Water |           |
| P90-7C   | South Dam          | (110,000)        |           |
| P90-8    | Knoll between dams |                  | 19-21     |
| P90-9    | Knoll between dams | 99 (3)           | 311177    |
| P96-11A  | North Dam          | 7/1              | Espito A  |
| P96-11 B | North Dam          | 40               | 1:5-50-21 |
| P96-11C  | North Dam          |                  | 111-01-11 |
| P96-12A  | South Dam          |                  | 10-2      |
| P96-12B  | South Dam          |                  |           |
| P96-12C  | South Dam          | 011              | 80-8      |

### SCHEDULE A, PART II MONITORING SCHEDULE FREQUENCY LEGEND

| Symbol | Frequency               | М   | KR-14     |
|--------|-------------------------|-----|-----------|
| W      | Weekly                  | 3/5 | ICE-15    |
| WD     | Weekly when discharging | M   | KR-16     |
| BW     | Bi-weekly               | M   | 95-3EX    |
| M      | Monthly                 | M   | A7-999-7A |
| BM     | Bi-Monthly              | -14 | P90-7B    |

### SCHEDULE A, PART III MONITORING SCHEDULE

| Monitoring<br>Stations | Parameters                      |                       |          |  |
|------------------------|---------------------------------|-----------------------|----------|--|
|                        | Metals and Water<br>Chemistry * | Water Level           | Flow     |  |
| KR-01                  | M                               | -                     | -        |  |
| KR-04-N2               | BW                              |                       | BW       |  |
| KR-04-N3               | BW                              |                       | BW       |  |
| KR-05-S1               | BW                              |                       | BW       |  |
| KR-05-S2               | BW                              | 1100/01/05/01         | BW       |  |
| KR-08                  | M                               | - 100000              | - 211-01 |  |
| KR-09                  | M                               | W                     | -        |  |
| KR-09A                 | WD                              | 2000 404 00           | WD       |  |
| KR-10                  | M                               | - 1000/12 1000 2/01   |          |  |
| KR-11                  | M                               | -                     | -        |  |
| KR-12                  | M                               | - SCHEDI              | -        |  |
| KR-13                  | M                               | MONITORING SCHED      | -        |  |
| KR-14                  | M                               | Frequency             | - lodmy? |  |
| KR-15                  | M                               | Vicelty -             | - VI     |  |
| KR-16                  | M                               | Weekly when dischargi | - aw     |  |
| KR-50                  | M                               | - yldow-ill           | - 978    |  |
| P90-7A                 | M                               | BM                    | - N      |  |
| P90-7B                 | M                               | BM                    | - M8     |  |
| P90-7C                 | M                               | BM                    | -        |  |
| P90-8                  | M                               | BM                    | -        |  |
| P90-9                  | M                               | BM                    | -        |  |

| Monitoring<br>Stations | Parameters                      |             |      |
|------------------------|---------------------------------|-------------|------|
|                        | Metals and Water<br>Chemistry * | Water Level | Flow |
| P96-11A                | M                               | ВМ          | - 1  |
| P96-11B                | M                               | ВМ          | -    |
| P96-11C                | M                               | ВМ          | -    |
| P96-12A                | M                               | ВМ          | -    |
| P96-12B                | M                               | ВМ          | -    |
| P96-12C                | M                               | ВМ          | -    |

<sup>\*</sup> ICP Total Metals by Low Method Detection Limits, ICP Dissolved Metals by Low Method Detection Limits, Hardness, Total Suspended Solids, Total Dissolved Solids, Total Alkalinity, Total Sulphate, Nitrogen-Nitrate, Nitrogen-Nitrite.

Ketza River Holdings Esd. OZ04-063 Licence Conditions

Page 12 of 12

|  | Parimotes  |  |
|--|------------|--|
|  | Want Level |  |
|  | 141        |  |
|  | 3/48       |  |
|  | 3/81       |  |
|  | 161        |  |
|  | Mile       |  |
|  | 181        |  |

ICP Total Metals by Low Method Detection Limits, ICP Breathod Metals by Low Method Detection Limits, Hardness, Total Suspended Solids, Total Disnolved Solids, Total Alkalinity, Total Sulphate, Nitrogen-Nitrose, Nitrogen-Nitrose

# Appendix D – Water Quality Lab Raw Data



Your Project #: 2021-Ketza Your C.O.C. #: C#644610-01-01

## **Attention: Stephanie Lyons**

Government of Yukon – Dept of ENV Box 2703 Whitehorse, YT Canada Y1A2C6

Report Date: 2021/09/10

Report #: R3070012 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: C165062 Received: 2021/09/02, 16:11

Sample Matrix: Water # Samples Received: 10

|          | Date                                                                                                                            | Date                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quantity |                                                                                                                                 | Analyzed                                                                                                                                                                                                                                                                               | Laboratory Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analytical Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10       | N/A                                                                                                                             | 2021/09/04                                                                                                                                                                                                                                                                             | BBY6SOP-00026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 2320 B m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10       | N/A                                                                                                                             | 2021/09/09                                                                                                                                                                                                                                                                             | BBY6SOP-00011 /<br>BBY6SOP-00017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SM23-4500-CI/SO4-E m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10       | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             | CAL SOP-00270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 4500-CN m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10       | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             | CAL SOP-00270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 4500-CN m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4        | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Auto Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6        | N/A                                                                                                                             | 2021/09/10                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Auto Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4        | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             | AB SOP-00063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SM 23 3500-Cr B m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6        | N/A                                                                                                                             | 2021/09/09                                                                                                                                                                                                                                                                             | AB SOP-00063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SM 23 3500-Cr B m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9        | N/A                                                                                                                             | 2021/09/09                                                                                                                                                                                                                                                                             | AB SOP-00087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMCW 119 1996 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1        | N/A                                                                                                                             | 2021/09/10                                                                                                                                                                                                                                                                             | AB SOP-00087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMCW 119 1996 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10       | N/A                                                                                                                             | 2021/09/04                                                                                                                                                                                                                                                                             | BBY6SOP-00026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 2510 B m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10       | N/A                                                                                                                             | 2021/09/10                                                                                                                                                                                                                                                                             | BBY6SOP-00048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 4500-F C m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10       | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             | BBY WI-00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10       | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             | BBY WI-00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8        | 2021/09/07                                                                                                                      | 2021/09/07                                                                                                                                                                                                                                                                             | AB SOP-00084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BCMOE BCLM Oct2013 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2        | 2021/09/10                                                                                                                      | 2021/09/10                                                                                                                                                                                                                                                                             | AB SOP-00084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BCMOE BCLM Oct2013 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4        | 2021/09/07                                                                                                                      | 2021/09/07                                                                                                                                                                                                                                                                             | AB SOP-00084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BCMOE BCLM Oct2013 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2        | 2021/09/07                                                                                                                      | 2021/09/10                                                                                                                                                                                                                                                                             | AB SOP-00084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BCMOE BCLM Oct2013 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4        | 2021/09/10                                                                                                                      | 2021/09/10                                                                                                                                                                                                                                                                             | AB SOP-00084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BCMOE BCLM Oct2013 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10       | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             | BBY WI-00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10       | N/A                                                                                                                             | 2021/09/04                                                                                                                                                                                                                                                                             | BBY7SOP-00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA 6020b R2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | 2021/09/03                                                                                                                      | 2021/09/04                                                                                                                                                                                                                                                                             | BBY7SOP-00003 /<br>BBY7SOP-00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA 6020b R2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10       | N/A                                                                                                                             | 2021/09/07                                                                                                                                                                                                                                                                             | BBY WI-00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9        | N/A                                                                                                                             | 2021/09/03                                                                                                                                                                                                                                                                             | BBY7SOP-00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA 6020b R2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10       | N/A                                                                                                                             | 2021/09/09                                                                                                                                                                                                                                                                             | BBY6SOP-00016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 4500-N C m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10       | N/A                                                                                                                             | 2021/09/09                                                                                                                                                                                                                                                                             | AB SOP-00007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SM 23 4500 NH3 A G m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10       | N/A                                                                                                                             | 2021/09/03                                                                                                                                                                                                                                                                             | BBY6SOP-00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 4500-NO3- I m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10       | N/A                                                                                                                             | 2021/09/03                                                                                                                                                                                                                                                                             | BBY6SOP-00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 4500-NO3- I m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10       | N/A                                                                                                                             | 2021/09/04                                                                                                                                                                                                                                                                             | BBY WI-00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10       | N/A                                                                                                                             | 2021/09/02                                                                                                                                                                                                                                                                             | BBY7 WI-00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SM 23 3030B m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | 10<br>10<br>10<br>10<br>4<br>6<br>4<br>6<br>9<br>1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 10 N/A  10 N/A  10 N/A  10 N/A  4 N/A  6 N/A  4 N/A  6 N/A  9 N/A  1 N/A  10 N/A  10 N/A  10 N/A  10 N/A  2021/09/07  2 2021/09/07  2 2021/09/07  2 2021/09/10  4 2021/09/07  2 2021/09/07  4 2021/09/07  10 N/A  10 N/A  1 2021/09/03  10 N/A  10 N/A  10 N/A  10 N/A  10 N/A  10 N/A | Quantity         Extracted         Analyzed           10         N/A         2021/09/04           10         N/A         2021/09/07           10         N/A         2021/09/07           10         N/A         2021/09/07           10         N/A         2021/09/07           4         N/A         2021/09/07           6         N/A         2021/09/09           9         N/A         2021/09/09           1         N/A         2021/09/07           2         2021/09/07         2021/09/07           2         2021/09/07         2021/09/07           2         2021/09/07         2021/09/10           4         2021/09/07         2021/09/07           10         N/A         2021/09/07           10         N/A         2021/09/07 <td>Quantity         Extracted         Analyzed         Laboratory Method           10         N/A         2021/09/04         BBY6SOP-00026           10         N/A         2021/09/09         BBY6SOP-00011 / BBY6SOP-00017           10         N/A         2021/09/07         CAL SOP-00270           10         N/A         2021/09/07         CAL SOP-00270           4         N/A         2021/09/07         AB SOP-00063           6         N/A         2021/09/09         AB SOP-00063           9         N/A         2021/09/09         AB SOP-00087           1         N/A         2021/09/09         AB SOP-00087           10         N/A         2021/09/09         AB SOP-00087           10         N/A         2021/09/07         BBY WI-00033           8         2021/09/07         2021/09/07         AB SOP-00084           2         2021/09/07         2021/09/07         AB SOP-00084     &lt;</td> | Quantity         Extracted         Analyzed         Laboratory Method           10         N/A         2021/09/04         BBY6SOP-00026           10         N/A         2021/09/09         BBY6SOP-00011 / BBY6SOP-00017           10         N/A         2021/09/07         CAL SOP-00270           10         N/A         2021/09/07         CAL SOP-00270           4         N/A         2021/09/07         AB SOP-00063           6         N/A         2021/09/09         AB SOP-00063           9         N/A         2021/09/09         AB SOP-00087           1         N/A         2021/09/09         AB SOP-00087           10         N/A         2021/09/09         AB SOP-00087           10         N/A         2021/09/07         BBY WI-00033           8         2021/09/07         2021/09/07         AB SOP-00084           2         2021/09/07         2021/09/07         AB SOP-00084     < |



Your Project #: 2021-Ketza Your C.O.C. #: C#644610-01-01

**Attention: Stephanie Lyons** 

Government of Yukon – Dept of ENV Box 2703 Whitehorse, YT Canada Y1A2C6

Report Date: 2021/09/10

Report #: R3070012 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: C165062 Received: 2021/09/02, 16:11

Sample Matrix: Water # Samples Received: 10

|                                             |          | Date       | Date       |                          |                      |
|---------------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                                    | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Analytical Method    |
| pH @25°C (5)                                | 10       | N/A        | 2021/09/04 | BBY6SOP-00026            | SM 23 4500-H+ B m    |
| Total Dissolved Solids - Low Level (1)      | 10       | 2021/09/05 | 2021/09/05 | AB SOP-00065             | SM 23 2540 C m       |
| Total Kjeldahl Nitrogen (Total)             | 10       | N/A        | 2021/09/09 | BBY WI-00033             | Auto Calc            |
| Total Phosphorus Low Level Dissolved (1, 6) | 10       | 2021/09/08 | 2021/09/08 | AB SOP-00024             | SM 23 4500-P A,B,F m |
| Total Phosphorus Low Level Total (1)        | 10       | 2021/09/08 | 2021/09/08 | AB SOP-00024             | SM 23 4500-P A,B,F m |
| Total Suspended Solids (NFR)                | 10       | 2021/09/07 | 2021/09/08 | BBY6SOP-00034            | SM 23 2540 D m       |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary Environmental
- (2) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) DOC present in the sample should be considered as non-purgeable DOC. Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (4) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (5) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are



Your Project #: 2021-Ketza Your C.O.C. #: C#644610-01-01

**Attention: Stephanie Lyons** 

Government of Yukon – Dept of ENV Box 2703 Whitehorse, YT Canada Y1A2C6

Report Date: 2021/09/10

Report #: R3070012 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

#### BV LABS JOB #: C165062 Received: 2021/09/02, 16:11

reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

(6) Dissolved Phosphorus > Total Phosphorus Imbalance: When applicable, Dissolved Phosphorus and Total Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.

**Encryption Key** 

Kandise Wilson Customer Solutions Representative 13 Sep 2021 18:23:45

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Customer Solutions, Western Canada Customer Experience Team

Email: customer solutions we st@bureauver it as.com

Phone# (604) 734 7276

\_\_\_\_\_

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFC782              |         |          | AFC782               |        |          |
|--------------------------------------|-------|---------------------|---------|----------|----------------------|--------|----------|
| Sampling Date                        |       | 2021/08/31<br>09:05 |         |          | 2021/08/31<br>09:05  |        |          |
| COC Number                           |       | C#644610-01-01      |         |          | C#644610-01-01       |        |          |
|                                      | UNITS | 2021725-1           | RDL     | QC Batch | 2021725-1<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics                     |       |                     |         |          |                      |        |          |
| Fluoride (F)                         | mg/L  | 0.110               | 0.020   | A347643  | 0.110                | 0.020  | A347643  |
| Calculated Parameters                | I.    | 1                   | •       | I.       | 1                    |        |          |
| Dissolved Chromium III               | mg/L  | <0.00099            | 0.00099 | A340344  |                      |        |          |
| Filter and HNO3 Preservation         | N/A   | FIELD               |         | ONSITE   |                      |        |          |
| Dissolved Hardness (CaCO3)           | mg/L  | 295                 | 0.50    | A340085  |                      |        |          |
| Total Hardness (CaCO3)               | mg/L  | 300                 | 0.50    | A339992  |                      |        |          |
| Nitrate (N)                          | mg/L  | 0.0572              | 0.0020  | A340789  |                      |        |          |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.109               | 0.020   | A340111  |                      |        |          |
| Misc. Inorganics                     |       |                     | I       | I        |                      | I      |          |
| Conductivity                         | uS/cm | 590                 | 2.0     | A342007  | 590                  | 2.0    | A342007  |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050            | 0.00050 | A342803  |                      |        |          |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050            | 0.00050 | A342809  |                      |        |          |
| Dissolved Organic Carbon (C)         | mg/L  | 0.35                | 0.20    | A343810  |                      |        |          |
| рН                                   | рН    | 7.48                | N/A     | A342005  | 7.72                 | N/A    | A342005  |
| Total Suspended Solids               | mg/L  | 4.8                 | 1.0     | A343312  |                      |        |          |
| Anions                               |       | ı                   | I       | I.       | I                    | I      |          |
| Alkalinity (PP as CaCO3)             | mg/L  | <1.0                | 1.0     | A342006  | <1.0                 | 1.0    | A342006  |
| Alkalinity (Total as CaCO3)          | mg/L  | 140                 | 1.0     | A342006  | 150                  | 1.0    | A342006  |
| Bicarbonate (HCO3)                   | mg/L  | 170                 | 1.0     | A342006  | 180                  | 1.0    | A342006  |
| Carbonate (CO3)                      | mg/L  | <1.0                | 1.0     | A342006  | <1.0                 | 1.0    | A342006  |
| Hydroxide (OH)                       | mg/L  | <1.0                | 1.0     | A342006  | <1.0                 | 1.0    | A342006  |
| Dissolved Chloride (Cl)              | mg/L  | <0.50               | 0.50    | A346519  | <0.50                | 0.50   | A346519  |
| Dissolved Sulphate (SO4)             | mg/L  | 190                 | 0.50    | A346519  | 190                  | 0.50   | A346519  |
| Metals                               |       | !                   | ļ.      |          | !                    | Į      |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099            | 0.00099 | A343723  |                      |        |          |
| Nutrients                            |       | I                   | I       | I        |                      | I      |          |
| Dissolved Phosphorus (P)             | mg/L  | <0.0010             | 0.0010  | A344365  |                      |        |          |
| Total Phosphorus (P)                 | mg/L  | <0.0010             | 0.0010  | A344338  |                      |        |          |
| Total Ammonia (N)                    | mg/L  | <0.0050             | 0.0050  | A343769  |                      |        |          |
| Nitrate plus Nitrite (N)             | mg/L  | 0.0572              | 0.0020  | A341762  | 0.0607               | 0.0020 | A341762  |
|                                      |       | <0.0020             | 0.0020  | A341763  | <0.0020              | 0.0020 | A341763  |

N/A = Not Applicable



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID             |       | AFC782              |       |          | AFC782               |     |          |
|------------------------|-------|---------------------|-------|----------|----------------------|-----|----------|
| Sampling Date          |       | 2021/08/31<br>09:05 |       |          | 2021/08/31<br>09:05  |     |          |
| COC Number             |       | C#644610-01-01      |       |          | C#644610-01-01       |     |          |
|                        | UNITS | 2021725-1           | RDL   | QC Batch | 2021725-1<br>Lab-Dup | RDL | QC Batch |
| Total Nitrogen (N)     | mg/L  | 0.166               | 0.020 | A343841  |                      |     |          |
| Physical Properties    |       |                     |       |          |                      |     |          |
| Total Dissolved Solids | mg/L  | 393 (1)             | 1.0   | A342432  |                      |     |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

(1) Detection limits raised due to insufficient sample volume.



## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| UNITS<br>mg/L | 2021/08/31<br>09:50<br>C#644610-01-01<br>2021725-2 | RDL                                                                                                                                                                                            | QC Batch                                                                                                                                                                                                                                                          | 2021/08/31<br>11:30<br>C#644610-01-01                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2021/08/31<br>13:45<br>C#644610-01-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mg/L          | C#644610-01-01<br><b>2021725-2</b>                 | RDL                                                                                                                                                                                            | OC Batch                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/L          | 2021725-2                                          | RDL                                                                                                                                                                                            | OC Batch                                                                                                                                                                                                                                                          | C#644610-01-01                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                | C#644610-01-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/L          |                                                    | RDL                                                                                                                                                                                            | OC Ratch                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0.040                                              |                                                                                                                                                                                                | QC Datcii                                                                                                                                                                                                                                                         | 2021725-03                                                                                                                                                                                                                                                                                                                                                       | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2021725-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 0.040                                              |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 0.048                                              | 0.020                                                                                                                                                                                          | A347643                                                                                                                                                                                                                                                           | 0.210                                                                                                                                                                                                                                                                                                                                                            | A347643                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A347643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/L          | <0.00099                                           | 0.00099                                                                                                                                                                                        | A340344                                                                                                                                                                                                                                                           | <0.00099                                                                                                                                                                                                                                                                                                                                                         | A340344                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A340344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N/A           | FIELD                                              |                                                                                                                                                                                                | ONSITE                                                                                                                                                                                                                                                            | FIELD                                                                                                                                                                                                                                                                                                                                                            | ONSITE                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ONSITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mg/L          | 267                                                | 0.50                                                                                                                                                                                           | A340085                                                                                                                                                                                                                                                           | 356                                                                                                                                                                                                                                                                                                                                                              | A340085                                                                                                                                                                                                                                                                                                                                                                                                                                        | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A340085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 270                                                | 0.50                                                                                                                                                                                           | A339992                                                                                                                                                                                                                                                           | 360                                                                                                                                                                                                                                                                                                                                                              | A339992                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A339992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 0.0447                                             | 0.0020                                                                                                                                                                                         | A340789                                                                                                                                                                                                                                                           | 0.124                                                                                                                                                                                                                                                                                                                                                            | A340789                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A340789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 0.124                                              | 0.020                                                                                                                                                                                          | A340111                                                                                                                                                                                                                                                           | 0.128                                                                                                                                                                                                                                                                                                                                                            | A340111                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A340111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| uS/cm         | 530                                                | 2.0                                                                                                                                                                                            | A341967                                                                                                                                                                                                                                                           | 710                                                                                                                                                                                                                                                                                                                                                              | A341967                                                                                                                                                                                                                                                                                                                                                                                                                                        | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A342007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | <0.00050                                           | 0.00050                                                                                                                                                                                        | A342803                                                                                                                                                                                                                                                           | <0.00050                                                                                                                                                                                                                                                                                                                                                         | A342803                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A342803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | <0.00050                                           | 0.00050                                                                                                                                                                                        | A342809                                                                                                                                                                                                                                                           | <0.00050                                                                                                                                                                                                                                                                                                                                                         | A342809                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A342809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 0.31                                               | 0.20                                                                                                                                                                                           | A343810                                                                                                                                                                                                                                                           | <0.20                                                                                                                                                                                                                                                                                                                                                            | A343810                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A343810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| рН            | 7.84                                               | N/A                                                                                                                                                                                            | A341963                                                                                                                                                                                                                                                           | 7.28                                                                                                                                                                                                                                                                                                                                                             | A341963                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A342005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 2.4                                                | 1.0                                                                                                                                                                                            | A343244                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                               | A343244                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A343312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/L          | <1.0                                               | 1.0                                                                                                                                                                                            | A341966                                                                                                                                                                                                                                                           | <1.0                                                                                                                                                                                                                                                                                                                                                             | A341966                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A342006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 150                                                | 1.0                                                                                                                                                                                            | A341966                                                                                                                                                                                                                                                           | 92                                                                                                                                                                                                                                                                                                                                                               | A341966                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A342006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 190                                                | 1.0                                                                                                                                                                                            | A341966                                                                                                                                                                                                                                                           | 110                                                                                                                                                                                                                                                                                                                                                              | A341966                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A342006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | <1.0                                               | 1.0                                                                                                                                                                                            | A341966                                                                                                                                                                                                                                                           | <1.0                                                                                                                                                                                                                                                                                                                                                             | A341966                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A342006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | <1.0                                               | 1.0                                                                                                                                                                                            | A341966                                                                                                                                                                                                                                                           | <1.0                                                                                                                                                                                                                                                                                                                                                             | A341966                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A342006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 0.56                                               | 0.50                                                                                                                                                                                           | A346519                                                                                                                                                                                                                                                           | <0.50                                                                                                                                                                                                                                                                                                                                                            | A346519                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A346519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 140                                                | 0.50                                                                                                                                                                                           | A346519                                                                                                                                                                                                                                                           | 280                                                                                                                                                                                                                                                                                                                                                              | A346519                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A346519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/L          | <0.00099                                           | 0.00099                                                                                                                                                                                        | A343019                                                                                                                                                                                                                                                           | <0.00099                                                                                                                                                                                                                                                                                                                                                         | A343723                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A343723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/L          | <0.0010                                            | 0.0010                                                                                                                                                                                         | A344365                                                                                                                                                                                                                                                           | <0.0010                                                                                                                                                                                                                                                                                                                                                          | A344365                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A344365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 0.0011                                             | 0.0010                                                                                                                                                                                         | A344325                                                                                                                                                                                                                                                           | 0.0046                                                                                                                                                                                                                                                                                                                                                           | A344325                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A344338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | <0.0050                                            | 0.0050                                                                                                                                                                                         | A343769                                                                                                                                                                                                                                                           | 0.0053                                                                                                                                                                                                                                                                                                                                                           | A343769                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A343769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | 0.0447                                             | 0.0020                                                                                                                                                                                         | A341762                                                                                                                                                                                                                                                           | 0.124                                                                                                                                                                                                                                                                                                                                                            | A341762                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A341762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/L          | <0.0020                                            | 0.0020                                                                                                                                                                                         | A341763                                                                                                                                                                                                                                                           | <0.0020                                                                                                                                                                                                                                                                                                                                                          | A341763                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A341763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | N/A mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L        | N/A         FIELD           mg/L         267           mg/L         270           mg/L         0.0447           mg/L         0.124           uS/cm         530           mg/L         <0.00050 | N/A         FIELD           mg/L         267         0.50           mg/L         270         0.50           mg/L         0.0447         0.0020           mg/L         0.124         0.020           uS/cm         530         2.0           mg/L         <0.00050 | N/A         FIELD         ONSITE           mg/L         267         0.50         A340085           mg/L         270         0.50         A339992           mg/L         0.0447         0.0020         A340789           mg/L         0.124         0.020         A340111           uS/cm         530         2.0         A341967           mg/L         <0.00050 | N/A         FIELD         ONSITE         FIELD           mg/L         267         0.50         A340085         356           mg/L         270         0.50         A339992         360           mg/L         0.0447         0.0020         A340789         0.124           mg/L         0.124         0.020         A340111         0.128           uS/cm         530         2.0         A341967         710           mg/L         <0.00050 | N/A         FIELD         ONSITE         FIELD         ONSITE           mg/L         267         0.50         A340085         356         A340085           mg/L         270         0.50         A339992         360         A339992           mg/L         0.0447         0.0020         A340789         0.124         A340789           mg/L         0.124         0.020         A340111         0.128         A340111           uS/cm         530         2.0         A341967         710         A341967           mg/L         <0.00050 | N/A         FIELD         ONSITE         FIELD         ONSITE         FIELD           mg/L         267         0.50         A340085         356         A340085         297           mg/L         270         0.50         A339992         360         A339992         300           mg/L         0.0447         0.0020         A340789         0.124         A340789         0.124           mg/L         0.124         0.020         A340111         0.128         A340111         0.161           us/cm         530         2.0         A341967         710         A341967         570           mg/L         <0.00050 | N/A         FIELD         ONSITE         FIELD         ONSITE         FIELD           mg/L         267         0.50         A340085         356         A340085         297         0.50           mg/L         270         0.50         A339992         360         A339992         300         0.50           mg/L         0.0447         0.0020         A340789         0.124         A340789         0.124         0.0020           mg/L         0.124         0.020         A340111         0.128         A340111         0.161         0.020           us/cm         530         2.0         A341967         710         A341967         570         2.0           mg/L         <0.00050 |

N/A = Not Applicable



Report Date: 2021/09/10

Government of Yukon – Dept of ENV Client Project #: 2021-Ketza Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

|                     |       | t                   |       | 1        | 1                   | 1        |                     |       |          |
|---------------------|-------|---------------------|-------|----------|---------------------|----------|---------------------|-------|----------|
| BV Labs ID          |       | AFC783              |       |          | AFC784              |          | AFC785              |       |          |
| Sampling Date       |       | 2021/08/31<br>09:50 |       |          | 2021/08/31<br>11:30 |          | 2021/08/31<br>13:45 |       |          |
| COC Number          |       | C#644610-01-01      |       |          | C#644610-01-01      |          | C#644610-01-01      |       |          |
|                     | UNITS | 2021725-2           | RDL   | QC Batch | 2021725-03          | QC Batch | 2021725-04          | RDL   | QC Batch |
| Total Nitrogen (N)  | mg/L  | 0.168               | 0.020 | A343841  | 0.252               | A343841  | 0.285               | 0.020 | A343841  |
|                     |       |                     |       |          |                     |          |                     |       |          |
| Physical Properties |       |                     |       | ļ        | !                   |          |                     |       | •        |

RDL = Reportable Detection Limit

<sup>(1)</sup> Detection limits raised due to insufficient sample volume.



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                                                            |       | AFC785                |         |          | AFC786              |         |          |
|-----------------------------------------------------------------------|-------|-----------------------|---------|----------|---------------------|---------|----------|
| Sampling Date                                                         |       | 2021/08/31<br>13:45   |         |          | 2021/08/31<br>14:15 |         |          |
| COC Number                                                            |       | C#644610-01-01        |         |          | C#644610-01-01      |         |          |
| COCINALIBEI                                                           | UNITS | 2021725-04<br>Lab-Dup | RDL     | QC Batch | 2021725-05          | RDL     | QC Batch |
| Misc. Inorganics                                                      |       |                       | !       |          |                     |         | -        |
| Fluoride (F)                                                          | mg/L  |                       |         |          | 0.055               | 0.020   | A347643  |
| Calculated Parameters                                                 |       |                       |         | <u>I</u> |                     | I.      | L.       |
| Dissolved Chromium III                                                | mg/L  |                       |         |          | <0.00099            | 0.00099 | A340344  |
| Filter and HNO3 Preservation                                          | N/A   |                       |         |          | FIELD               |         | ONSITE   |
| Dissolved Hardness (CaCO3)                                            | mg/L  |                       |         |          | 305                 | 0.50    | A340085  |
| Total Hardness (CaCO3)                                                | mg/L  |                       |         |          | 310                 | 0.50    | A339992  |
| Nitrate (N)                                                           | mg/L  |                       |         |          | 0.0940              | 0.0020  | A340789  |
| Total Total Kjeldahl Nitrogen (Calc)                                  | mg/L  |                       |         |          | 0.183               | 0.020   | A340111  |
| Misc. Inorganics                                                      |       |                       | •       |          |                     |         |          |
| Conductivity                                                          | uS/cm |                       |         |          | 610                 | 2.0     | A342007  |
| Strong Acid Dissoc. Cyanide (CN)                                      | mg/L  | <0.00050              | 0.00050 | A342803  | <0.00050            | 0.00050 | A342803  |
| Weak Acid Dissoc. Cyanide (CN)                                        | mg/L  | <0.00050              | 0.00050 | A342809  | <0.00050            | 0.00050 | A342809  |
| Dissolved Organic Carbon (C)                                          | mg/L  |                       |         |          | <0.20               | 0.20    | A343810  |
| рН                                                                    | рН    |                       |         |          | 7.47                | N/A     | A342005  |
| Total Suspended Solids                                                | mg/L  |                       |         |          | 11                  | 1.0     | A343244  |
| Anions                                                                |       |                       | •       |          |                     |         |          |
| Alkalinity (PP as CaCO3)                                              | mg/L  |                       |         |          | <1.0                | 1.0     | A342006  |
| Alkalinity (Total as CaCO3)                                           | mg/L  |                       |         |          | 110                 | 1.0     | A342006  |
| Bicarbonate (HCO3)                                                    | mg/L  |                       |         |          | 140                 | 1.0     | A342006  |
| Carbonate (CO3)                                                       | mg/L  |                       |         |          | <1.0                | 1.0     | A342006  |
| Hydroxide (OH)                                                        | mg/L  |                       |         |          | <1.0                | 1.0     | A342006  |
| Dissolved Chloride (Cl)                                               | mg/L  |                       |         |          | <0.50               | 0.50    | A346519  |
| Dissolved Sulphate (SO4)                                              | mg/L  |                       |         |          | 260                 | 5.0     | A346519  |
| Metals                                                                |       |                       |         | -        |                     | •       |          |
| Dissolved Hex. Chromium (Cr 6+)                                       | mg/L  |                       |         |          | <0.00099            | 0.00099 | A343019  |
| Nutrients                                                             |       |                       |         |          |                     | •       |          |
| Dissolved Phosphorus (P)                                              | mg/L  |                       |         |          | <0.0010             | 0.0010  | A344365  |
| Total Phosphorus (P)                                                  | mg/L  |                       |         |          | 0.0047              | 0.0010  | A344325  |
| Total Ammonia (N)                                                     | mg/L  |                       |         |          | 0.0051              | 0.0050  | A343769  |
| Nitrate plus Nitrite (N)                                              | mg/L  |                       |         |          | 0.0940              | 0.0020  | A341762  |
| Nitrite (N)                                                           | mg/L  |                       |         |          | <0.0020             | 0.0020  | A341763  |
| RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Dupli | icate |                       |         |          |                     |         |          |
| Lab-Dup = Laboratory Initiated Dupli                                  | icate |                       |         |          |                     |         |          |

N/A = Not Applicable



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID             |       | AFC785                |     |          | AFC786              |       |          |
|------------------------|-------|-----------------------|-----|----------|---------------------|-------|----------|
| Sampling Date          |       | 2021/08/31<br>13:45   |     |          | 2021/08/31<br>14:15 |       |          |
| COC Number             |       | C#644610-01-01        |     |          | C#644610-01-01      |       |          |
|                        | UNITS | 2021725-04<br>Lab-Dup | RDL | QC Batch | 2021725-05          | RDL   | QC Batch |
| Total Nitrogen (N)     | mg/L  |                       |     |          | 0.277               | 0.020 | A343841  |
| Physical Properties    |       |                       |     |          |                     |       | -        |
| Total Dissolved Solids | mg/L  |                       |     |          | 423 (1)             | 1.0   | A342432  |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

<sup>(1)</sup> Detection limits raised due to insufficient sample volume.



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFC787              |          |          | AFC787                |     |          |
|--------------------------------------|-------|---------------------|----------|----------|-----------------------|-----|----------|
| Sampling Date                        |       | 2021/08/31<br>14:30 |          |          | 2021/08/31<br>14:30   |     |          |
| COC Number                           |       | C#644610-01-01      |          |          | C#644610-01-01        |     |          |
|                                      | UNITS | 2021725-06          | RDL      | QC Batch | 2021725-06<br>Lab-Dup | RDL | QC Batch |
| Misc. Inorganics                     | •     |                     | <u> </u> |          |                       |     | <u> </u> |
| Fluoride (F)                         | mg/L  | 0.026               | 0.020    | A347643  |                       |     |          |
| Calculated Parameters                | l     |                     |          |          |                       |     |          |
| Dissolved Chromium III               | mg/L  | <0.00099            | 0.00099  | A340344  |                       |     |          |
| Filter and HNO3 Preservation         | N/A   | FIELD               |          | ONSITE   |                       |     |          |
| Dissolved Hardness (CaCO3)           | mg/L  | 257                 | 0.50     | A340085  |                       |     |          |
| Total Hardness (CaCO3)               | mg/L  | 250                 | 0.50     | A339992  |                       |     |          |
| Nitrate (N)                          | mg/L  | 0.205               | 0.0020   | A340789  |                       |     |          |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.074               | 0.020    | A340111  |                       |     |          |
| Misc. Inorganics                     |       |                     | •        |          |                       |     | •        |
| Conductivity                         | uS/cm | 520                 | 2.0      | A342007  |                       |     |          |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050            | 0.00050  | A342803  |                       |     |          |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050            | 0.00050  | A342809  |                       |     |          |
| Dissolved Organic Carbon (C)         | mg/L  | <0.20               | 0.20     | A343810  |                       |     |          |
| рН                                   | рН    | 7.52                | N/A      | A342005  |                       |     |          |
| Total Suspended Solids               | mg/L  | <1.0                | 1.0      | A343244  |                       |     |          |
| Anions                               |       |                     | •        |          |                       |     | •        |
| Alkalinity (PP as CaCO3)             | mg/L  | <1.0                | 1.0      | A342006  |                       |     |          |
| Alkalinity (Total as CaCO3)          | mg/L  | 120                 | 1.0      | A342006  |                       |     |          |
| Bicarbonate (HCO3)                   | mg/L  | 150                 | 1.0      | A342006  |                       |     |          |
| Carbonate (CO3)                      | mg/L  | <1.0                | 1.0      | A342006  |                       |     |          |
| Hydroxide (OH)                       | mg/L  | <1.0                | 1.0      | A342006  |                       |     |          |
| Dissolved Chloride (CI)              | mg/L  | <0.50               | 0.50     | A346519  |                       |     |          |
| Dissolved Sulphate (SO4)             | mg/L  | 170                 | 0.50     | A346519  |                       |     |          |
| Metals                               | •     |                     |          |          |                       |     |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099            | 0.00099  | A343723  |                       |     |          |
| Nutrients                            | •     |                     | •        |          |                       |     | •        |
| Dissolved Phosphorus (P)             | mg/L  | 0.0024              | 0.0010   | A344365  |                       |     |          |
| Total Phosphorus (P)                 | mg/L  | 0.0036              | 0.0010   | A344325  |                       |     |          |
| Total Ammonia (N)                    | mg/L  | <0.0050             | 0.0050   | A343769  |                       |     |          |
| Nitrate plus Nitrite (N)             | mg/L  | 0.205               | 0.0020   | A341762  |                       |     |          |
|                                      | mg/L  | <0.0020             | 0.0020   | A341763  |                       |     | 1        |

N/A = Not Applicable



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                                 |       | AFC787              |       |          | AFC787                |       |          |
|--------------------------------------------|-------|---------------------|-------|----------|-----------------------|-------|----------|
| Sampling Date                              |       | 2021/08/31<br>14:30 |       |          | 2021/08/31<br>14:30   |       |          |
| COC Number                                 |       | C#644610-01-01      |       |          | C#644610-01-01        |       |          |
|                                            | UNITS | 2021725-06          | RDL   | QC Batch | 2021725-06<br>Lab-Dup | RDL   | QC Batch |
| Total Nitrogen (N)                         | mg/L  | 0.279               | 0.020 | A343841  | 0.277                 | 0.020 | A343841  |
|                                            |       |                     |       |          |                       |       |          |
| Physical Properties                        |       |                     |       | l .      |                       |       |          |
| Physical Properties Total Dissolved Solids | mg/L  | 316                 | 1.0   | A342432  |                       |       |          |

RDL = Reportable Detection Limit



## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                                               |       | AFC788              |          | AFC789              |          | AFC790         |         |          |
|----------------------------------------------------------|-------|---------------------|----------|---------------------|----------|----------------|---------|----------|
| Sampling Date                                            |       | 2021/08/31<br>15:30 |          | 2021/08/31<br>16:45 |          | 2021/08/31     |         |          |
| COC Number                                               |       | C#644610-01-01      |          | C#644610-01-01      |          | C#644610-01-01 |         |          |
|                                                          | UNITS | 2021725-07          | QC Batch | 2021725-08          | QC Batch | 2021725-09     | RDL     | QC Batch |
| Misc. Inorganics                                         |       |                     |          |                     |          |                |         |          |
| Fluoride (F)                                             | mg/L  | 0.023               | A347643  | 0.029               | A347643  | 0.028          | 0.020   | A347643  |
| Calculated Parameters                                    |       |                     | I.       | 1                   |          |                |         |          |
| Dissolved Chromium III                                   | mg/L  | <0.00099            | A340344  | <0.00099            | A340344  | <0.00099       | 0.00099 | A340344  |
| Filter and HNO3 Preservation                             | N/A   | FIELD               | ONSITE   | FIELD               | ONSITE   | FIELD          |         | ONSITE   |
| Dissolved Hardness (CaCO3)                               | mg/L  | 247                 | A340085  | 290                 | A340085  | 281            | 0.50    | A340085  |
| Total Hardness (CaCO3)                                   | mg/L  | 250                 | A339992  | 280                 | A339992  | 280            | 0.50    | A339992  |
| Nitrate (N)                                              | mg/L  | 0.152               | A340789  | 0.0503              | A340789  | 0.0497         | 0.0020  | A340789  |
| Total Total Kjeldahl Nitrogen (Calc)                     | mg/L  | 0.088               | A340111  | 0.101               | A340111  | 0.068          | 0.020   | A340111  |
| Misc. Inorganics                                         |       |                     |          |                     | •        |                |         |          |
| Conductivity                                             | uS/cm | 510                 | A342007  | 580                 | A342007  | 580            | 2.0     | A342007  |
| Strong Acid Dissoc. Cyanide (CN)                         | mg/L  | <0.00050            | A342803  | <0.00050            | A342803  | <0.00050       | 0.00050 | A342803  |
| Weak Acid Dissoc. Cyanide (CN)                           | mg/L  | <0.00050            | A342809  | <0.00050            | A342809  | <0.00050       | 0.00050 | A342809  |
| Dissolved Organic Carbon (C)                             | mg/L  | <0.20               | A343810  | <0.20               | A343810  | 0.33           | 0.20    | A343810  |
| рН                                                       | рН    | 7.63                | A342005  | 7.57                | A342005  | 7.59           | N/A     | A342005  |
| Total Suspended Solids                                   | mg/L  | <1.0                | A343312  | 2.4                 | A343244  | <1.0           | 1.0     | A343312  |
| Anions                                                   |       |                     | •        |                     |          |                |         |          |
| Alkalinity (PP as CaCO3)                                 | mg/L  | <1.0                | A342006  | <1.0                | A342006  | <1.0           | 1.0     | A342006  |
| Alkalinity (Total as CaCO3)                              | mg/L  | 120                 | A342006  | 120                 | A342006  | 130            | 1.0     | A342006  |
| Bicarbonate (HCO3)                                       | mg/L  | 150                 | A342006  | 150                 | A342006  | 150            | 1.0     | A342006  |
| Carbonate (CO3)                                          | mg/L  | <1.0                | A342006  | <1.0                | A342006  | <1.0           | 1.0     | A342006  |
| Hydroxide (OH)                                           | mg/L  | <1.0                | A342006  | <1.0                | A342006  | <1.0           | 1.0     | A342006  |
| Dissolved Chloride (CI)                                  | mg/L  | <0.50               | A346519  | <0.50               | A346519  | <0.50          | 0.50    | A346519  |
| Dissolved Sulphate (SO4)                                 | mg/L  | 150                 | A346519  | 190                 | A346519  | 200            | 0.50    | A346519  |
| Metals                                                   |       |                     |          |                     |          |                |         |          |
| Dissolved Hex. Chromium (Cr 6+)                          | mg/L  | <0.00099            | A343019  | <0.00099            | A343019  | <0.00099       | 0.00099 | A343723  |
| Nutrients                                                |       |                     |          |                     |          |                |         |          |
| Dissolved Phosphorus (P)                                 | mg/L  | 0.0027              | A344365  | 0.0018              | A344365  | 0.0013         | 0.0010  | A344365  |
| Total Phosphorus (P)                                     | mg/L  | 0.0023              | A344325  | 0.0029              | A344338  | 0.0030         | 0.0010  | A344325  |
| Total Ammonia (N)                                        | mg/L  | <0.0050             | A343769  | <0.0050             | A343769  | <0.0050        | 0.0050  | A343769  |
| Nitrate plus Nitrite (N)                                 | mg/L  | 0.152               | A341762  | 0.0503              | A341762  | 0.0497         | 0.0020  | A341762  |
| Nitrite (N)                                              | mg/L  | <0.0020             | A341763  | <0.0020             | A341763  | <0.0020        | 0.0020  | A341763  |
| RDL = Reportable Detection Limit<br>N/A = Not Applicable |       |                     |          |                     |          |                |         |          |



Government of Yukon – Dept of ENV Report Date: 2021/09/10 Client Project #: 2021-Ketza Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                       |       | AFC788              |          | AFC789              |          | AFC790         |       |          |
|----------------------------------|-------|---------------------|----------|---------------------|----------|----------------|-------|----------|
| Sampling Date                    |       | 2021/08/31<br>15:30 |          | 2021/08/31<br>16:45 |          | 2021/08/31     |       |          |
| COC Number                       |       | C#644610-01-01      |          | C#644610-01-01      |          | C#644610-01-01 |       |          |
|                                  | UNITS | 2021725-07          | QC Batch | 2021725-08          | QC Batch | 2021725-09     | RDL   | QC Batch |
| Total Nitrogen (N)               | mg/L  | 0.240               | A343841  | 0.151               | A343841  | 0.118          | 0.020 | A343841  |
| Physical Properties              |       |                     | •        |                     |          |                |       |          |
| Total Dissolved Solids           | mg/L  | 340                 | A342432  | 387 (1)             | A342432  | 397            | 1.0   | A342432  |
| RDL = Reportable Detection Limit |       |                     |          |                     |          |                |       |          |

<sup>(1)</sup> Detection limits raised due to insufficient sample volume.



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                                    |       | AFC790                |      |          | AFC791              |         |         |
|-----------------------------------------------|-------|-----------------------|------|----------|---------------------|---------|---------|
| Sampling Date                                 |       | 2021/08/31            |      |          | 2021/08/31<br>18:00 |         |         |
| COC Number                                    |       | C#644610-01-01        |      |          | C#644610-01-01      |         |         |
|                                               | UNITS | 2021725-09<br>Lab-Dup | RDL  | QC Batch | 2021725-10          | RDL     | QC Batc |
| Misc. Inorganics                              |       |                       |      |          |                     |         |         |
| Fluoride (F)                                  | mg/L  |                       |      |          | 0.067               | 0.020   | A34764  |
| Calculated Parameters                         |       |                       |      | <u>I</u> |                     | I.      |         |
| Dissolved Chromium III                        | mg/L  |                       |      |          | <0.00099            | 0.00099 | A34034  |
| Filter and HNO3 Preservation                  | N/A   |                       |      |          | FIELD               |         | ONSITE  |
| Dissolved Hardness (CaCO3)                    | mg/L  |                       |      |          | 408                 | 0.50    | A34008  |
| Total Hardness (CaCO3)                        | mg/L  |                       |      |          | 400                 | 0.50    | A33999  |
| Nitrate (N)                                   | mg/L  |                       |      |          | 0.0588              | 0.0020  | A34078  |
| Total Total Kjeldahl Nitrogen (Calc)          | mg/L  |                       |      |          | 0.091               | 0.020   | A34011  |
| Misc. Inorganics                              |       |                       |      |          |                     |         |         |
| Conductivity                                  | uS/cm |                       |      |          | 800                 | 2.0     | A34200  |
| Strong Acid Dissoc. Cyanide (CN)              | mg/L  |                       |      |          | <0.00050            | 0.00050 | A34280  |
| Weak Acid Dissoc. Cyanide (CN)                | mg/L  |                       |      |          | <0.00050            | 0.00050 | A34280  |
| Dissolved Organic Carbon (C)                  | mg/L  | 0.26                  | 0.20 | A343810  | <0.20               | 0.20    | A34381  |
| рН                                            | рН    |                       |      |          | 7.30                | N/A     | A34200  |
| Total Suspended Solids                        | mg/L  | <1.0                  | 1.0  | A343312  | 2.0                 | 1.0     | A34331  |
| Anions                                        |       |                       | •    |          |                     | •       |         |
| Alkalinity (PP as CaCO3)                      | mg/L  |                       |      |          | <1.0                | 1.0     | A34200  |
| Alkalinity (Total as CaCO3)                   | mg/L  |                       |      |          | 91                  | 1.0     | A34200  |
| Bicarbonate (HCO3)                            | mg/L  |                       |      |          | 110                 | 1.0     | A34200  |
| Carbonate (CO3)                               | mg/L  |                       |      |          | <1.0                | 1.0     | A34200  |
| Hydroxide (OH)                                | mg/L  |                       |      |          | <1.0                | 1.0     | A34200  |
| Dissolved Chloride (Cl)                       | mg/L  |                       |      |          | <0.50               | 0.50    | A34651  |
| Dissolved Sulphate (SO4)                      | mg/L  |                       |      |          | 350                 | 5.0     | A34651  |
| Metals                                        |       |                       |      |          |                     |         |         |
| Dissolved Hex. Chromium (Cr 6+)               | mg/L  |                       |      |          | <0.00099            | 0.00099 | A34372  |
| Nutrients                                     |       |                       | •    |          |                     | •       |         |
| Dissolved Phosphorus (P)                      | mg/L  |                       |      |          | 0.0017              | 0.0010  | A34436  |
| Total Phosphorus (P)                          | mg/L  |                       |      |          | 0.0021              | 0.0010  | A34433  |
|                                               | mg/L  |                       |      |          | <0.0050             | 0.0050  | A34376  |
| Total Ammonia (N)                             |       |                       |      |          | 0.0588              | 0.0020  | A34176  |
| Total Ammonia (N)<br>Nitrate plus Nitrite (N) | mg/L  |                       |      |          | 0.0566              | 0.0020  | A34170  |

N/A = Not Applicable



Sampler Initials: SL

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID             |       | AFC790                |     |          | AFC791              |       |          |
|------------------------|-------|-----------------------|-----|----------|---------------------|-------|----------|
| Sampling Date          |       | 2021/08/31            |     |          | 2021/08/31<br>18:00 |       |          |
| COC Number             |       | C#644610-01-01        |     |          | C#644610-01-01      |       |          |
|                        | UNITS | 2021725-09<br>Lab-Dup | RDL | QC Batch | 2021725-10          | RDL   | QC Batch |
| Total Nitrogen (N)     | mg/L  |                       |     |          | 0.150               | 0.020 | A343841  |
| Physical Properties    |       |                       | •   |          |                     |       |          |
| Total Dissolved Solids | mg/L  |                       |     |          | 593                 | 1.0   | A342432  |
|                        | U,    |                       |     |          |                     |       |          |

|               | UNITS | 2021725-10<br>Lab-Dup | RDL | QC Batch |
|---------------|-------|-----------------------|-----|----------|
| COC Number    |       | C#644610-01-01        |     |          |
| Sampling Date |       | 2021/08/31<br>18:00   |     |          |
| BV Labs ID    |       | AFC791                |     |          |

| Metals                               |      |          |         |         |
|--------------------------------------|------|----------|---------|---------|
| Dissolved Hex. Chromium (Cr 6+)      | mg/L | <0.00099 | 0.00099 | A343723 |
| RDL = Reportable Detection Limit     |      |          |         |         |
| Lab-Dup = Laboratory Initiated Dupli | cate |          |         |         |



## **MERCURY BY COLD VAPOR (WATER)**

| BV Labs ID                   |       | AFC782              |        |          | AFC782               |        |          | AFC783              |        |          |
|------------------------------|-------|---------------------|--------|----------|----------------------|--------|----------|---------------------|--------|----------|
| Sampling Date                |       | 2021/08/31<br>09:05 |        |          | 2021/08/31<br>09:05  |        |          | 2021/08/31<br>09:50 |        |          |
| COC Number                   |       | C#644610-01-01      |        |          | C#644610-01-01       |        |          | C#644610-01-01      |        |          |
|                              | UNITS | 2021725-1           | RDL    | QC Batch | 2021725-1<br>Lab-Dup | RDL    | QC Batch | 2021725-2           | RDL    | QC Batch |
| Elements                     |       |                     |        |          |                      |        |          |                     |        |          |
| Dissolved Mercury (Hg)       | ug/L  | <0.0019             | 0.0019 | A343127  |                      |        |          | <0.0019             | 0.0019 | A343127  |
| Total Mercury (Hg)           | ug/L  | <0.0019             | 0.0019 | A343419  | <0.0019              | 0.0019 | A343419  | <0.0019             | 0.0019 | A343419  |
| RDL = Reportable Detection I | imit  |                     |        |          |                      |        |          |                     |        |          |

Lab-Dup = Laboratory Initiated Duplicate

| BV Labs ID                      |              | AFC784              | AFC785              |                    | AFC786              |                  |                    |
|---------------------------------|--------------|---------------------|---------------------|--------------------|---------------------|------------------|--------------------|
| Sampling Date                   |              | 2021/08/31<br>11:30 | 2021/08/31<br>13:45 |                    | 2021/08/31<br>14:15 |                  |                    |
| COC Number                      |              | C#644610-01-01      | C#644610-01-01      |                    | C#644610-01-01      |                  |                    |
|                                 | UNITS        | 2021725-03          | 2021725-04          | QC Batch           | 2021725-05          | RDL              | QC Batch           |
|                                 |              |                     |                     |                    |                     |                  |                    |
| Elements                        |              |                     |                     | •                  |                     |                  |                    |
| Elements Dissolved Mercury (Hg) | ug/L         | <0.0019             | <0.0019             | A343127            | <0.0019             | 0.0019           | A343127            |
|                                 | ug/L<br>ug/L | <0.0019<br><0.0019  | <0.0019<br><0.0019  | A343127<br>A343419 | <0.0019<br><0.0019  | 0.0019<br>0.0019 | A343127<br>A346928 |

| BV Labs ID                                                                |       | AFC786                |        |          | AFC787              | AFC788              | AFC789              |        |          |  |
|---------------------------------------------------------------------------|-------|-----------------------|--------|----------|---------------------|---------------------|---------------------|--------|----------|--|
| Sampling Date                                                             |       | 2021/08/31<br>14:15   |        |          | 2021/08/31<br>14:30 | 2021/08/31<br>15:30 | 2021/08/31<br>16:45 |        |          |  |
| COC Number                                                                |       | C#644610-01-01        |        |          | C#644610-01-01      | C#644610-01-01      | C#644610-01-01      |        |          |  |
|                                                                           | UNITS | 2021725-05<br>Lab-Dup | RDL    | QC Batch | 2021725-06          | 2021725-07          | 2021725-08          | RDL    | QC Batch |  |
| Elements                                                                  |       |                       |        |          |                     |                     |                     |        |          |  |
| Dissolved Mercury (Hg)                                                    | ug/L  |                       |        |          | <0.0019             | <0.0019             | <0.0019             | 0.0019 | A343127  |  |
| Total Mercury (Hg)                                                        | ug/L  | <0.0019               | 0.0019 | A346928  | <0.0019             | <0.0019             | <0.0019             | 0.0019 | A346928  |  |
| RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate |       |                       |        |          |                     |                     |                     |        |          |  |

| BV Labs ID                      |       | AFC790         |        |          | AFC790                |        |          | AFC791              |        |          |
|---------------------------------|-------|----------------|--------|----------|-----------------------|--------|----------|---------------------|--------|----------|
| Sampling Date                   |       | 2021/08/31     |        |          | 2021/08/31            |        |          | 2021/08/31<br>18:00 |        |          |
| COC Number                      |       | C#644610-01-01 |        |          | C#644610-01-01        |        |          | C#644610-01-01      |        |          |
|                                 | UNITS | 2021725-09     | RDL    | QC Batch | 2021725-09<br>Lab-Dup | RDL    | QC Batch | 2021725-10          | RDL    | QC Batch |
|                                 |       |                |        |          | ւսս-ոսի               |        |          |                     |        |          |
| Elements                        |       |                |        |          | сар-рир               |        |          |                     |        |          |
| Elements Dissolved Mercury (Hg) | ug/L  | <0.0019        | 0.0019 | A346922  | <0.0019               | 0.0019 | A346922  | <0.0019             | 0.0019 | A346922  |

RDL = Reportable Detection Limit



BV Labs Job #: C165062 Government of Yukon – Dept of ENV Report Date: 2021/09/10 Client Project #: 2021-Ketza Sampler Initials: SL

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                |       | AFC782         |        |          | AFC782               |     |          | AFC783         |        |          |
|---------------------------|-------|----------------|--------|----------|----------------------|-----|----------|----------------|--------|----------|
| Sampling Date             |       | 2021/08/31     |        |          | 2021/08/31           |     |          | 2021/08/31     |        |          |
| Jamping Date              |       | 09:05          |        |          | 09:05                |     |          | 09:50          |        |          |
| COC Number                |       | C#644610-01-01 |        |          | C#644610-01-01       |     |          | C#644610-01-01 |        |          |
|                           | UNITS | 2021725-1      | RDL    | QC Batch | 2021725-1<br>Lab-Dup | RDL | QC Batch | 2021725-2      | RDL    | QC Batch |
| Dissolved Metals by ICPMS |       |                |        |          |                      |     |          |                |        |          |
| Dissolved Aluminum (Al)   | ug/L  | 54.6           | 0.50   | A341524  |                      |     |          | 3.04           | 0.50   | A341524  |
| Dissolved Antimony (Sb)   | ug/L  | 0.187          | 0.020  | A341524  |                      |     |          | 0.214          | 0.020  | A341524  |
| Dissolved Arsenic (As)    | ug/L  | 7.77           | 0.020  | A341524  |                      |     |          | 14.1           | 0.020  | A341524  |
| Dissolved Barium (Ba)     | ug/L  | 10.7           | 0.020  | A341524  |                      |     |          | 11.0           | 0.020  | A341524  |
| Dissolved Beryllium (Be)  | ug/L  | <0.010         | 0.010  | A341524  |                      |     |          | <0.010         | 0.010  | A341524  |
| Dissolved Bismuth (Bi)    | ug/L  | <0.0050        | 0.0050 | A341524  |                      |     |          | <0.0050        | 0.0050 | A341524  |
| Dissolved Boron (B)       | ug/L  | <10            | 10     | A341524  |                      |     |          | <10            | 10     | A341524  |
| Dissolved Cadmium (Cd)    | ug/L  | 0.197          | 0.0050 | A341524  |                      |     |          | 0.0327         | 0.0050 | A341524  |
| Dissolved Chromium (Cr)   | ug/L  | <0.10          | 0.10   | A341524  |                      |     |          | <0.10          | 0.10   | A341524  |
| Dissolved Cobalt (Co)     | ug/L  | 14.5           | 0.0050 | A341524  |                      |     |          | 0.0306         | 0.0050 | A341524  |
| Dissolved Copper (Cu)     | ug/L  | 0.303          | 0.050  | A341524  |                      |     |          | 0.118          | 0.050  | A341524  |
| Dissolved Iron (Fe)       | ug/L  | 155            | 1.0    | A341524  |                      |     |          | <1.0           | 1.0    | A341524  |
| Dissolved Lead (Pb)       | ug/L  | 0.0201         | 0.0050 | A341524  |                      |     |          | <0.0050        | 0.0050 | A341524  |
| Dissolved Lithium (Li)    | ug/L  | 2.10           | 0.50   | A341524  |                      |     |          | 1.20           | 0.50   | A341524  |
| Dissolved Manganese (Mn)  | ug/L  | 125            | 0.050  | A341524  |                      |     |          | 0.242          | 0.050  | A341524  |
| Dissolved Molybdenum (Mo) | ug/L  | 0.202          | 0.050  | A341524  |                      |     |          | 0.224          | 0.050  | A341524  |
| Dissolved Nickel (Ni)     | ug/L  | 8.94           | 0.020  | A341524  |                      |     |          | 0.611          | 0.020  | A341524  |
| Dissolved Selenium (Se)   | ug/L  | 0.666          | 0.040  | A341524  |                      |     |          | 0.709          | 0.040  | A341524  |
| Dissolved Silicon (Si)    | ug/L  | 2610           | 50     | A341524  |                      |     |          | 2080           | 50     | A341524  |
| Dissolved Silver (Ag)     | ug/L  | <0.0050        | 0.0050 | A341524  |                      |     |          | <0.0050        | 0.0050 | A341524  |
| Dissolved Strontium (Sr)  | ug/L  | 203            | 0.050  | A341524  |                      |     |          | 185            | 0.050  | A341524  |
| Dissolved Tellurium (Te)  | ug/L  | <0.020         | 0.020  | A341524  |                      |     |          | <0.020         | 0.020  | A341524  |
| Dissolved Thallium (TI)   | ug/L  | <0.0020        | 0.0020 | A341524  |                      |     |          | <0.0020        | 0.0020 | A341524  |
| Dissolved Thorium (Th)    | ug/L  | <0.0050        | 0.0050 | A341524  |                      |     |          | <0.0050        | 0.0050 | A341524  |
| Dissolved Tin (Sn)        | ug/L  | <0.20          | 0.20   | A341524  |                      |     |          | <0.20          | 0.20   | A341524  |
| Dissolved Titanium (Ti)   | ug/L  | <0.50          | 0.50   | A341524  |                      |     |          | <0.50          | 0.50   | A341524  |
| Dissolved Tungsten (W)    | ug/L  | 0.039          | 0.010  | A341524  |                      |     |          | 0.055          | 0.010  | A341524  |
| Dissolved Uranium (U)     | ug/L  | 1.76           | 0.0020 | A341524  |                      |     |          | 1.99           | 0.0020 | A341524  |
| Dissolved Vanadium (V)    | ug/L  | <0.20          | 0.20   | A341524  |                      |     |          | <0.20          | 0.20   | A341524  |
| Dissolved Zinc (Zn)       | ug/L  | 36.6           | 0.10   | A341524  |                      |     |          | 2.08           | 0.10   | A341524  |
| Dissolved Zirconium (Zr)  | ug/L  | <0.10          | 0.10   | A341524  |                      |     |          | <0.10          | 0.10   | A341524  |

RDL = Reportable Detection Limit



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID               |       | AFC782         |        |          | AFC782               |        |          | AFC783         |        |          |
|--------------------------|-------|----------------|--------|----------|----------------------|--------|----------|----------------|--------|----------|
| Sampling Date            |       | 2021/08/31     |        |          | 2021/08/31           |        |          | 2021/08/31     |        |          |
| Jamping Date             |       | 09:05          |        |          | 09:05                |        |          | 09:50          |        |          |
| COC Number               |       | C#644610-01-01 |        |          | C#644610-01-01       |        |          | C#644610-01-01 |        |          |
|                          | UNITS | 2021725-1      | RDL    | QC Batch | 2021725-1<br>Lab-Dup | RDL    | QC Batch | 2021725-2      | RDL    | QC Batch |
| Dissolved Calcium (Ca)   | mg/L  | 79.9           | 0.050  | A340086  |                      |        |          | 71.6           | 0.050  | A340086  |
| Dissolved Magnesium (Mg) | mg/L  | 23.2           | 0.050  | A340086  |                      |        |          | 21.5           | 0.050  | A340086  |
| Dissolved Potassium (K)  | mg/L  | 0.280          | 0.050  | A340086  |                      |        |          | 0.222          | 0.050  | A340086  |
| Dissolved Sodium (Na)    | mg/L  | 0.830          | 0.050  | A340086  |                      |        |          | 0.673          | 0.050  | A340086  |
| Dissolved Sulphur (S)    | mg/L  | 53.0           | 3.0    | A340086  |                      |        |          | 38.7           | 3.0    | A340086  |
| Total Metals by ICPMS    | •     |                | •      | •        |                      | •      | •        |                | •      | •        |
| Total Aluminum (Al)      | ug/L  | 440            | 0.50   | A341316  | 439                  | 0.50   | A341316  | 4.60           | 0.50   | A341316  |
| Total Antimony (Sb)      | ug/L  | 0.196          | 0.020  | A341316  | 0.199                | 0.020  | A341316  | 0.216          | 0.020  | A341316  |
| Total Arsenic (As)       | ug/L  | 19.2           | 0.020  | A341316  | 19.5                 | 0.020  | A341316  | 14.5           | 0.020  | A341316  |
| Total Barium (Ba)        | ug/L  | 11.5           | 0.020  | A341316  | 11.3                 | 0.020  | A341316  | 11.3           | 0.020  | A341316  |
| Total Beryllium (Be)     | ug/L  | 0.027          | 0.010  | A341316  | 0.032                | 0.010  | A341316  | <0.010         | 0.010  | A341316  |
| Total Bismuth (Bi)       | ug/L  | <0.0050        | 0.0050 | A341316  | <0.0050              | 0.0050 | A341316  | <0.0050        | 0.0050 | A341316  |
| Total Boron (B)          | ug/L  | <10            | 10     | A341316  | <10                  | 10     | A341316  | <10            | 10     | A341316  |
| Total Cadmium (Cd)       | ug/L  | 0.263          | 0.0050 | A341316  | 0.271                | 0.0050 | A341316  | 0.0361         | 0.0050 | A341316  |
| Total Chromium (Cr)      | ug/L  | <0.10          | 0.10   | A341316  | <0.10                | 0.10   | A341316  | <0.10          | 0.10   | A341316  |
| Total Cobalt (Co)        | ug/L  | 15.1           | 0.0050 | A341316  | 15.3                 | 0.0050 | A341316  | 0.0317         | 0.0050 | A341316  |
| Total Copper (Cu)        | ug/L  | 1.31           | 0.050  | A341316  | 1.33                 | 0.050  | A341316  | 0.152          | 0.050  | A341316  |
| Total Iron (Fe)          | ug/L  | 1090           | 1.0    | A341316  | 1060                 | 1.0    | A341316  | 3.9            | 1.0    | A341316  |
| Total Lead (Pb)          | ug/L  | 0.423          | 0.0050 | A341316  | 0.422                | 0.0050 | A341316  | 0.0147         | 0.0050 | A341316  |
| Total Lithium (Li)       | ug/L  | 2.04           | 0.50   | A341316  | 2.02                 | 0.50   | A341316  | 1.20           | 0.50   | A341316  |
| Total Manganese (Mn)     | ug/L  | 128            | 0.050  | A341316  | 128                  | 0.050  | A341316  | 0.573          | 0.050  | A341316  |
| Total Molybdenum (Mo)    | ug/L  | 0.211          | 0.050  | A341316  | 0.211                | 0.050  | A341316  | 0.251          | 0.050  | A341316  |
| Total Nickel (Ni)        | ug/L  | 9.27           | 0.020  | A341316  | 9.49                 | 0.020  | A341316  | 0.603          | 0.020  | A341316  |
| Total Selenium (Se)      | ug/L  | 0.636          | 0.040  | A341316  | 0.682                | 0.040  | A341316  | 0.701          | 0.040  | A341316  |
| Total Silicon (Si)       | ug/L  | 2780           | 50     | A341316  | 2760                 | 50     | A341316  | 2090           | 50     | A341316  |
| Total Silver (Ag)        | ug/L  | <0.0050        | 0.0050 | A341316  | <0.0050              | 0.0050 | A341316  | <0.0050        | 0.0050 | A341316  |
| Total Strontium (Sr)     | ug/L  | 206            | 0.050  | A341316  | 211                  | 0.050  | A341316  | 192            | 0.050  | A341316  |
| Total Tellurium (Te)     | ug/L  | <0.020         | 0.020  | A341316  | <0.020               | 0.020  | A341316  | <0.020         | 0.020  | A341316  |
| Total Thallium (TI)      | ug/L  | 0.0024         | 0.0020 | A341316  | 0.0027               | 0.0020 | A341316  | <0.0020        | 0.0020 | A341316  |
| Total Thorium (Th)       | ug/L  | 0.0126         | 0.0050 | A341316  | 0.0146               | 0.0050 | A341316  | <0.0050        | 0.0050 | A341316  |
| Total Tin (Sn)           | ug/L  | <0.20          | 0.20   | A341316  | <0.20                | 0.20   | A341316  | <0.20          | 0.20   | A341316  |
| Total Titanium (Ti)      | ug/L  | <0.50          | 0.50   | A341316  | <0.50                | 0.50   | A341316  | <0.50          | 0.50   | A341316  |

RDL = Reportable Detection Limit



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID           |       | AFC782              |        |          | AFC782               |        |          | AFC783              |        |          |
|----------------------|-------|---------------------|--------|----------|----------------------|--------|----------|---------------------|--------|----------|
| Sampling Date        |       | 2021/08/31<br>09:05 |        |          | 2021/08/31<br>09:05  |        |          | 2021/08/31<br>09:50 |        |          |
| COC Number           |       | C#644610-01-01      |        |          | C#644610-01-01       |        |          | C#644610-01-01      |        |          |
|                      | UNITS | 2021725-1           | RDL    | QC Batch | 2021725-1<br>Lab-Dup | RDL    | QC Batch | 2021725-2           | RDL    | QC Batch |
| Total Tungsten (W)   | ug/L  | 0.041               | 0.010  | A341316  | 0.043                | 0.010  | A341316  | 0.054               | 0.010  | A341316  |
| Total Uranium (U)    | ug/L  | 1.84                | 0.0020 | A341316  | 1.86                 | 0.0020 | A341316  | 2.02                | 0.0020 | A341316  |
| Total Vanadium (V)   | ug/L  | <0.20               | 0.20   | A341316  | <0.20                | 0.20   | A341316  | <0.20               | 0.20   | A341316  |
| Total Zinc (Zn)      | ug/L  | 69.0                | 0.10   | A341316  | 69.8                 | 0.10   | A341316  | 1.88                | 0.10   | A341316  |
| Total Zirconium (Zr) | ug/L  | <0.10               | 0.10   | A341316  | <0.10                | 0.10   | A341316  | <0.10               | 0.10   | A341316  |
| Total Calcium (Ca)   | mg/L  | 80.7                | 0.050  | A340088  |                      |        |          | 71.9                | 0.050  | A340088  |
| Total Magnesium (Mg) | mg/L  | 23.0                | 0.050  | A340088  |                      |        |          | 22.0                | 0.050  | A340088  |
| Total Potassium (K)  | mg/L  | 0.291               | 0.050  | A340088  |                      |        |          | 0.231               | 0.050  | A340088  |
| Total Sodium (Na)    | mg/L  | 0.834               | 0.050  | A340088  |                      |        |          | 0.679               | 0.050  | A340088  |
| Total Sulphur (S)    | mg/L  | 52.2                | 3.0    | A340088  |                      |        |          | 40.2                | 3.0    | A340088  |

RDL = Reportable Detection Limit



| 244 1 12                       |        | 15050                   | 1      |          | 150-0-         | i      | i        | 450500         | 1      |          |
|--------------------------------|--------|-------------------------|--------|----------|----------------|--------|----------|----------------|--------|----------|
| BV Labs ID                     |        | AFC784                  |        |          | AFC785         |        |          | AFC786         |        |          |
| Sampling Date                  |        | 2021/08/31              |        |          | 2021/08/31     |        |          | 2021/08/31     |        |          |
| COC Number                     |        | 11:30<br>C#644610-01-01 |        |          | 13:45          |        |          | 14:15          |        |          |
| COC Number                     | LINUTC |                         | DDI    | OC Datab | C#644610-01-01 | DDI    | OC Datab | C#644610-01-01 | DDI    | OC Datab |
|                                | UNITS  | 2021725-03              | RDL    | QC Batch | 2021725-04     | RDL    | QC Batch | 2021725-05     | RDL    | QC Batch |
| Dissolved Metals by ICPMS      |        | Ī                       | 1      | ı        |                | 1      | 1        | Ī              | 1      | ı        |
| Dissolved Aluminum (AI)        | ug/L   | 69.0                    | 0.50   | A341524  | 16.2           | 0.50   | A341524  | 27.7           | 0.50   | A341524  |
| Dissolved Antimony (Sb)        | ug/L   | 0.170                   | 0.020  | A341524  | 0.106          | 0.020  | A341524  | 0.128          | 0.020  | A341524  |
| Dissolved Arsenic (As)         | ug/L   | 4.81                    | 0.020  | A341524  | 14.5           | 0.020  | A341524  | 8.17           | 0.020  | A341524  |
| Dissolved Barium (Ba)          | ug/L   | 11.2                    | 0.020  | A341524  | 10.9           | 0.020  | A341524  | 10.2           | 0.020  | A341524  |
| Dissolved Beryllium (Be)       | ug/L   | <0.010                  | 0.010  | A341524  | <0.010         | 0.010  | A341524  | <0.010         | 0.010  | A341524  |
| Dissolved Bismuth (Bi)         | ug/L   | <0.0050                 | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  |
| Dissolved Boron (B)            | ug/L   | <10                     | 10     | A341524  | <10            | 10     | A341524  | <10            | 10     | A341524  |
| Dissolved Cadmium (Cd)         | ug/L   | 0.166                   | 0.0050 | A341524  | 0.0056         | 0.0050 | A341524  | 0.0072         | 0.0050 | A341524  |
| Dissolved Chromium (Cr)        | ug/L   | <0.10                   | 0.10   | A341524  | <0.10          | 0.10   | A341524  | <0.10          | 0.10   | A341524  |
| Dissolved Cobalt (Co)          | ug/L   | 15.1                    | 0.0050 | A341524  | 0.850          | 0.0050 | A341524  | 1.36           | 0.0050 | A341524  |
| Dissolved Copper (Cu)          | ug/L   | 0.722                   | 0.050  | A341524  | <0.050         | 0.050  | A341524  | 0.065          | 0.050  | A341524  |
| Dissolved Iron (Fe)            | ug/L   | 1780                    | 1.0    | A341524  | 719            | 1.0    | A341524  | 1300           | 1.0    | A341524  |
| Dissolved Lead (Pb)            | ug/L   | <0.0050                 | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  |
| Dissolved Lithium (Li)         | ug/L   | 2.56                    | 0.50   | A341524  | 1.25           | 0.50   | A341524  | 1.43           | 0.50   | A341524  |
| Dissolved Manganese (Mn)       | ug/L   | 81.3                    | 0.050  | A341524  | 34.9           | 0.050  | A341524  | 54.2           | 0.050  | A341524  |
| Dissolved Molybdenum (Mo)      | ug/L   | 0.101                   | 0.050  | A341524  | 0.138          | 0.050  | A341524  | 0.147          | 0.050  | A341524  |
| Dissolved Nickel (Ni)          | ug/L   | 9.80                    | 0.020  | A341524  | 1.52           | 0.020  | A341524  | 2.14           | 0.020  | A341524  |
| Dissolved Selenium (Se)        | ug/L   | 0.604                   | 0.040  | A341524  | 0.995          | 0.040  | A341524  | 0.952          | 0.040  | A341524  |
| Dissolved Silicon (Si)         | ug/L   | 3780                    | 50     | A341524  | 2370           | 50     | A341524  | 2260           | 50     | A341524  |
| Dissolved Silver (Ag)          | ug/L   | <0.0050                 | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  |
| Dissolved Strontium (Sr)       | ug/L   | 253                     | 0.050  | A341524  | 223            | 0.050  | A341524  | 225            | 0.050  | A341524  |
| Dissolved Tellurium (Te)       | ug/L   | <0.020                  | 0.020  | A341524  | <0.020         | 0.020  | A341524  | <0.020         | 0.020  | A341524  |
| Dissolved Thallium (TI)        | ug/L   | <0.0020                 | 0.0020 | A341524  | <0.0020        | 0.0020 | A341524  | <0.0020        | 0.0020 | A341524  |
| Dissolved Thorium (Th)         | ug/L   | <0.0050                 | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  | <0.0050        | 0.0050 | A341524  |
| Dissolved Tin (Sn)             | ug/L   | <0.20                   | 0.20   | A341524  | <0.20          | 0.20   | A341524  | <0.20          | 0.20   | A341524  |
| Dissolved Titanium (Ti)        | ug/L   | <0.50                   | 0.50   | A341524  | <0.50          | 0.50   | A341524  | <0.50          | 0.50   | A341524  |
| Dissolved Tungsten (W)         | ug/L   | <0.010                  | 0.010  | A341524  | <0.010         | 0.010  | A341524  | <0.010         | 0.010  | A341524  |
| Dissolved Uranium (U)          | ug/L   | 1.21                    | 0.0020 | A341524  | 1.94           | 0.0020 | A341524  | 1.79           | 0.0020 | A341524  |
| Dissolved Vanadium (V)         | ug/L   | <0.20                   | 0.20   | A341524  | <0.20          | 0.20   | A341524  | <0.20          | 0.20   | A341524  |
| Dissolved Zinc (Zn)            | ug/L   | 18.8                    | 0.10   | A341524  | 1.22           | 0.10   | A341524  | 1.83           | 0.10   | A341524  |
| Dissolved Zirconium (Zr)       | ug/L   | <0.10                   | 0.10   | A341524  | <0.10          | 0.10   | A341524  | <0.10          | 0.10   | A341524  |
| Dissolved Calcium (Ca)         | mg/L   | 103                     | 0.050  | A340086  | 85.0           | 0.050  | A340086  | 86.0           | 0.050  | A340086  |
| RDL = Reportable Detection Lir | nit    |                         |        |          |                | •      | •        |                |        |          |



| BV Labs ID                     |       | AFC784         |        |          | AFC785         |        |          | AFC786         |        |          |
|--------------------------------|-------|----------------|--------|----------|----------------|--------|----------|----------------|--------|----------|
| Sampling Date                  |       | 2021/08/31     |        |          | 2021/08/31     |        |          | 2021/08/31     |        |          |
| Sampling Date                  |       | 11:30          |        |          | 13:45          |        |          | 14:15          |        |          |
| COC Number                     |       | C#644610-01-01 |        |          | C#644610-01-01 |        |          | C#644610-01-01 |        |          |
|                                | UNITS | 2021725-03     | RDL    | QC Batch | 2021725-04     | RDL    | QC Batch | 2021725-05     | RDL    | QC Batch |
| Dissolved Magnesium (Mg)       | mg/L  | 23.9           | 0.050  | A340086  | 20.6           | 0.050  | A340086  | 21.8           | 0.050  | A340086  |
| Dissolved Potassium (K)        | mg/L  | 0.481          | 0.050  | A340086  | 0.275          | 0.050  | A340086  | 0.290          | 0.050  | A340086  |
| Dissolved Sodium (Na)          | mg/L  | 1.45           | 0.050  | A340086  | 0.855          | 0.050  | A340086  | 0.779          | 0.050  | A340086  |
| Dissolved Sulphur (S)          | mg/L  | 89.1           | 3.0    | A340086  | 62.0           | 3.0    | A340086  | 67.8           | 3.0    | A340086  |
| Total Metals by ICPMS          |       |                |        |          |                |        |          |                |        |          |
| Total Aluminum (AI)            | ug/L  | 422            | 0.50   | A341316  | 27.3           | 3.0    | A341287  | 49.3           | 0.50   | A341316  |
| Total Antimony (Sb)            | ug/L  | 0.156          | 0.020  | A341316  | 0.119          | 0.020  | A341287  | 0.131          | 0.020  | A341316  |
| Total Arsenic (As)             | ug/L  | 44.4           | 0.020  | A341316  | 28.4           | 0.020  | A341287  | 35.3           | 0.020  | A341316  |
| Total Barium (Ba)              | ug/L  | 11.6           | 0.020  | A341316  | 11.3           | 0.050  | A341287  | 10.9           | 0.020  | A341316  |
| Total Beryllium (Be)           | ug/L  | 0.024          | 0.010  | A341316  | <0.010         | 0.010  | A341287  | <0.010         | 0.010  | A341316  |
| Total Bismuth (Bi)             | ug/L  | <0.0050        | 0.0050 | A341316  | <0.010         | 0.010  | A341287  | <0.0050        | 0.0050 | A341316  |
| Total Boron (B)                | ug/L  | <10            | 10     | A341316  | <10            | 10     | A341287  | <10            | 10     | A341316  |
| Total Cadmium (Cd)             | ug/L  | 0.203          | 0.0050 | A341316  | 0.0062         | 0.0050 | A341287  | 0.0118         | 0.0050 | A341316  |
| Total Chromium (Cr)            | ug/L  | <0.10          | 0.10   | A341316  | <0.10          | 0.10   | A341287  | <0.10          | 0.10   | A341316  |
| Total Cobalt (Co)              | ug/L  | 15.6           | 0.0050 | A341316  | 0.918          | 0.010  | A341287  | 1.44           | 0.0050 | A341316  |
| Total Copper (Cu)              | ug/L  | 3.98           | 0.050  | A341316  | <0.10          | 0.10   | A341287  | 0.120          | 0.050  | A341316  |
| Total Iron (Fe)                | ug/L  | 3230           | 1.0    | A341316  | 1380           | 5.0    | A341287  | 2560           | 1.0    | A341316  |
| Total Lead (Pb)                | ug/L  | 0.0092         | 0.0050 | A341316  | <0.020         | 0.020  | A341287  | 0.0130         | 0.0050 | A341316  |
| Total Lithium (Li)             | ug/L  | 2.55           | 0.50   | A341316  | 1.24           | 0.50   | A341287  | 1.36           | 0.50   | A341316  |
| Total Manganese (Mn)           | ug/L  | 84.6           | 0.050  | A341316  | 36.0           | 0.10   | A341287  | 56.6           | 0.050  | A341316  |
| Total Molybdenum (Mo)          | ug/L  | 0.091          | 0.050  | A341316  | 0.150          | 0.050  | A341287  | 0.147          | 0.050  | A341316  |
| Total Nickel (Ni)              | ug/L  | 9.88           | 0.020  | A341316  | 1.58           | 0.10   | A341287  | 2.36           | 0.020  | A341316  |
| Total Phosphorus (P)           | ug/L  |                |        |          | 6.2            | 5.0    | A341287  |                |        |          |
| Total Selenium (Se)            | ug/L  | 0.602          | 0.040  | A341316  | 1.04           | 0.040  | A341287  | 0.961          | 0.040  | A341316  |
| Total Silicon (Si)             | ug/L  | 3930           | 50     | A341316  | 2450           | 50     | A341287  | 2270           | 50     | A341316  |
| Total Silver (Ag)              | ug/L  | <0.0050        | 0.0050 | A341316  | <0.010         | 0.010  | A341287  | <0.0050        | 0.0050 | A341316  |
| Total Strontium (Sr)           | ug/L  | 255            | 0.050  | A341316  | 233            | 0.050  | A341287  | 225            | 0.050  | A341316  |
| Total Tellurium (Te)           | ug/L  | <0.020         | 0.020  | A341316  |                |        |          | <0.020         | 0.020  | A341316  |
| Total Thallium (TI)            | ug/L  | 0.0021         | 0.0020 | A341316  | <0.0020        | 0.0020 | A341287  | <0.0020        | 0.0020 | A341316  |
| Total Thorium (Th)             | ug/L  | <0.0050        | 0.0050 | A341316  |                |        |          | <0.0050        | 0.0050 | A341316  |
| Total Tin (Sn)                 | ug/L  | <0.20          | 0.20   | A341316  | <0.20          | 0.20   | A341287  | <0.20          | 0.20   | A341316  |
| Total Titanium (Ti)            | ug/L  | <0.50          | 0.50   | A341316  | <2.0           | 2.0    | A341287  | <0.50          | 0.50   | A341316  |
| Total Tungsten (W)             | ug/L  | <0.010         | 0.010  | A341316  |                |        |          | <0.010         | 0.010  | A341316  |
| RDL = Reportable Detection Lir | mit   |                |        |          |                |        |          |                |        |          |



| BV Labs ID                   |       | AFC784         |        |          | AFC785         |        |          | AFC786         |        |          |
|------------------------------|-------|----------------|--------|----------|----------------|--------|----------|----------------|--------|----------|
| Sampling Date                |       | 2021/08/31     |        |          | 2021/08/31     |        |          | 2021/08/31     |        |          |
| Sampling Date                |       | 11:30          |        |          | 13:45          |        |          | 14:15          |        |          |
| COC Number                   |       | C#644610-01-01 |        |          | C#644610-01-01 |        |          | C#644610-01-01 |        |          |
|                              | UNITS | 2021725-03     | RDL    | QC Batch | 2021725-04     | RDL    | QC Batch | 2021725-05     | RDL    | QC Batch |
| Total Uranium (U)            | ug/L  | 1.22           | 0.0020 | A341316  | 1.98           | 0.0050 | A341287  | 1.80           | 0.0020 | A341316  |
| Total Vanadium (V)           | ug/L  | <0.20          | 0.20   | A341316  | <0.20          | 0.20   | A341287  | <0.20          | 0.20   | A341316  |
| Total Zinc (Zn)              | ug/L  | 30.0           | 0.10   | A341316  | 2.4            | 1.0    | A341287  | 3.36           | 0.10   | A341316  |
| Total Zirconium (Zr)         | ug/L  | <0.10          | 0.10   | A341316  | <0.10          | 0.10   | A341287  | <0.10          | 0.10   | A341316  |
| Total Calcium (Ca)           | mg/L  | 105            | 0.050  | A340088  | 86.3           | 0.25   | A340088  | 86.5           | 0.050  | A340088  |
| Total Magnesium (Mg)         | mg/L  | 24.4           | 0.050  | A340088  | 20.5           | 0.25   | A340088  | 21.8           | 0.050  | A340088  |
| Total Potassium (K)          | mg/L  | 0.482          | 0.050  | A340088  | 0.27           | 0.25   | A340088  | 0.290          | 0.050  | A340088  |
| Total Sodium (Na)            | mg/L  | 1.46           | 0.050  | A340088  | 0.84           | 0.25   | A340088  | 0.773          | 0.050  | A340088  |
| Total Sulphur (S)            | mg/L  | 90.9           | 3.0    | A340088  | 61.3           | 3.0    | A340088  | 66.3           | 3.0    | A340088  |
| RDL = Reportable Detection L | imit  |                |        |          |                |        |          |                |        |          |



•

| BV Labs ID                    |       | AFC787              | AFC788              | AFC789              | AFC790         | AFC791              |        |          |
|-------------------------------|-------|---------------------|---------------------|---------------------|----------------|---------------------|--------|----------|
| Sampling Date                 |       | 2021/08/31<br>14:30 | 2021/08/31<br>15:30 | 2021/08/31<br>16:45 | 2021/08/31     | 2021/08/31<br>18:00 |        |          |
| COC Number                    |       | C#644610-01-01      | C#644610-01-01      | C#644610-01-01      | C#644610-01-01 | C#644610-01-01      |        |          |
|                               | UNITS | 2021725-06          | 2021725-07          | 2021725-08          | 2021725-09     | 2021725-10          | RDL    | QC Batch |
| Dissolved Metals by ICPMS     |       |                     |                     |                     |                |                     |        |          |
| Dissolved Aluminum (AI)       | ug/L  | 1.26                | 1.33                | 1.00                | 1.66           | 6.62                | 0.50   | A341524  |
| Dissolved Antimony (Sb)       | ug/L  | 0.070               | 0.068               | 0.100               | 0.107          | 0.189               | 0.020  | A341524  |
| Dissolved Arsenic (As)        | ug/L  | 23.5                | 20.7                | 22.0                | 21.4           | 26.9                | 0.020  | A341524  |
| Dissolved Barium (Ba)         | ug/L  | 10.7                | 11.1                | 9.26                | 8.96           | 10.0                | 0.020  | A341524  |
| Dissolved Beryllium (Be)      | ug/L  | <0.010              | <0.010              | <0.010              | <0.010         | <0.010              | 0.010  | A341524  |
| Dissolved Bismuth (Bi)        | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | <0.0050             | 0.0050 | A341524  |
| Dissolved Boron (B)           | ug/L  | <10                 | <10                 | <10                 | <10            | <10                 | 10     | A341524  |
| Dissolved Cadmium (Cd)        | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | 0.0064              | 0.0050 | A341524  |
| Dissolved Chromium (Cr)       | ug/L  | <0.10               | <0.10               | <0.10               | <0.10          | <0.10               | 0.10   | A341524  |
| Dissolved Cobalt (Co)         | ug/L  | 0.0213              | 0.0195              | 0.0219              | 0.0197         | 0.686               | 0.0050 | A341524  |
| Dissolved Copper (Cu)         | ug/L  | <0.050              | <0.050              | 0.075               | 0.086          | 0.192               | 0.050  | A341524  |
| Dissolved Iron (Fe)           | ug/L  | <1.0                | <1.0                | <1.0                | <1.0           | 242                 | 1.0    | A341524  |
| Dissolved Lead (Pb)           | ug/L  | <0.0050             | 0.0120              | <0.0050             | <0.0050        | <0.0050             | 0.0050 | A341524  |
| Dissolved Lithium (Li)        | ug/L  | 0.86                | 0.58                | 0.66                | 0.64           | 2.44                | 0.50   | A341524  |
| Dissolved Manganese (Mn)      | ug/L  | <0.050              | <0.050              | <0.050              | <0.050         | 48.8                | 0.050  | A341524  |
| Dissolved Molybdenum (Mo)     | ug/L  | 0.138               | 0.156               | 0.229               | 0.223          | 0.102               | 0.050  | A341524  |
| Dissolved Nickel (Ni)         | ug/L  | 0.129               | 0.098               | 0.389               | 0.341          | 2.96                | 0.020  | A341524  |
| Dissolved Selenium (Se)       | ug/L  | 0.957               | 1.21                | 1.40                | 1.30           | 0.680               | 0.040  | A341524  |
| Dissolved Silicon (Si)        | ug/L  | 2420                | 2070                | 2050                | 2010           | 2650                | 50     | A341524  |
| Dissolved Silver (Ag)         | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | <0.0050             | 0.0050 | A341524  |
| Dissolved Strontium (Sr)      | ug/L  | 213                 | 199                 | 194                 | 188            | 264                 | 0.050  | A341524  |
| Dissolved Tellurium (Te)      | ug/L  | <0.020              | <0.020              | <0.020              | <0.020         | <0.020              | 0.020  | A341524  |
| Dissolved Thallium (TI)       | ug/L  | <0.0020             | <0.0020             | <0.0020             | <0.0020        | 0.0026              | 0.0020 | A341524  |
| Dissolved Thorium (Th)        | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | <0.0050             | 0.0050 | A341524  |
| Dissolved Tin (Sn)            | ug/L  | <0.20               | <0.20               | <0.20               | <0.20          | <0.20               | 0.20   | A341524  |
| Dissolved Titanium (Ti)       | ug/L  | <0.50               | <0.50               | <0.50               | <0.50          | <0.50               | 0.50   | A341524  |
| Dissolved Tungsten (W)        | ug/L  | <0.010              | <0.010              | <0.010              | <0.010         | <0.010              | 0.010  | A341524  |
| Dissolved Uranium (U)         | ug/L  | 2.04                | 2.10                | 2.14                | 2.07           | 1.10                | 0.0020 | A341524  |
| Dissolved Vanadium (V)        | ug/L  | <0.20               | <0.20               | <0.20               | <0.20          | <0.20               | 0.20   | A341524  |
| Dissolved Zinc (Zn)           | ug/L  | <0.10               | <0.10               | <0.10               | <0.10          | 0.53                | 0.10   | A341524  |
| Dissolved Zirconium (Zr)      | ug/L  | <0.10               | <0.10               | <0.10               | <0.10          | <0.10               | 0.10   | A341524  |
| Dissolved Calcium (Ca)        | mg/L  | 76.1                | 71.4                | 83.0                | 81.1           | 115                 | 0.050  | A340086  |
| RDL = Reportable Detection Li | mit   |                     |                     |                     |                |                     |        |          |



# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID               |       | AFC787              | AFC788              | AFC789              | AFC790         | AFC791              |        |          |
|--------------------------|-------|---------------------|---------------------|---------------------|----------------|---------------------|--------|----------|
| Sampling Date            |       | 2021/08/31<br>14:30 | 2021/08/31<br>15:30 | 2021/08/31<br>16:45 | 2021/08/31     | 2021/08/31<br>18:00 |        |          |
| COC Number               |       | C#644610-01-01      | C#644610-01-01      | C#644610-01-01      | C#644610-01-01 | C#644610-01-01      |        |          |
|                          | UNITS | 2021725-06          | 2021725-07          | 2021725-08          | 2021725-09     | 2021725-10          | RDL    | QC Batch |
| Dissolved Magnesium (Mg) | mg/L  | 16.3                | 16.7                | 20.0                | 19.1           | 29.2                | 0.050  | A340086  |
| Dissolved Potassium (K)  | mg/L  | 0.230               | 0.206               | 0.190               | 0.187          | 0.477               | 0.050  | A340086  |
| Dissolved Sodium (Na)    | mg/L  | 0.935               | 0.588               | 0.596               | 0.575          | 0.939               | 0.050  | A340086  |
| Dissolved Sulphur (S)    | mg/L  | 47.0                | 42.3                | 57.2                | 53.6           | 105                 | 3.0    | A340086  |
| Total Metals by ICPMS    | •     |                     |                     |                     |                |                     | •      |          |
| Total Aluminum (Al)      | ug/L  | 1.11                | 1.22                | 1.32                | 2.00           | 7.54                | 0.50   | A341316  |
| Total Antimony (Sb)      | ug/L  | 0.072               | 0.071               | 0.101               | 0.098          | 0.184               | 0.020  | A341316  |
| Total Arsenic (As)       | ug/L  | 24.3                | 20.9                | 22.5                | 21.1           | 27.7                | 0.020  | A341316  |
| Total Barium (Ba)        | ug/L  | 10.9                | 11.2                | 9.17                | 8.68           | 10.0                | 0.020  | A341316  |
| Total Beryllium (Be)     | ug/L  | <0.010              | <0.010              | <0.010              | <0.010         | <0.010              | 0.010  | A341316  |
| Total Bismuth (Bi)       | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | <0.0050             | 0.0050 | A341316  |
| Total Boron (B)          | ug/L  | <10                 | <10                 | <10                 | <10            | <10                 | 10     | A341316  |
| Total Cadmium (Cd)       | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | 0.0073              | 0.0050 | A341316  |
| Total Chromium (Cr)      | ug/L  | <0.10               | <0.10               | <0.10               | <0.10          | <0.10               | 0.10   | A341316  |
| Total Cobalt (Co)        | ug/L  | 0.0180              | 0.0220              | 0.0228              | 0.0219         | 0.683               | 0.0050 | A341316  |
| Total Copper (Cu)        | ug/L  | <0.050              | <0.050              | 0.078               | 0.095          | 0.163               | 0.050  | A341316  |
| Total Iron (Fe)          | ug/L  | <1.0                | <1.0                | <1.0                | 1.2            | 246                 | 1.0    | A341316  |
| Total Lead (Pb)          | ug/L  | <0.0050             | 0.0065              | <0.0050             | 0.0076         | 0.0058              | 0.0050 | A341316  |
| Total Lithium (Li)       | ug/L  | 0.78                | 0.50                | 0.63                | 0.59           | 2.23                | 0.50   | A341316  |
| Total Manganese (Mn)     | ug/L  | 0.113               | 0.097               | 0.143               | 0.161          | 48.1                | 0.050  | A341316  |
| Total Molybdenum (Mo)    | ug/L  | 0.141               | 0.149               | 0.228               | 0.226          | 0.122               | 0.050  | A341316  |
| Total Nickel (Ni)        | ug/L  | 0.136               | 0.069               | 0.389               | 0.370          | 2.84                | 0.020  | A341316  |
| Total Selenium (Se)      | ug/L  | 0.963               | 1.17                | 1.39                | 1.27           | 0.630               | 0.040  | A341316  |
| Total Silicon (Si)       | ug/L  | 2400                | 2040                | 1980                | 1940           | 2600                | 50     | A341316  |
| Total Silver (Ag)        | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | <0.0050             | 0.0050 | A341316  |
| Total Strontium (Sr)     | ug/L  | 213                 | 198                 | 191                 | 184            | 252                 | 0.050  | A341316  |
| Total Tellurium (Te)     | ug/L  | <0.020              | <0.020              | <0.020              | <0.020         | <0.020              | 0.020  | A341316  |
| Total Thallium (TI)      | ug/L  | <0.0020             | <0.0020             | <0.0020             | <0.0020        | <0.0020             | 0.0020 | A341316  |
| Total Thorium (Th)       | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050        | <0.0050             | 0.0050 | A341316  |
| Total Tin (Sn)           | ug/L  | <0.20               | <0.20               | <0.20               | <0.20          | <0.20               | 0.20   | A341316  |
| Total Titanium (Ti)      | ug/L  | <0.50               | <0.50               | <0.50               | <0.50          | <0.50               | 0.50   | A341316  |
| Total Tungsten (W)       | ug/L  | <0.010              | <0.010              | <0.010              | <0.010         | <0.010              | 0.010  | A341316  |

RDL = Reportable Detection Limit

N/A = Not Applicable



| BV Labs ID                    |       | AFC787              | AFC788              | AFC789              | AFC790         | AFC791              |        |          |
|-------------------------------|-------|---------------------|---------------------|---------------------|----------------|---------------------|--------|----------|
| Sampling Date                 |       | 2021/08/31<br>14:30 | 2021/08/31<br>15:30 | 2021/08/31<br>16:45 | 2021/08/31     | 2021/08/31<br>18:00 |        |          |
| COC Number                    |       | C#644610-01-01      | C#644610-01-01      | C#644610-01-01      | C#644610-01-01 | C#644610-01-01      |        |          |
|                               | UNITS | 2021725-06          | 2021725-07          | 2021725-08          | 2021725-09     | 2021725-10          | RDL    | QC Batch |
| Total Uranium (U)             | ug/L  | 2.02                | 2.11                | 2.11                | 2.04           | 1.07                | 0.0020 | A341316  |
| Total Vanadium (V)            | ug/L  | <0.20               | <0.20               | <0.20               | <0.20          | <0.20               | 0.20   | A341316  |
| Total Zinc (Zn)               | ug/L  | 1.03                | 1.08                | 0.80                | 1.08           | 1.17                | 0.10   | A341316  |
| Total Zirconium (Zr)          | ug/L  | <0.10               | <0.10               | <0.10               | <0.10          | <0.10               | 0.10   | A341316  |
| Total Calcium (Ca)            | mg/L  | 74.2                | 71.3                | 80.8                | 80.2           | 112                 | 0.050  | A340088  |
| Total Magnesium (Mg)          | mg/L  | 16.1                | 16.4                | 19.8                | 19.2           | 28.4                | 0.050  | A340088  |
| Total Potassium (K)           | mg/L  | 0.223               | 0.201               | 0.192               | 0.187          | 0.457               | 0.050  | A340088  |
| Total Sodium (Na)             | mg/L  | 0.916               | 0.589               | 0.617               | 0.579          | 0.905               | 0.050  | A340088  |
| Total Sulphur (S)             | mg/L  | 46.9                | 42.6                | 57.4                | 53.4           | 105                 | 3.0    | A340088  |
| RDL = Reportable Detection Li | mit   |                     |                     |                     |                |                     |        |          |



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                |       | AFC791                |        |          |
|---------------------------|-------|-----------------------|--------|----------|
| Sampling Date             |       | 2021/08/31<br>18:00   |        |          |
| COC Number                |       | C#644610-01-01        |        |          |
|                           | UNITS | 2021725-10<br>Lab-Dup | RDL    | QC Batch |
| Dissolved Metals by ICPMS |       |                       |        |          |
| Dissolved Aluminum (AI)   | ug/L  | 6.18                  | 0.50   | A341524  |
| Dissolved Antimony (Sb)   | ug/L  | 0.184                 | 0.020  | A341524  |
| Dissolved Arsenic (As)    | ug/L  | 26.8                  | 0.020  | A341524  |
| Dissolved Barium (Ba)     | ug/L  | 9.99                  | 0.020  | A341524  |
| Dissolved Beryllium (Be)  | ug/L  | <0.010                | 0.010  | A341524  |
| Dissolved Bismuth (Bi)    | ug/L  | <0.0050               | 0.0050 | A341524  |
| Dissolved Boron (B)       | ug/L  | <10                   | 10     | A341524  |
| Dissolved Cadmium (Cd)    | ug/L  | 0.0068                | 0.0050 | A341524  |
| Dissolved Chromium (Cr)   | ug/L  | <0.10                 | 0.10   | A341524  |
| Dissolved Cobalt (Co)     | ug/L  | 0.693                 | 0.0050 | A341524  |
| Dissolved Copper (Cu)     | ug/L  | 0.185                 | 0.050  | A341524  |
| Dissolved Iron (Fe)       | ug/L  | 239                   | 1.0    | A341524  |
| Dissolved Lead (Pb)       | ug/L  | <0.0050               | 0.0050 | A341524  |
| Dissolved Lithium (Li)    | ug/L  | 2.32                  | 0.50   | A341524  |
| Dissolved Manganese (Mn)  | ug/L  | 48.8                  | 0.050  | A341524  |
| Dissolved Molybdenum (Mo) | ug/L  | 0.124                 | 0.050  | A341524  |
| Dissolved Nickel (Ni)     | ug/L  | 2.97                  | 0.020  | A341524  |
| Dissolved Selenium (Se)   | ug/L  | 0.679                 | 0.040  | A341524  |
| Dissolved Silicon (Si)    | ug/L  | 2630                  | 50     | A341524  |
| Dissolved Silver (Ag)     | ug/L  | <0.0050               | 0.0050 | A341524  |
| Dissolved Strontium (Sr)  | ug/L  | 255                   | 0.050  | A341524  |
| Dissolved Tellurium (Te)  | ug/L  | <0.020                | 0.020  | A341524  |
| Dissolved Thallium (TI)   | ug/L  | 0.0023                | 0.0020 | A341524  |
| Dissolved Thorium (Th)    | ug/L  | <0.0050               | 0.0050 | A341524  |
| Dissolved Tin (Sn)        | ug/L  | <0.20                 | 0.20   | A341524  |
| Dissolved Titanium (Ti)   | ug/L  | <0.50                 | 0.50   | A341524  |
| Dissolved Tungsten (W)    | ug/L  | <0.010                | 0.010  | A341524  |
| Dissolved Uranium (U)     | ug/L  | 1.09                  | 0.0020 | A341524  |
| Dissolved Vanadium (V)    | ug/L  | <0.20                 | 0.20   | A341524  |
| Dissolved Zinc (Zn)       | ug/L  | 0.52                  | 0.10   | A341524  |
| Dissolved Zirconium (Zr)  | ug/L  | <0.10                 | 0.10   | A341524  |



Report Date: 2021/09/10

Government of Yukon – Dept of ENV Client Project #: 2021-Ketza Sampler Initials: SL

## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

| Package 1 | 6.0°C |
|-----------|-------|
| Package 2 | 5.7°C |

Results relate only to the items tested.



Report Date: 2021/09/10

Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

Sampler Initials: SL

## **QUALITY ASSURANCE REPORT**

| QA/QC<br>Batch | Init  | OC Type                 | Parameter             | Data Analyzad            | Value | Recovery | UNITS    | QC Limits |
|----------------|-------|-------------------------|-----------------------|--------------------------|-------|----------|----------|-----------|
| A341287        | SOM   | QC Type<br>Matrix Spike | Total Aluminum (Al)   | Date Analyzed 2021/09/04 | value | NC       | %        | 80 - 120  |
| A341207        | JOIVI | Width Spike             | Total Antimony (Sb)   | 2021/09/04               |       | 99       | %        | 80 - 120  |
|                |       |                         | Total Arsenic (As)    | 2021/09/04               |       | 106      | %        | 80 - 120  |
|                |       |                         | Total Barium (Ba)     | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Beryllium (Be)  | 2021/09/04               |       | 101      | %        | 80 - 120  |
|                |       |                         | Total Bismuth (Bi)    | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Boron (B)       | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Cadmium (Cd)    | 2021/09/04               |       | 99       | %        | 80 - 120  |
|                |       |                         | Total Chromium (Cr)   | 2021/09/04               |       | 105      | %        | 80 - 120  |
|                |       |                         | Total Cobalt (Co)     | 2021/09/04               |       | 98       | %        | 80 - 120  |
|                |       |                         | Total Copper (Cu)     | 2021/09/04               |       | 95       | %        | 80 - 120  |
|                |       |                         | Total Iron (Fe)       | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Lead (Pb)       | 2021/09/04               |       | 101      | %        | 80 - 120  |
|                |       |                         | Total Lithium (Li)    | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Manganese (Mn)  | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Molybdenum (Mo) | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Nickel (Ni)     | 2021/09/04               |       | 96       | %        | 80 - 120  |
|                |       |                         | Total Phosphorus (P)  | 2021/09/04               |       | 102      | %        | 80 - 120  |
|                |       |                         | Total Selenium (Se)   | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Silicon (Si)    | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Silver (Ag)     | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Strontium (Sr)  | 2021/09/04               |       | NC       | %        | 80 - 120  |
|                |       |                         | Total Thallium (TI)   | 2021/09/04               |       | 103      | %        | 80 - 120  |
|                |       | Total Tin (Sn)          | 2021/09/04            |                          | 98    | %        | 80 - 120 |           |
|                |       | Total Titanium (Ti)     | 2021/09/04            |                          | NC    | %        | 80 - 120 |           |
|                |       |                         | Total Uranium (U)     | 2021/09/04               |       | 109      | %        | 80 - 120  |
|                |       |                         | Total Vanadium (V)    | 2021/09/04               |       | 109      | %        | 80 - 120  |
|                |       |                         | Total Zinc (Zn)       | 2021/09/04               |       | 100      | %        | 80 - 120  |
|                |       |                         | Total Zirconium (Zr)  | 2021/09/04               |       | NC       | %        | 80 - 120  |
| A341287        | SOM   | Spiked Blank            | Total Aluminum (Al)   | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       | •                       | Total Antimony (Sb)   | 2021/09/04               |       | 100      | %        | 80 - 120  |
|                |       |                         | Total Arsenic (As)    | 2021/09/04               |       | 99       | %        | 80 - 120  |
|                |       |                         | Total Barium (Ba)     | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Beryllium (Be)  | 2021/09/04               |       | 103      | %        | 80 - 120  |
|                |       |                         | Total Bismuth (Bi)    | 2021/09/04               |       | 99       | %        | 80 - 120  |
|                |       |                         | Total Boron (B)       | 2021/09/04               |       | 105      | %        | 80 - 120  |
|                |       |                         | Total Cadmium (Cd)    | 2021/09/04               |       | 99       | %        | 80 - 120  |
|                |       |                         | Total Chromium (Cr)   | 2021/09/04               |       | 98       | %        | 80 - 120  |
|                |       |                         | Total Cobalt (Co)     | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Copper (Cu)     | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Iron (Fe)       | 2021/09/04               |       | 102      | %        | 80 - 120  |
|                |       |                         | Total Lead (Pb)       | 2021/09/04               |       | 101      | %        | 80 - 120  |
|                |       |                         | Total Lithium (Li)    | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Manganese (Mn)  | 2021/09/04               |       | 98       | %        | 80 - 120  |
|                |       |                         | Total Molybdenum (Mo) | 2021/09/04               |       | 100      | %        | 80 - 120  |
|                |       |                         | Total Nickel (Ni)     | 2021/09/04               |       | 98       | %        | 80 - 120  |
|                |       |                         | Total Phosphorus (P)  | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Selenium (Se)   | 2021/09/04               |       | 100      | %        | 80 - 120  |
|                |       |                         | Total Silicon (Si)    | 2021/09/04               |       | 106      | %        | 80 - 120  |
|                |       |                         | Total Silver (Ag)     | 2021/09/04               |       | 98       | %        | 80 - 120  |
|                |       |                         | Total Strontium (Sr)  | 2021/09/04               |       | 97       | %        | 80 - 120  |
|                |       |                         | Total Thallium (TI)   | 2021/09/04               |       | 94       | %        | 80 - 120  |
|                |       |                         | Total Tin (Sn)        | 2021/09/04               |       | 99       | %        | 80 - 120  |
|                |       |                         | Total Titanium (Ti)   | 2021/09/04               |       | 100      | %        | 80 - 120  |



Sampler Initials: SL

| QA/QC   |      |              |                                               |               |         |          |              |           |
|---------|------|--------------|-----------------------------------------------|---------------|---------|----------|--------------|-----------|
| Batch   | Init | QC Type      | Parameter                                     | Date Analyzed | Value   | Recovery | UNITS        | QC Limits |
|         |      |              | Total Uranium (U)                             | 2021/09/04    |         | 106      | %            | 80 - 120  |
|         |      |              | Total Vanadium (V)                            | 2021/09/04    |         | 98       | %            | 80 - 120  |
|         |      |              | Total Zinc (Zn)                               | 2021/09/04    |         | 100      | %            | 80 - 120  |
|         |      |              | Total Zirconium (Zr)                          | 2021/09/04    |         | 97       | %            | 80 - 120  |
| A341287 | SOM  | Method Blank | Total Aluminum (AI)                           | 2021/09/04    | <3.0    |          | ug/L         |           |
|         |      |              | Total Antimony (Sb)                           | 2021/09/04    | <0.020  |          | ug/L         |           |
|         |      |              | Total Arsenic (As)                            | 2021/09/04    | <0.020  |          | ug/L         |           |
|         |      |              | Total Barium (Ba)                             | 2021/09/04    | <0.050  |          | ug/L         |           |
|         |      |              | Total Beryllium (Be)                          | 2021/09/04    | <0.010  |          | ug/L         |           |
|         |      |              | Total Bismuth (Bi)                            | 2021/09/04    | <0.010  |          | ug/L         |           |
|         |      |              | Total Boron (B)                               | 2021/09/04    | <10     |          | ug/L         |           |
|         |      |              | Total Cadmium (Cd)                            | 2021/09/04    | <0.0050 |          | ug/L         |           |
|         |      |              | Total Chromium (Cr)                           | 2021/09/04    | <0.10   |          | ug/L         |           |
|         |      |              | Total Cobalt (Co)                             | 2021/09/04    | <0.010  |          | ug/L         |           |
|         |      |              | Total Copper (Cu)                             | 2021/09/04    | <0.10   |          | ug/L         |           |
|         |      |              | Total Iron (Fe)                               | 2021/09/04    | <5.0    |          | ug/L         |           |
|         |      |              | Total Lead (Pb)                               | 2021/09/04    | <0.020  |          | ug/L         |           |
|         |      |              | Total Lead (FB)  Total Lithium (Li)           | 2021/09/04    | <0.50   |          | ug/L<br>ug/L |           |
|         |      |              | Total Manganese (Mn)                          | 2021/09/04    | <0.10   |          | ug/L         |           |
|         |      |              | Total Maliganese (Mil)  Total Molybdenum (Mo) | 2021/09/04    | <0.10   |          | ug/L         |           |
|         |      |              | Total Nickel (Ni)                             | 2021/09/04    | <0.10   |          | ug/L<br>ug/L |           |
|         |      |              | ` '                                           |               | <5.0    |          |              |           |
|         |      |              | Total Phosphorus (P)                          | 2021/09/04    |         |          | ug/L         |           |
|         |      |              | Total Silican (Si)                            | 2021/09/04    | <0.040  |          | ug/L         |           |
|         |      |              | Total Silicon (Si)                            | 2021/09/04    | <50     |          | ug/L         |           |
|         |      |              | Total Silver (Ag)                             | 2021/09/04    | <0.010  |          | ug/L         |           |
|         |      |              | Total Strontium (Sr)                          | 2021/09/04    | <0.050  |          | ug/L         |           |
|         |      |              | Total Thallium (TI)                           | 2021/09/04    | <0.0020 |          | ug/L         |           |
|         |      |              | Total Tin (Sn)                                | 2021/09/04    | <0.20   |          | ug/L         |           |
|         |      |              | Total Titanium (Ti)                           | 2021/09/04    | <2.0    |          | ug/L         |           |
|         |      |              | Total Uranium (U)                             | 2021/09/04    | <0.0050 |          | ug/L         |           |
|         |      |              | Total Vanadium (V)                            | 2021/09/04    | <0.20   |          | ug/L         |           |
|         |      |              | Total Zinc (Zn)                               | 2021/09/04    | <1.0    |          | ug/L         |           |
|         |      |              | Total Zirconium (Zr)                          | 2021/09/04    | <0.10   |          | ug/L         |           |
| 4341287 | SOM  | RPD          | Total Aluminum (Al)                           | 2021/09/04    | 4.9     |          | %            | 20        |
|         |      |              | Total Antimony (Sb)                           | 2021/09/04    | 6.4     |          | %            | 20        |
|         |      |              | Total Arsenic (As)                            | 2021/09/04    | 3.1     |          | %            | 20        |
|         |      |              | Total Barium (Ba)                             | 2021/09/04    | 2.4     |          | %            | 20        |
|         |      |              | Total Beryllium (Be)                          | 2021/09/04    | NC      |          | %            | 20        |
|         |      |              | Total Bismuth (Bi)                            | 2021/09/04    | NC      |          | %            | 20        |
|         |      |              | Total Boron (B)                               | 2021/09/04    | 2.5     |          | %            | 20        |
|         |      |              | Total Cadmium (Cd)                            | 2021/09/04    | NC      |          | %            | 20        |
|         |      |              | Total Chromium (Cr)                           | 2021/09/04    | 9.2     |          | %            | 20        |
|         |      |              | Total Cobalt (Co)                             | 2021/09/04    | 1.2     |          | %            | 20        |
|         |      |              | Total Copper (Cu)                             | 2021/09/04    | 3.2     |          | %            | 20        |
|         |      |              | Total Iron (Fe)                               | 2021/09/04    | 0.42    |          | %            | 20        |
|         |      |              | Total Lead (Pb)                               | 2021/09/04    | 0.085   |          | %            | 20        |
|         |      |              | Total Lithium (Li)                            | 2021/09/04    | 0.45    |          | %            | 20        |
|         |      |              | Total Manganese (Mn)                          | 2021/09/04    | 0.93    |          | %            | 20        |
|         |      |              | Total Molybdenum (Mo)                         | 2021/09/04    | 0.17    |          | %            | 20        |
|         |      |              | Total Nickel (Ni)                             | 2021/09/04    | 1.5     |          | %            | 20        |
|         |      |              | Total Phosphorus (P)                          | 2021/09/04    | 9.8     |          | %            | 20        |
|         |      |              | Total Filosphorus (1 ) Total Selenium (Se)    | 2021/09/04    | 2.3     |          | %            | 20        |
|         |      |              | Total Silicon (Si)                            | 2021/09/04    | 2.5     |          | %            | 20        |
|         |      |              | i otai siiicoii (SI)                          | 2021/09/04    | ۷.5     |          | /0           | 20        |



Report Date: 2021/09/10

Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

Sampler Initials: SL

| QA/QC   |      |                          |                       |                          |       |          |          |                      |
|---------|------|--------------------------|-----------------------|--------------------------|-------|----------|----------|----------------------|
| Batch   | Init | QC Type                  | Parameter             | Date Analyzed            | Value | Recovery | UNITS    | QC Limit             |
|         |      |                          | Total Strontium (Sr)  | 2021/09/04               | 1.3   |          | %        | 20                   |
|         |      |                          | Total Thallium (TI)   | 2021/09/04               | NC    |          | %        | 20                   |
|         |      |                          | Total Tin (Sn)        | 2021/09/04               | NC    |          | %        | 20                   |
|         |      |                          | Total Titanium (Ti)   | 2021/09/04               | 17    |          | %        | 20                   |
|         |      |                          | Total Uranium (U)     | 2021/09/04               | 2.1   |          | %        | 20                   |
|         |      |                          | Total Vanadium (V)    | 2021/09/04               | 1.8   |          | %        | 20                   |
|         |      |                          | Total Zinc (Zn)       | 2021/09/04               | 2.1   |          | %        | 20                   |
|         |      |                          | Total Zirconium (Zr)  | 2021/09/04               | 13    |          | %        | 20                   |
| A341316 | JLP  | Matrix Spike [AFC782-10] | Total Aluminum (Al)   | 2021/09/07               |       | 112      | %        | 80 - 120             |
|         |      |                          | Total Antimony (Sb)   | 2021/09/07               |       | 101      | %        | 80 - 120             |
|         |      |                          | Total Arsenic (As)    | 2021/09/07               |       | 104      | %        | 80 - 120             |
|         |      |                          | Total Barium (Ba)     | 2021/09/07               |       | 101      | %        | 80 - 120             |
|         |      |                          | Total Beryllium (Be)  | 2021/09/07               |       | 98       | %        | 80 - 120             |
|         |      |                          | Total Bismuth (Bi)    | 2021/09/07               |       | 99       | %        | 80 - 120             |
|         |      |                          | Total Boron (B)       | 2021/09/07               |       | 102      | %        | 80 - 120             |
|         |      |                          | Total Cadmium (Cd)    | 2021/09/07               |       | 100      | %        | 80 - 120             |
|         |      |                          | Total Chromium (Cr)   | 2021/09/07               |       | 100      | %        | 80 - 120             |
|         |      |                          | Total Cobalt (Co)     | 2021/09/07               |       | 98       | %        | 80 - 120             |
|         |      |                          | Total Copper (Cu)     | 2021/09/07               |       | 93       | %<br>%   | 80 - 120             |
|         |      |                          |                       |                          |       |          |          |                      |
|         |      |                          | Total Iron (Fe)       | 2021/09/07<br>2021/09/07 |       | NC       | %        | 80 - 120             |
|         |      |                          | Total Lishings (Li)   |                          |       | 101      | %        | 80 - 120             |
|         |      |                          | Total Lithium (Li)    | 2021/09/07               |       | 98       | %        | 80 - 120             |
|         |      |                          | Total Manganese (Mn)  | 2021/09/07               |       | NC       | %        | 80 - 120             |
|         |      |                          | Total Molybdenum (Mo) | 2021/09/07               |       | 107      | %        | 80 - 120             |
|         |      |                          | Total Nickel (Ni)     | 2021/09/07               |       | 96       | %        | 80 - 120             |
|         |      |                          | Total Selenium (Se)   | 2021/09/07               |       | 106      | %        | 80 - 120             |
|         |      |                          | Total Silicon (Si)    | 2021/09/07               |       | 113      | %        | 80 - 120             |
|         |      |                          | Total Silver (Ag)     | 2021/09/07               |       | 99       | %        | 80 - 120             |
|         |      |                          | Total Strontium (Sr)  | 2021/09/07               |       | NC       | %        | 80 - 120             |
|         |      |                          | Total Tellurium (Te)  | 2021/09/07               |       | 95       | %        | 80 - 120             |
|         |      |                          | Total Thallium (TI)   | 2021/09/07               |       | 100      | %        | 80 - 120             |
|         |      |                          | Total Thorium (Th)    | 2021/09/07               |       | 107      | %        | 80 - 120             |
|         |      |                          | Total Tin (Sn)        | 2021/09/07               |       | 102      | %        | 80 - 120             |
|         |      |                          | Total Titanium (Ti)   | 2021/09/07               |       | 103      | %        | 80 - 120             |
|         |      |                          | Total Tungsten (W)    | 2021/09/07               |       | 105      | %        | 80 - 120             |
|         |      |                          | Total Uranium (U)     | 2021/09/07               |       | 107      | %        | 80 - 120             |
|         |      |                          | Total Vanadium (V)    | 2021/09/07               |       | 103      | %        | 80 - 120             |
|         |      |                          | Total Zinc (Zn)       | 2021/09/07               |       | NC       | %        | 80 - 120             |
|         |      |                          | Total Zirconium (Zr)  | 2021/09/07               |       | 108      | %        | 80 - 120             |
| A341316 | JLP  | Spiked Blank             | Total Aluminum (Al)   | 2021/09/03               |       | 95       | %        | 80 - 120             |
|         |      |                          | Total Antimony (Sb)   | 2021/09/03               |       | 97       | %        | 80 - 120             |
|         |      |                          | Total Arsenic (As)    | 2021/09/03               |       | 98       | %        | 80 - 120             |
|         |      |                          | Total Barium (Ba)     | 2021/09/03               |       | 96       | %        | 80 - 120             |
|         |      |                          | Total Beryllium (Be)  | 2021/09/03               |       | 98       | %        | 80 - 120             |
|         |      |                          | Total Bismuth (Bi)    | 2021/09/03               |       | 98       | %        | 80 - 120             |
|         |      |                          | Total Boron (B)       | 2021/09/03               |       | 100      | %        | 80 - 120             |
|         |      |                          | Total Cadmium (Cd)    | 2021/09/03               |       | 98       | %        | 80 - 120             |
|         |      |                          | Total Chromium (Cr)   | 2021/09/03               |       | 96       | %        | 80 - 120             |
|         |      |                          | Total Cobalt (Co)     | 2021/09/03               |       | 96       | %        | 80 - 120             |
|         |      |                          | Total Copper (Cu)     | 2021/09/03               |       | 96       | %        | 80 - 120             |
|         |      |                          | Total Iron (Fe)       | 2021/09/03               |       | 101      | %        | 80 - 120             |
|         |      |                          | Total Lead (Pb)       | 2021/09/03               |       | 101      | %<br>%   | 80 - 120             |
|         |      |                          | Total Lithium (Li)    | 2021/09/03               |       | 91       | %<br>%   | 80 - 120<br>80 - 120 |
|         |      | condition and the        | 7071/09/03            |                          | 91    | 7/0      | 0U - 1/1 |                      |



Sampler Initials: SL

| QA/QC   |      |                 |                       |               |                |          |              |           |
|---------|------|-----------------|-----------------------|---------------|----------------|----------|--------------|-----------|
| Batch   | Init | QC Type         | Parameter             | Date Analyzed | Value          | Recovery | UNITS        | QC Limits |
|         |      | 20.760          | Total Molybdenum (Mo) | 2021/09/03    |                | 99       | %            | 80 - 120  |
|         |      |                 | Total Nickel (Ni)     | 2021/09/03    |                | 97       | %            | 80 - 120  |
|         |      |                 | Total Selenium (Se)   | 2021/09/03    |                | 102      | %            | 80 - 120  |
|         |      |                 | Total Silicon (Si)    | 2021/09/03    |                | 101      | %            | 80 - 120  |
|         |      |                 | Total Silver (Ag)     | 2021/09/03    |                | 97       | %            | 80 - 120  |
|         |      |                 | Total Strontium (Sr)  | 2021/09/03    |                | 95       | %            | 80 - 120  |
|         |      |                 | Total Tellurium (Te)  | 2021/09/03    |                | 101      | %            | 80 - 120  |
|         |      |                 | Total Thallium (TI)   | 2021/09/03    |                | 91       | %            | 80 - 120  |
|         |      |                 | Total Thorium (Th)    | 2021/09/03    |                | 96       | %            | 80 - 120  |
|         |      |                 | Total Tin (Sn)        | 2021/09/03    |                | 98       | %            | 80 - 120  |
|         |      |                 | Total Titanium (Ti)   | 2021/09/03    |                | 98       | %            | 80 - 120  |
|         |      |                 | Total Tungsten (W)    | 2021/09/03    |                | 97       | %            | 80 - 120  |
|         |      |                 | Total Uranium (U)     | 2021/09/03    |                | 102      | %            | 80 - 120  |
|         |      |                 | Total Vanadium (V)    | 2021/09/03    |                | 97       | %            | 80 - 120  |
|         |      |                 | Total Zinc (Zn)       | 2021/09/03    |                | 102      | %            | 80 - 120  |
|         |      |                 | Total Ziric (Zr)      | 2021/09/03    |                | 100      | %            | 80 - 120  |
| A341316 | JLP  | Method Blank    | Total Aluminum (AI)   | 2021/09/03    | <0.50          | 100      | ug/L         | 00 120    |
| A341310 | JLI  | WECHOU DIAIR    | Total Antimony (Sb)   | 2021/09/03    | <0.020         |          | ug/L         |           |
|         |      |                 | Total Artimony (35)   | 2021/09/03    | <0.020         |          | ug/L<br>ug/L |           |
|         |      |                 | Total Barium (Ba)     | 2021/09/03    | <0.020         |          | ug/L         |           |
|         |      |                 | Total Baridin (Ba)    | 2021/09/03    | <0.010         |          |              |           |
|         |      |                 | • • •                 | 2021/09/03    | <0.010         |          | ug/L         |           |
|         |      |                 | Total Baran (B)       | • •           | <10            |          | ug/L         |           |
|         |      |                 | Total Cadmium (Cd)    | 2021/09/03    |                |          | ug/L         |           |
|         |      |                 | Total Characians (Cd) | 2021/09/03    | <0.0050        |          | ug/L         |           |
|         |      |                 | Total Cabalt (Ca)     | 2021/09/03    | <0.10          |          | ug/L         |           |
|         |      |                 | Total Cobalt (Co)     | 2021/09/03    | <0.0050        |          | ug/L         |           |
|         |      |                 | Total Copper (Cu)     | 2021/09/03    | <0.050         |          | ug/L         |           |
|         |      |                 | Total Iron (Fe)       | 2021/09/03    | <1.0           |          | ug/L         |           |
|         |      |                 | Total Lead (Pb)       | 2021/09/03    | <0.0050        |          | ug/L         |           |
|         |      |                 | Total Lithium (Li)    | 2021/09/03    | <0.50          |          | ug/L         |           |
|         |      |                 | Total Manganese (Mn)  | 2021/09/03    | <0.050         |          | ug/L         |           |
|         |      |                 | Total Molybdenum (Mo) | 2021/09/03    | <0.050         |          | ug/L         |           |
|         |      |                 | Total Nickel (Ni)     | 2021/09/03    | <0.020         |          | ug/L         |           |
|         |      |                 | Total Selenium (Se)   | 2021/09/03    | <0.040         |          | ug/L         |           |
|         |      |                 | Total Silicon (Si)    | 2021/09/03    | <50            |          | ug/L         |           |
|         |      |                 | Total Silver (Ag)     | 2021/09/03    | <0.0050        |          | ug/L         |           |
|         |      |                 | Total Strontium (Sr)  | 2021/09/03    | <0.050         |          | ug/L         |           |
|         |      |                 | Total Tellurium (Te)  | 2021/09/03    | <0.020         |          | ug/L         |           |
|         |      |                 | Total Thallium (Tl)   | 2021/09/03    | 0.0025,        |          | ug/L         |           |
|         |      |                 |                       |               | RDL=0.0020 (1) |          |              |           |
|         |      |                 | Total Thorium (Th)    | 2021/09/03    | <0.0050        |          | ug/L         |           |
|         |      |                 | Total Tin (Sn)        | 2021/09/03    | <0.20          |          | ug/L         |           |
|         |      |                 | Total Titanium (Ti)   | 2021/09/03    | <0.50          |          | ug/L         |           |
|         |      |                 | Total Tungsten (W)    | 2021/09/03    | <0.010         |          | ug/L         |           |
|         |      |                 | Total Uranium (U)     | 2021/09/03    | <0.0020        |          | ug/L         |           |
|         |      |                 | Total Vanadium (V)    | 2021/09/03    | <0.20          |          | ug/L         |           |
|         |      |                 | Total Zinc (Zn)       | 2021/09/03    | <0.10          |          | ug/L         |           |
|         |      |                 | Total Zirconium (Zr)  | 2021/09/03    | <0.10          |          | ug/L         |           |
| A341316 | JLP  | RPD [AFC782-10] | Total Aluminum (Al)   | 2021/09/03    | 0.11           |          | %            | 20        |
|         |      |                 | Total Antimony (Sb)   | 2021/09/03    | 1.2            |          | %            | 20        |
|         |      |                 | Total Arsenic (As)    | 2021/09/03    | 1.2            |          | %            | 20        |
|         |      |                 | Total Barium (Ba)     | 2021/09/03    | 2.1            |          | %            | 20        |
|         |      |                 | Total Beryllium (Be)  | 2021/09/03    | 17             |          | %            | 20        |
|         |      |                 | Total Bismuth (Bi)    | 2021/09/03    | NC             |          | %            | 20        |



Sampler Initials: SL

| QA/QC   |      |                          |                           |               |       |          |       |           |
|---------|------|--------------------------|---------------------------|---------------|-------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                 | Date Analyzed | Value | Recovery | UNITS | QC Limits |
|         |      |                          | Total Boron (B)           | 2021/09/03    | NC    |          | %     | 20        |
|         |      |                          | Total Cadmium (Cd)        | 2021/09/03    | 3.2   |          | %     | 20        |
|         |      |                          | Total Chromium (Cr)       | 2021/09/03    | NC    |          | %     | 20        |
|         |      |                          | Total Cobalt (Co)         | 2021/09/03    | 1.8   |          | %     | 20        |
|         |      |                          | Total Copper (Cu)         | 2021/09/03    | 1.8   |          | %     | 20        |
|         |      |                          | Total Iron (Fe)           | 2021/09/03    | 2.1   |          | %     | 20        |
|         |      |                          | Total Lead (Pb)           | 2021/09/03    | 0.19  |          | %     | 20        |
|         |      |                          | Total Lithium (Li)        | 2021/09/03    | 0.75  |          | %     | 20        |
|         |      |                          | Total Manganese (Mn)      | 2021/09/03    | 0.12  |          | %     | 20        |
|         |      |                          | Total Molybdenum (Mo)     | 2021/09/03    | 0.28  |          | %     | 20        |
|         |      |                          | Total Nickel (Ni)         | 2021/09/03    | 2.4   |          | %     | 20        |
|         |      |                          | Total Selenium (Se)       | 2021/09/03    | 7.0   |          | %     | 20        |
|         |      |                          | Total Silicon (Si)        | 2021/09/03    | 0.77  |          | %     | 20        |
|         |      |                          | Total Silver (Ag)         | 2021/09/03    | NC    |          | %     | 20        |
|         |      |                          | Total Strontium (Sr)      | 2021/09/03    | 2.3   |          | %     | 20        |
|         |      |                          | Total Tellurium (Te)      | 2021/09/03    | NC    |          | %     | 20        |
|         |      |                          | Total Thallium (TI)       | 2021/09/03    | 12    |          | %     | 20        |
|         |      |                          | Total Thorium (Th)        | 2021/09/03    | 15    |          | %     | 20        |
|         |      |                          | Total Tin (Sn)            | 2021/09/03    | NC    |          | %     | 20        |
|         |      |                          | Total Titanium (Ti)       | 2021/09/03    | NC    |          | %     | 20        |
|         |      |                          | Total Tungsten (W)        | 2021/09/03    | 3.8   |          | %     | 20        |
|         |      |                          | Total Uranium (U)         | 2021/09/03    | 1.0   |          | %     | 20        |
|         |      |                          | Total Vanadium (V)        | 2021/09/03    | NC    |          | %     | 20        |
|         |      |                          | Total Zinc (Zn)           | 2021/09/03    | 1.2   |          | %     | 20        |
|         |      |                          | Total Zirconium (Zr)      | 2021/09/03    | NC    |          | %     | 20        |
| A341524 | JLP  | Matrix Spike [AFC791-08] | Dissolved Aluminum (Al)   | 2021/09/04    |       | 91       | %     | 80 - 120  |
|         |      |                          | Dissolved Antimony (Sb)   | 2021/09/04    |       | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2021/09/04    |       | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Barium (Ba)     | 2021/09/04    |       | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2021/09/04    |       | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Bismuth (Bi)    | 2021/09/04    |       | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Boron (B)       | 2021/09/04    |       | 91       | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2021/09/04    |       | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2021/09/04    |       | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2021/09/04    |       | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2021/09/04    |       | 89       | %     | 80 - 120  |
|         |      |                          | Dissolved Iron (Fe)       | 2021/09/04    |       | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2021/09/04    |       | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Lithium (Li)    | 2021/09/04    |       | 86       | %     | 80 - 120  |
|         |      |                          | Dissolved Manganese (Mn)  | 2021/09/04    |       | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2021/09/04    |       | 101      | %     | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2021/09/04    |       | 89       | %     | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2021/09/04    |       | 98       | %     | 80 - 120  |
|         |      |                          | Dissolved Silicon (Si)    | 2021/09/04    |       | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2021/09/04    |       | 91       | %     | 80 - 120  |
|         |      |                          | Dissolved Strontium (Sr)  | 2021/09/04    |       | NC       | %     | 80 - 120  |
|         |      |                          | Dissolved Tellurium (Te)  | 2021/09/04    |       | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Thallium (TI)   | 2021/09/04    |       | 89       | %     | 80 - 120  |
|         |      |                          | Dissolved Thorium (Th)    | 2021/09/04    |       | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Tin (Sn)        | 2021/09/04    |       | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Titanium (Ti)   | 2021/09/04    |       | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Tungsten (W)    | 2021/09/04    |       | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Transum (U)     | 2021/09/04    |       | 101      | %     | 80 - 120  |
|         |      |                          | = .55554 5.41114111 (5)   | 2021,00,04    |       | 101      | ,,,   | 20 120    |



Sampler Initials: SL

| QA/QC   |      |              |                                               |               |          |          |        |                      |
|---------|------|--------------|-----------------------------------------------|---------------|----------|----------|--------|----------------------|
| Batch   | Init | QC Type      | Parameter                                     | Date Analyzed | Value    | Recovery | UNITS  | QC Limits            |
|         |      |              | Dissolved Zinc (Zn)                           | 2021/09/04    |          | 93       | %      | 80 - 120             |
|         |      |              | Dissolved Zirconium (Zr)                      | 2021/09/04    |          | 100      | %      | 80 - 120             |
| A341524 | JLP  | Spiked Blank | Dissolved Aluminum (AI)                       | 2021/09/03    |          | 96       | %      | 80 - 120             |
|         |      |              | Dissolved Antimony (Sb)                       | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Arsenic (As)                        | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Barium (Ba)                         | 2021/09/03    |          | 95       | %      | 80 - 120             |
|         |      |              | Dissolved Beryllium (Be)                      | 2021/09/03    |          | 97       | %      | 80 - 120             |
|         |      |              | Dissolved Bismuth (Bi)                        | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Boron (B)                           | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Cadmium (Cd)                        | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Chromium (Cr)                       | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Cobalt (Co)                         | 2021/09/03    |          | 96       | %      | 80 - 120             |
|         |      |              | Dissolved Copper (Cu)                         | 2021/09/03    |          | 96       | %      | 80 - 120             |
|         |      |              | Dissolved Iron (Fe)                           | 2021/09/03    |          | 100      | %      | 80 - 120             |
|         |      |              | Dissolved Lead (Pb)                           | 2021/09/03    |          | 100      | %      | 80 - 120             |
|         |      |              | Dissolved Lithium (Li)                        | 2021/09/03    |          | 91       | %      | 80 - 120             |
|         |      |              | Dissolved Manganese (Mn)                      | 2021/09/03    |          | 97       | %      | 80 - 120             |
|         |      |              | Dissolved Molybdenum (Mo)                     | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Nickel (Ni)                         | 2021/09/03    |          | 97       | %      | 80 - 120             |
|         |      |              | Dissolved Mickel (M)  Dissolved Selenium (Se) | 2021/09/03    |          | 99       | %      | 80 - 120             |
|         |      |              | Dissolved Seleman (Se)                        | 2021/09/03    |          | 102      | %      | 80 - 120             |
|         |      |              | Dissolved Silver (Ag)                         | 2021/09/03    |          | 96       | %<br>% | 80 - 120             |
|         |      |              | Dissolved Strontium (Sr)                      | 2021/09/03    |          | 96<br>97 | %<br>% | 80 - 120<br>80 - 120 |
|         |      |              | ` ,                                           | 2021/09/03    |          | 102      |        |                      |
|         |      |              | Dissolved Tellurium (Te)                      | • •           |          |          | %      | 80 - 120             |
|         |      |              | Dissolved Thallium (TI)                       | 2021/09/03    |          | 91       | %      | 80 - 120             |
|         |      |              | Dissolved Thorium (Th)                        | 2021/09/03    |          | 97       | %      | 80 - 120             |
|         |      |              | Dissolved Tin (Sn)                            | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Titanium (Ti)                       | 2021/09/03    |          | 99       | %      | 80 - 120             |
|         |      |              | Dissolved Tungsten (W)                        | 2021/09/03    |          | 98       | %      | 80 - 120             |
|         |      |              | Dissolved Uranium (U)                         | 2021/09/03    |          | 103      | %      | 80 - 120             |
|         |      |              | Dissolved Vanadium (V)                        | 2021/09/03    |          | 97       | %      | 80 - 120             |
|         |      |              | Dissolved Zinc (Zn)                           | 2021/09/03    |          | 103      | %      | 80 - 120             |
|         |      |              | Dissolved Zirconium (Zr)                      | 2021/09/03    |          | 99       | %      | 80 - 12              |
| A341524 | JLP  | Method Blank | Dissolved Aluminum (Al)                       | 2021/09/04    | <0.50    |          | ug/L   |                      |
|         |      |              | Dissolved Antimony (Sb)                       | 2021/09/04    | <0.020   |          | ug/L   |                      |
|         |      |              | Dissolved Arsenic (As)                        | 2021/09/04    | <0.020   |          | ug/L   |                      |
|         |      |              | Dissolved Barium (Ba)                         | 2021/09/04    | <0.020   |          | ug/L   |                      |
|         |      |              | Dissolved Beryllium (Be)                      | 2021/09/04    | < 0.010  |          | ug/L   |                      |
|         |      |              | Dissolved Bismuth (Bi)                        | 2021/09/04    | <0.0050  |          | ug/L   |                      |
|         |      |              | Dissolved Boron (B)                           | 2021/09/04    | <10      |          | ug/L   |                      |
|         |      |              | Dissolved Cadmium (Cd)                        | 2021/09/04    | <0.0050  |          | ug/L   |                      |
|         |      |              | Dissolved Chromium (Cr)                       | 2021/09/04    | <0.10    |          | ug/L   |                      |
|         |      |              | Dissolved Cobalt (Co)                         | 2021/09/04    | < 0.0050 |          | ug/L   |                      |
|         |      |              | Dissolved Copper (Cu)                         | 2021/09/04    | <0.050   |          | ug/L   |                      |
|         |      |              | Dissolved Iron (Fe)                           | 2021/09/04    | <1.0     |          | ug/L   |                      |
|         |      |              | Dissolved Lead (Pb)                           | 2021/09/04    | < 0.0050 |          | ug/L   |                      |
|         |      |              | Dissolved Lithium (Li)                        | 2021/09/04    | <0.50    |          | ug/L   |                      |
|         |      |              | Dissolved Manganese (Mn)                      | 2021/09/04    | <0.050   |          | ug/L   |                      |
|         |      |              | Dissolved Molybdenum (Mo)                     | 2021/09/04    | <0.050   |          | ug/L   |                      |
|         |      |              | Dissolved Nickel (Ni)                         | 2021/09/04    | <0.020   |          | ug/L   |                      |
|         |      |              | Dissolved Selenium (Se)                       | 2021/09/04    | < 0.040  |          | ug/L   |                      |
|         |      |              | Dissolved Silicon (Si)                        | 2021/09/04    | <50      |          | ug/L   |                      |
|         |      |              | Dissolved Silver (Ag)                         | 2021/09/04    | <0.0050  |          | ug/L   |                      |
|         |      |              |                                               |               |          |          |        |                      |



Sampler Initials: SL

| QUALITY ASSURANCE REPORT(CONTD) |      |                          |                             |               |           |          |       |           |  |
|---------------------------------|------|--------------------------|-----------------------------|---------------|-----------|----------|-------|-----------|--|
| QA/QC<br>Batch                  | Init | QC Type                  | Parameter                   | Date Analyzed | Value     | Recovery | UNITS | QC Limits |  |
|                                 |      |                          | Dissolved Tellurium (Te)    | 2021/09/04    | <0.020    |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Thallium (TI)     | 2021/09/04    | <0.0020   |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Thorium (Th)      | 2021/09/04    | <0.0050   |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Tin (Sn)          | 2021/09/04    | <0.20     |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Titanium (Ti)     | 2021/09/04    | <0.50     |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Tungsten (W)      | 2021/09/04    | < 0.010   |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Uranium (U)       | 2021/09/04    | <0.0020   |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Vanadium (V)      | 2021/09/04    | <0.20     |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Zinc (Zn)         | 2021/09/04    | <0.10     |          | ug/L  |           |  |
|                                 |      |                          | Dissolved Zirconium (Zr)    | 2021/09/04    | < 0.10    |          | ug/L  |           |  |
| A341524                         | JLP  | RPD [AFC791-08]          | Dissolved Aluminum (Al)     | 2021/09/04    | 6.9       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Antimony (Sb)     | 2021/09/04    | 3.0       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Arsenic (As)      | 2021/09/04    | 0.60      |          | %     | 20        |  |
|                                 |      |                          | Dissolved Barium (Ba)       | 2021/09/04    | 0.51      |          | %     | 20        |  |
|                                 |      |                          | Dissolved Beryllium (Be)    | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Bismuth (Bi)      | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Boron (B)         | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Cadmium (Cd)      | 2021/09/04    | 6.1       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Chromium (Cr)     | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Cobalt (Co)       | 2021/09/04    | 1.1       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Copper (Cu)       | 2021/09/04    | 3.9       |          | %     | 20        |  |
|                                 |      |                          |                             | 2021/09/04    |           |          |       |           |  |
|                                 |      |                          | Dissolved Iron (Fe)         | • •           | 1.2<br>NC |          | %     | 20        |  |
|                                 |      |                          | Dissolved Lead (Pb)         | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Lithium (Li)      | 2021/09/04    | 4.9       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Manganese (Mn)    | 2021/09/04    | 0.0057    |          | %     | 20        |  |
|                                 |      |                          | Dissolved Molybdenum (Mo)   | 2021/09/04    | 19        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Nickel (Ni)       | 2021/09/04    | 0.49      |          | %     | 20        |  |
|                                 |      |                          | Dissolved Selenium (Se)     | 2021/09/04    | 0.10      |          | %     | 20        |  |
|                                 |      |                          | Dissolved Silicon (Si)      | 2021/09/04    | 0.71      |          | %     | 20        |  |
|                                 |      |                          | Dissolved Silver (Ag)       | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Strontium (Sr)    | 2021/09/04    | 3.6       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Tellurium (Te)    | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Thallium (Tl)     | 2021/09/04    | 12        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Thorium (Th)      | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Tin (Sn)          | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Titanium (Ti)     | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Tungsten (W)      | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Uranium (U)       | 2021/09/04    | 1.2       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Vanadium (V)      | 2021/09/04    | NC        |          | %     | 20        |  |
|                                 |      |                          | Dissolved Zinc (Zn)         | 2021/09/04    | 1.3       |          | %     | 20        |  |
|                                 |      |                          | Dissolved Zirconium (Zr)    | 2021/09/04    | NC        |          | %     | 20        |  |
| A341762                         | TSO  | Matrix Spike [AFC782-02] | Nitrate plus Nitrite (N)    | 2021/09/03    | 110       | 101      | %     | 80 - 120  |  |
| A341762                         | TSO  | Spiked Blank             | Nitrate plus Nitrite (N)    | 2021/09/03    |           | 101      | %     | 80 - 120  |  |
|                                 |      | Method Blank             |                             | 2021/09/03    | <0.0020   | 104      |       | 80 - 120  |  |
| A341762                         | TSO  |                          | Nitrate plus Nitrite (N)    |               |           |          | mg/L  | 25        |  |
| A341762                         | TSO  | RPD [AFC782-02]          | Nitrate plus Nitrite (N)    | 2021/09/03    | 5.9       | 100      | %     | 25        |  |
| A341763                         | TSO  | Matrix Spike [AFC782-02] | Nitrite (N)                 | 2021/09/03    |           | 100      | %     | 80 - 120  |  |
| A341763                         | TSO  | Spiked Blank             | Nitrite (N)                 | 2021/09/03    |           | 101      | %     | 80 - 120  |  |
| A341763                         | TSO  | Method Blank             | Nitrite (N)                 | 2021/09/03    | <0.0020   |          | mg/L  |           |  |
| A341763                         | TSO  | RPD [AFC782-02]          | Nitrite (N)                 | 2021/09/03    | NC        |          | %     | 25        |  |
| A341963                         | BO3  | Spiked Blank             | рН                          | 2021/09/04    |           | 101      | %     | 97 - 103  |  |
| A341963                         | BO3  | RPD                      | рН                          | 2021/09/04    | 0.14      |          | %     | N/A       |  |
|                                 |      |                          | рН                          | 2021/09/04    | 0.69      |          | %     | N/A       |  |
| A341966                         | BO3  | Spiked Blank             | Alkalinity (Total as CaCO3) | 2021/09/04    |           | 95       | %     | 80 - 120  |  |
| A341966                         | BO3  | Method Blank             | Alkalinity (PP as CaCO3)    | 2021/09/04    | <1.0      |          | mg/L  |           |  |



Sampler Initials: SL

# QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |                          |                                  |               |          |          |       |           |
|---------|------|--------------------------|----------------------------------|---------------|----------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                        | Date Analyzed | Value    | Recovery | UNITS | QC Limits |
|         |      |                          | Alkalinity (Total as CaCO3)      | 2021/09/04    | <1.0     |          | mg/L  |           |
|         |      |                          | Bicarbonate (HCO3)               | 2021/09/04    | <1.0     |          | mg/L  |           |
|         |      |                          | Carbonate (CO3)                  | 2021/09/04    | <1.0     |          | mg/L  |           |
|         |      |                          | Hydroxide (OH)                   | 2021/09/04    | <1.0     |          | mg/L  |           |
| A341967 | BO3  | Spiked Blank             | Conductivity                     | 2021/09/04    |          | 98       | %     | 80 - 120  |
| A341967 | BO3  | Method Blank             | Conductivity                     | 2021/09/04    | <2.0     |          | uS/cm |           |
| A342005 | BO3  | Spiked Blank             | рН                               | 2021/09/04    |          | 101      | %     | 97 - 103  |
| A342005 | BO3  | RPD [AFC782-02]          | рН                               | 2021/09/04    | 3.2      |          | %     | N/A       |
| A342005 | BO3  | RPD                      | рН                               | 2021/09/04    | 12       |          | %     | N/A       |
| A342006 | BO3  | Spiked Blank             | Alkalinity (Total as CaCO3)      | 2021/09/04    |          | 97       | %     | 80 - 120  |
| A342006 | BO3  | Method Blank             | Alkalinity (PP as CaCO3)         | 2021/09/04    | <1.0     |          | mg/L  |           |
|         |      |                          | Alkalinity (Total as CaCO3)      | 2021/09/04    | <1.0     |          | mg/L  |           |
|         |      |                          | Bicarbonate (HCO3)               | 2021/09/04    | <1.0     |          | mg/L  |           |
|         |      |                          | Carbonate (CO3)                  | 2021/09/04    | <1.0     |          | mg/L  |           |
|         |      |                          | Hydroxide (OH)                   | 2021/09/04    | <1.0     |          | mg/L  |           |
| A342006 | BO3  | RPD [AFC782-02]          | Alkalinity (PP as CaCO3)         | 2021/09/04    | NC       |          | %     | 20        |
|         |      |                          | Alkalinity (Total as CaCO3)      | 2021/09/04    | 2.7      |          | %     | 20        |
|         |      |                          | Bicarbonate (HCO3)               | 2021/09/04    | 2.7      |          | %     | 20        |
|         |      |                          | Carbonate (CO3)                  | 2021/09/04    | NC       |          | %     | 20        |
|         |      |                          | Hydroxide (OH)                   | 2021/09/04    | NC       |          | %     | 20        |
| A342007 | BO3  | Spiked Blank             | Conductivity                     | 2021/09/04    |          | 100      | %     | 80 - 120  |
| A342007 | BO3  | Method Blank             | Conductivity                     | 2021/09/04    | <2.0     |          | uS/cm |           |
| A342007 | BO3  | RPD [AFC782-02]          | Conductivity                     | 2021/09/04    | 0.68     |          | %     | 10        |
| A342432 | HE1  | Matrix Spike             | Total Dissolved Solids           | 2021/09/05    |          | 95       | %     | 80 - 120  |
| A342432 | HE1  | Spiked Blank             | Total Dissolved Solids           | 2021/09/05    |          | 96       | %     | 80 - 120  |
| A342432 | HE1  | Method Blank             | Total Dissolved Solids           | 2021/09/05    | <1.0     |          | mg/L  |           |
| A342432 | HE1  | RPD                      | Total Dissolved Solids           | 2021/09/05    | 10       |          | %     | 20        |
| A342803 | TMU  | Matrix Spike [AFC785-06] | Strong Acid Dissoc. Cyanide (CN) | 2021/09/07    |          | 105      | %     | 80 - 120  |
| A342803 | TMU  | Spiked Blank             | Strong Acid Dissoc. Cyanide (CN) | 2021/09/07    |          | 102      | %     | 80 - 120  |
| A342803 | TMU  | Method Blank             | Strong Acid Dissoc. Cyanide (CN) | 2021/09/07    | <0.00050 |          | mg/L  |           |
| A342803 | TMU  | RPD [AFC785-06]          | Strong Acid Dissoc. Cyanide (CN) | 2021/09/07    | NC       |          | %     | 20        |
| A342809 | TMU  | Matrix Spike [AFC785-06] | Weak Acid Dissoc. Cyanide (CN)   | 2021/09/07    |          | 104      | %     | 80 - 120  |
| A342809 | TMU  | Spiked Blank             | Weak Acid Dissoc. Cyanide (CN)   | 2021/09/07    |          | 103      | %     | 80 - 120  |
| A342809 | TMU  | Method Blank             | Weak Acid Dissoc. Cyanide (CN)   | 2021/09/07    | <0.00050 |          | mg/L  |           |
| A342809 | TMU  | RPD [AFC785-06]          | Weak Acid Dissoc. Cyanide (CN)   | 2021/09/07    | NC       |          | %     | 20        |
| A343019 | KWE  | Matrix Spike             | Dissolved Hex. Chromium (Cr 6+)  | 2021/09/07    |          | 86       | %     | 80 - 120  |
| A343019 |      | Spiked Blank             | Dissolved Hex. Chromium (Cr 6+)  | 2021/09/07    |          | 110      | %     | 80 - 120  |
| A343019 |      | Method Blank             | Dissolved Hex. Chromium (Cr 6+)  | 2021/09/07    | <0.00099 |          | mg/L  |           |
| A343019 | KWE  | RPD                      | Dissolved Hex. Chromium (Cr 6+)  | 2021/09/07    | NC       |          | %     | 20        |
| A343127 | CJY  | Matrix Spike             | Dissolved Mercury (Hg)           | 2021/09/07    |          | 93       | %     | 80 - 120  |
| A343127 | CJY  | Spiked Blank             | Dissolved Mercury (Hg)           | 2021/09/07    |          | 83       | %     | 80 - 120  |
| A343127 | CJY  | Method Blank             | Dissolved Mercury (Hg)           | 2021/09/07    | <0.0019  |          | ug/L  |           |
| A343127 | CJY  | RPD                      | Dissolved Mercury (Hg)           | 2021/09/07    | NC       |          | %     | 20        |
| A343244 | BTM  | Matrix Spike [AFC787-01] | Total Suspended Solids           | 2021/09/08    |          | 107      | %     | 80 - 120  |
| A343244 | BTM  | Spiked Blank             | Total Suspended Solids           | 2021/09/08    |          | 100      | %     | 80 - 120  |
| A343244 | BTM  | Method Blank             | Total Suspended Solids           | 2021/09/08    | <1.0     |          | mg/L  |           |
| A343244 | BTM  | RPD                      | Total Suspended Solids           | 2021/09/08    | 13       |          | %     | 20        |
| A343312 | BTM  | Matrix Spike [AFC791-01] | Total Suspended Solids           | 2021/09/08    |          | 107      | %     | 80 - 120  |
| A343312 | BTM  | Spiked Blank             | Total Suspended Solids           | 2021/09/08    |          | 102      | %     | 80 - 120  |
| A343312 | BTM  | Method Blank             | Total Suspended Solids           | 2021/09/08    | <1.0     |          | mg/L  |           |
| A343312 | BTM  | RPD [AFC790-01]          | Total Suspended Solids           | 2021/09/08    | NC       |          | %     | 20        |
| A343419 | CJY  | Matrix Spike             | Total Mercury (Hg)               | 2021/09/07    |          | 86       | %     | 80 - 120  |
| A343419 | CJY  | Spiked Blank             | Total Mercury (Hg)               | 2021/09/07    |          | 83       | %     | 80 - 120  |
| A343419 | CJY  | Method Blank             | Total Mercury (Hg)               | 2021/09/07    | < 0.0019 |          | ug/L  |           |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

Sampler Initials: SL

## QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC<br>Batch     | lni+        | OC Tuno                    | Darameter                       | Data Analyzad            | Value       | Doggwany | LINUTC     | OC Limits            |
|--------------------|-------------|----------------------------|---------------------------------|--------------------------|-------------|----------|------------|----------------------|
| A343419            | Init<br>CJY | QC Type<br>RPD [AFC782-11] | Parameter Total Mercury (Hg)    | Date Analyzed 2021/09/07 | Value<br>NC | Recovery | UNITS<br>% | QC Limits<br>20      |
| A343419<br>A343723 | KWE         | Matrix Spike [AFC791-07]   | Dissolved Hex. Chromium (Cr 6+) | 2021/09/07               | INC         | 93       | %<br>%     | 80 - 120             |
| A343723<br>A343723 | KWE         | Spiked Blank               | Dissolved Hex. Chromium (Cr 6+) | 2021/09/09               |             | 105      | %          | 80 - 120             |
| A343723<br>A343723 | KWE         | Method Blank               | Dissolved Hex. Chromium (Cr 6+) | 2021/09/09               | <0.00099    | 105      |            | 60 - 120             |
|                    |             |                            | , ,                             |                          |             |          | mg/L       | 20                   |
| A343723            | KWE         | RPD [AFC791-07]            | Dissolved Hex. Chromium (Cr 6+) | 2021/09/09               | NC          | 102      | %          | 20                   |
| A343769            | SKM         | Matrix Spike               | Total Ammonia (N)               | 2021/09/09               |             | 102      | %          | 80 - 120<br>80 - 120 |
| A343769            | SKM         | Spiked Blank               | Total Ammonia (N)               | 2021/09/09               | -0.0050     | 100      | %          | 80 - 120             |
| A343769            | SKM         | Method Blank               | Total Ammonia (N)               | 2021/09/09               | <0.0050     |          | mg/L       | 20                   |
| A343769            | SKM         | RPD                        | Total Ammonia (N)               | 2021/09/09               | 4.6         | 101      | %          | 20                   |
| A343810            | MDO         | Matrix Spike [AFC790-03]   | Dissolved Organic Carbon (C)    | 2021/09/10               |             | 104      | %          | 80 - 120             |
| A343810            | MDO         | Spiked Blank               | Dissolved Organic Carbon (C)    | 2021/09/09               | .0.20       | 114      | %          | 80 - 120             |
| A343810            | MDO         | Method Blank               | Dissolved Organic Carbon (C)    | 2021/09/09               | <0.20       |          | mg/L       |                      |
| A343810            | MDO         | RPD [AFC790-03]            | Dissolved Organic Carbon (C)    | 2021/09/10               | NC          |          | %          | 20                   |
| A343841            | TSO         | Matrix Spike [AFC787-04]   | Total Nitrogen (N)              | 2021/09/09               |             | 101      | %          | 80 - 120             |
| A343841            | TSO         | Spiked Blank               | Total Nitrogen (N)              | 2021/09/09               |             | 100      | %          | 80 - 120             |
| A343841            | TSO         | Method Blank               | Total Nitrogen (N)              | 2021/09/09               | <0.020      |          | mg/L       |                      |
| A343841            | TSO         | RPD [AFC787-04]            | Total Nitrogen (N)              | 2021/09/09               | 0.54        |          | %          | 20                   |
| A344325            | FM0         | Matrix Spike               | Total Phosphorus (P)            | 2021/09/08               |             | 96       | %          | 80 - 120             |
| A344325            | FM0         | QC Standard                | Total Phosphorus (P)            | 2021/09/08               |             | 98       | %          | 80 - 120             |
| A344325            | FM0         | Spiked Blank               | Total Phosphorus (P)            | 2021/09/08               |             | 110      | %          | 80 - 120             |
| A344325            | FM0         | Method Blank               | Total Phosphorus (P)            | 2021/09/08               | <0.0010     |          | mg/L       |                      |
| A344325            | FM0         | RPD                        | Total Phosphorus (P)            | 2021/09/08               | NC          |          | %          | 20                   |
| A344338            | FM0         | Matrix Spike               | Total Phosphorus (P)            | 2021/09/08               |             | 98       | %          | 80 - 120             |
| A344338            | FM0         | QC Standard                | Total Phosphorus (P)            | 2021/09/08               |             | 91       | %          | 80 - 120             |
| A344338            | FM0         | Spiked Blank               | Total Phosphorus (P)            | 2021/09/08               |             | 93       | %          | 80 - 120             |
| A344338            | FM0         | Method Blank               | Total Phosphorus (P)            | 2021/09/08               | <0.0010     |          | mg/L       |                      |
| A344338            | FM0         | RPD                        | Total Phosphorus (P)            | 2021/09/08               | NC          |          | %          | 20                   |
| A344365            | FM0         | Matrix Spike               | Dissolved Phosphorus (P)        | 2021/09/08               |             | 94       | %          | 80 - 120             |
| A344365            | FM0         | QC Standard                | Dissolved Phosphorus (P)        | 2021/09/08               |             | 88       | %          | 80 - 120             |
| A344365            | FM0         | Spiked Blank               | Dissolved Phosphorus (P)        | 2021/09/08               |             | 103      | %          | 80 - 120             |
| A344365            | FM0         | Method Blank               | Dissolved Phosphorus (P)        | 2021/09/08               | <0.0010     |          | mg/L       |                      |
| A344365            | FM0         | RPD                        | Dissolved Phosphorus (P)        | 2021/09/08               | NC          |          | %          | 20                   |
| A346519            | MO5         | Matrix Spike [AFC782-02]   | Dissolved Chloride (Cl)         | 2021/09/09               |             | 102      | %          | 80 - 120             |
|                    |             |                            | Dissolved Sulphate (SO4)        | 2021/09/09               |             | NC       | %          | 80 - 120             |
| A346519            | MO5         | Spiked Blank               | Dissolved Chloride (Cl)         | 2021/09/09               |             | 103      | %          | 80 - 120             |
|                    |             |                            | Dissolved Sulphate (SO4)        | 2021/09/09               |             | 108      | %          | 80 - 120             |
| A346519            | MO5         | Method Blank               | Dissolved Chloride (Cl)         | 2021/09/09               | <0.50       |          | mg/L       |                      |
|                    |             |                            | Dissolved Sulphate (SO4)        | 2021/09/09               | <0.50       |          | mg/L       |                      |
| A346519            | MO5         | RPD [AFC782-02]            | Dissolved Chloride (Cl)         | 2021/09/09               | NC          |          | %          | 20                   |
|                    |             |                            | Dissolved Sulphate (SO4)        | 2021/09/09               | 1.8         |          | %          | 20                   |
| A346922            | CJY         | Matrix Spike [AFC791-09]   | Dissolved Mercury (Hg)          | 2021/09/10               |             | 88       | %          | 80 - 120             |
| A346922            | CJY         | Spiked Blank               | Dissolved Mercury (Hg)          | 2021/09/10               |             | 83       | %          | 80 - 120             |
| A346922            | CJY         | Method Blank               | Dissolved Mercury (Hg)          | 2021/09/10               | <0.0019     |          | ug/L       |                      |
| A346922            | CJY         | RPD [AFC790-09]            | Dissolved Mercury (Hg)          | 2021/09/10               | NC          |          | %          | 20                   |
| A346928            | CJY         | Matrix Spike [AFC787-11]   | Total Mercury (Hg)              | 2021/09/10               |             | 99       | %          | 80 - 120             |
| A346928            | CJY         | Spiked Blank               | Total Mercury (Hg)              | 2021/09/10               |             | 96       | %          | 80 - 120             |
| A346928            | CJY         | Method Blank               | Total Mercury (Hg)              | 2021/09/10               | <0.0019     |          | ug/L       |                      |
| A346928            | CJY         | RPD [AFC786-11]            | Total Mercury (Hg)              | 2021/09/10               | NC          |          | %          | 20                   |
| A347643            | MO5         | Matrix Spike [AFC782-02]   | Fluoride (F)                    | 2021/09/10               |             | 100      | %          | 80 - 120             |
| A347643            | MO5         | Spiked Blank               | Fluoride (F)                    | 2021/09/10               |             | 100      | %          | 80 - 120             |
| A347643            | MO5         | Method Blank               | Fluoride (F)                    | 2021/09/10               | <0.020      |          | mg/L       |                      |



Government of Yukon - Dept of ENV Client Project #: 2021-Ketza

Sampler Initials: SL

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |                 |              |               |       |          |       |           |
|---------|------|-----------------|--------------|---------------|-------|----------|-------|-----------|
| Batch   | Init | QC Type         | Parameter    | Date Analyzed | Value | Recovery | UNITS | QC Limits |
| A347643 | MO5  | RPD [AFC782-02] | Fluoride (F) | 2021/09/10    | 0     |          | %     | 20        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Method blank exceeds acceptance limits for TI- 2X RDL acceptable for low level metals determination.



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza Sampler Initials: SL

## **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

David Huang, M.Sc., P.Chem., QP, Scientific Services Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| 171.DZ1        |                                          | INVOICE TO:                                      |                         |                         | Report In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alemania . |                        | _       |                     |                                                   |                                      |                          |                    | Project I         | nformatio                    |                       | - 80 |                                                            | Check to the control of the control | Only                      |
|----------------|------------------------------------------|--------------------------------------------------|-------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|---------|---------------------|---------------------------------------------------|--------------------------------------|--------------------------|--------------------|-------------------|------------------------------|-----------------------|------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| onpany Name    | #4977 Gove                               | rnment of Yukon - Dept of ENV                    | Company f               | MA 844311 C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                        | Dept of | ENV                 |                                                   | -                                    | ution #                  |                    | C10319            |                              |                       | C1/  | # Tall                                                     | COC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bottle Order #:           |
| ntad Name      | Stephanie Ly                             |                                                  | Contact No              | Ctechnolo               | CONTRACTOR DESCRIPTION OF THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | ed trime               | -       |                     |                                                   | F.O.                                 |                          |                    |                   |                              |                       | CI   | 0000                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199340140                 |
| Pess           | Name and Address of the Owner, where the | roes Branch (V-310) Box 2703                     | Address                 | Box 2703                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |         |                     |                                                   | Proj                                 | nd #                     | 2                  | 2021-Ke           | tza                          | _                     |      | -                                                          | Chain Of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 644010<br>Project Manager |
|                | (867) 689-876                            | 17                                               |                         | Whitehors<br>(867) 689- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106        |                        | _       | _                   | _                                                 | 100                                  | xX Name                  |                    | _                 |                              | _                     |      | -                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project Manager           |
| ne<br>si       | refrescuence present properties          | ns@yukon.ca                                      | Phone<br>Email          | stephanie.              | A PROPERTY AND ADDRESS OF THE PARTY AND ADDRES | kon.ca     | Fax _                  |         |                     |                                                   | Site San                             | gled By                  | ,                  | SW                | ma                           |                       |      |                                                            | C#644510-01-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Customer Solutions        |
| Negutationy Cr | teria .                                  |                                                  |                         | cial Instructions       | december 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TT         | T                      |         |                     |                                                   |                                      | Analysis I               |                    |                   | historii baydo               |                       |      |                                                            | Turnaround Time (TAT) Req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uired                     |
|                | Note: For regulat                        | od drinking water samples - pluase use the Dr    | inking Water Chain o    | f Custody Form          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vater 7    | ied Febred 7 ( 7 / N ) |         | & LL-TDS (Group 02) | LL DOC & Dissolved Total<br>Phosphorus (Group 03) | , TKN & LL Total<br>sorus (Group 04) | nia-N Low Level<br>rved) | de SAD & WAD (Grou | ed CR3 & CR5 (Gro | LL Dissolved Metals<br>p 05) | LL Total Metals (Groc |      | (will be<br>Standa<br>Please<br>days<br>Job Spe<br>Date Re | ntimation Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
|                | Sample                                   | must be kapt cool ( < 10°C ) from time of sample | ng until delivery to th | Labo                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | date       |                        | Z o     | 6                   | 000                                               | N IN                                 | mode                     | 2                  | 1 2               | Ketza L<br>(Group            | Ketza L<br>06)        |      | 5000                                                       | CONTRACTOR OF THE PARTY OF THE | tud lab Av B)             |
| Sample         | Barcode Label                            | Sample (Location) Identification                 | Date Sampled            | Time Sampled            | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g,         | Alk, E                 | 2 5     | 188                 | 크운                                                | Total                                | 4€                       | 80                 | 800               | 86                           | 8 8<br>8 8            |      | # of Dut                                                   | ine Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|                |                                          | 2021725-1                                        | 21/Aug/31               | 0105                    | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N          | 4 4                    |         | X                   | *                                                 | *                                    | *                        | *                  | *                 | X                            | ¥                     |      | 12                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                |                                          | 2031T25 - 03                                     |                         | 0950                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11         | 11                     | 4       | 1                   | 1                                                 | 1                                    | 1                        | 1                  | 1                 | 1                            | 1                     | _    | 1                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                |                                          | 2021T25-03                                       |                         | 1130                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ш          | Ш                      | +       | H                   | $\perp$                                           | -                                    | 4                        | 1                  | ₩                 | 1                            | 1                     | _    | 1                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                |                                          | 2021725-04                                       | $\vdash$                | 1345                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ш          | 111                    | +       | Н                   | +                                                 | +                                    | 1                        | -                  | +                 | H                            | 1                     | _    | Н                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                |                                          | 2021T25-05                                       | -                       | 1415                    | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ш          | 11                     | +       | H                   | +                                                 | +                                    | +                        | 1                  | +                 | Н                            | H                     | _    | Н                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
|                |                                          | 2021725-06                                       |                         | 1430                    | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₩          | -                      | Н       | $\vdash$            | +                                                 | +                                    | -                        | 1                  | ++                | $\vdash$                     | H                     |      | Н                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                |                                          | 2021125 - 07                                     |                         | 15:30                   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₩          | -                      | Н       | -                   | +                                                 | +                                    | +                        | -                  | +                 | $\vdash$                     | $\vdash$              |      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                |                                          | 2021T25 - 08                                     |                         | 1645                    | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #          | H                      |         | +                   | +                                                 | +                                    | -                        | -                  | -                 | H                            | H                     |      | H                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
|                |                                          | 2021TAS-09                                       |                         |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₩          |                        | ,       | +                   | +                                                 | +                                    | +                        |                    | 1                 | $\forall$                    | 1                     |      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                |                                          | 2021T25-10                                       | - 6                     | 18 00                   | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1"         | V                      | 1       | -                   | ~                                                 | V                                    | V                        | V                  | IV                | V                            | V                     |      | 4                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |

Bureau Veritas Canada (2019) Inc.



Your Project #: 2021-Ketza

Your C.O.C. #: 644610-04-01, 644610-05-01

**Attention: Stephanie Lyons** 

Government of Yukon – Dept of ENV Box 2703 Whitehorse, YT Canada Y1A2C6

Report Date: 2021/09/23

Report #: R3075583 Version: 2 - Final

## **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: C165509 Received: 2021/09/03, 15:17

Sample Matrix: Water # Samples Received: 15

| # Samples Received: 15                      |    |            |            |                                  |                      |
|---------------------------------------------|----|------------|------------|----------------------------------|----------------------|
|                                             |    | Date       | Date       |                                  |                      |
| Analyses                                    |    | Extracted  | Analyzed   | Laboratory Method                | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH    | 9  | N/A        | - , , -    | BBY6SOP-00026                    | SM 23 2320 B m       |
| Alkalinity @25C (pp, total), CO3,HCO3,OH    | 6  | N/A        |            | BBY6SOP-00026                    | SM 23 2320 B m       |
| Low level chloride/sulphate by AC           | 14 | N/A        | 2021/09/10 | BBY6SOP-00011 /<br>BBY6SOP-00017 | SM23-4500-CI/SO4-E m |
| Low level chloride/sulphate by AC           | 1  | N/A        | 2021/09/14 | BBY6SOP-00011 /<br>BBY6SOP-00017 | SM23-4500-CI/SO4-E m |
| Cyanide SAD (strong acid dissociable) (1)   | 15 | N/A        | 2021/09/10 | CAL SOP-00270                    | SM 23 4500-CN m      |
| Cyanide WAD (weak acid dissociable) (1)     | 15 | N/A        | 2021/09/10 | CAL SOP-00270                    | SM 23 4500-CN m      |
| Chromium III (Calc'd) (1, 2)                | 14 | N/A        | 2021/09/13 |                                  | Auto Calc            |
| Chromium III (Calc'd) (1, 2)                | 1  | N/A        | 2021/09/14 |                                  | Auto Calc            |
| Dissolved Hexavalent Chromium (1)           | 15 | N/A        | 2021/09/09 | AB SOP-00063                     | SM 23 3500-Cr B m    |
| Carbon (DOC) (1, 3)                         | 11 | N/A        | 2021/09/10 | AB SOP-00087                     | MMCW 119 1996 m      |
| Carbon (DOC) (1, 3)                         | 3  | N/A        | 2021/09/11 | AB SOP-00087                     | MMCW 119 1996 m      |
| Carbon (DOC) (1, 3)                         | 1  | N/A        | 2021/09/13 | AB SOP-00087                     | MMCW 119 1996 m      |
| Conductivity @25C                           | 9  | N/A        | 2021/09/07 | BBY6SOP-00026                    | SM 23 2510 B m       |
| Conductivity @25C                           | 6  | N/A        | 2021/09/08 | BBY6SOP-00026                    | SM 23 2510 B m       |
| Fluoride - Mining Clients                   | 2  | N/A        | 2021/09/10 | BBY6SOP-00048                    | SM 23 4500-F C m     |
| Fluoride - Mining Clients                   | 13 | N/A        | 2021/09/11 | BBY6SOP-00048                    | SM 23 4500-F C m     |
| Hardness Total (calculated as CaCO3) (4)    | 14 | N/A        | 2021/09/09 | BBY WI-00033                     | Auto Calc            |
| Hardness Total (calculated as CaCO3) (4)    | 1  | N/A        | 2021/09/13 | BBY WI-00033                     | Auto Calc            |
| Hardness (calculated as CaCO3)              | 14 | N/A        | 2021/09/13 | BBY WI-00033                     | Auto Calc            |
| Hardness (calculated as CaCO3)              | 1  | N/A        | 2021/09/14 | BBY WI-00033                     | Auto Calc            |
| Mercury (Dissolved) by CV (2)               | 1  | 2021/09/07 | 2021/09/07 | AB SOP-00084                     | BCMOE BCLM Oct2013 m |
| Mercury (Dissolved) by CV (2)               | 14 | 2021/09/10 | 2021/09/10 | AB SOP-00084                     | BCMOE BCLM Oct2013 m |
| Mercury (Total) by CV                       | 1  | 2021/09/07 | 2021/09/10 | AB SOP-00084                     | BCMOE BCLM Oct2013 m |
| Mercury (Total) by CV                       | 14 | 2021/09/10 | 2021/09/10 | AB SOP-00084                     | BCMOE BCLM Oct2013 m |
| Na, K, Ca, Mg, S by CRC ICPMS (diss.)       | 14 | N/A        | 2021/09/13 | BBY WI-00033                     | Auto Calc            |
| Na, K, Ca, Mg, S by CRC ICPMS (diss.)       | 1  | N/A        | 2021/09/14 | BBY WI-00033                     | Auto Calc            |
| Elements by ICPMS Low Level (dissolved) (2) | 14 | N/A        | 2021/09/11 | BBY7SOP-00002                    | EPA 6020b R2 m       |
| Elements by ICPMS Low Level (dissolved) (2) | 1  | N/A        | 2021/09/14 | BBY7SOP-00002                    | EPA 6020b R2 m       |
| Elements by ICPMS Digested LL (total)       | 1  | 2021/09/08 | 2021/09/09 | BBY7SOP-00003 /<br>BBY7SOP-00002 | EPA 6020b R2 m       |



Your Project #: 2021-Ketza

Your C.O.C. #: 644610-04-01, 644610-05-01

**Attention: Stephanie Lyons** 

Government of Yukon – Dept of ENV Box 2703 Whitehorse, YT Canada Y1A2C6

Report Date: 2021/09/23

Report #: R3075583 Version: 2 - Final

### **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: C165509 Received: 2021/09/03, 15:17

Sample Matrix: Water # Samples Received: 15

|                                             |          | Date       | Date       |                          |                          |
|---------------------------------------------|----------|------------|------------|--------------------------|--------------------------|
| Analyses                                    | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | <b>Analytical Method</b> |
| Na, K, Ca, Mg, S by CRC ICPMS (total)       | 14       | N/A        | 2021/09/09 | BBY WI-00033             | Auto Calc                |
| Na, K, Ca, Mg, S by CRC ICPMS (total)       | 1        | N/A        | 2021/09/13 | BBY WI-00033             | Auto Calc                |
| Elements by ICPMS Low Level (total)         | 13       | N/A        | 2021/09/08 | BBY7SOP-00002            | EPA 6020b R2 m           |
| Elements by ICPMS Low Level (total)         | 1        | N/A        | 2021/09/11 | BBY7SOP-00002            | EPA 6020b R2 m           |
| Nitrogen (Total)                            | 15       | N/A        | 2021/09/09 | BBY6SOP-00016            | SM 23 4500-N C m         |
| Ammonia-N Low Level (Preserved) (1)         | 15       | N/A        | 2021/09/11 | AB SOP-00007             | SM 23 4500 NH3 A G m     |
| Nitrate+Nitrite (N) (low level)             | 15       | N/A        | 2021/09/04 | BBY6SOP-00010            | SM 23 4500-NO3- I m      |
| Nitrite (N) (low level)                     | 15       | N/A        | 2021/09/04 | BBY6SOP-00010            | SM 23 4500-NO3- I m      |
| Nitrogen - Nitrate (as N) Low Level Calc    | 15       | N/A        | 2021/09/04 | BBY WI-00033             | Auto Calc                |
| Filter and HNO3 Preserve for Metals         | 14       | N/A        | 2021/09/03 | BBY7 WI-00004            | SM 23 3030B m            |
| Filter and HNO3 Preserve for Metals         | 1        | N/A        | 2021/09/13 | BBY7 WI-00004            | SM 23 3030B m            |
| pH @25°C (5)                                | 9        | N/A        | 2021/09/07 | BBY6SOP-00026            | SM 23 4500-H+ B m        |
| pH @25°C (5)                                | 6        | N/A        | 2021/09/08 | BBY6SOP-00026            | SM 23 4500-H+ B m        |
| Total Dissolved Solids - Low Level (1)      | 10       | 2021/09/08 | 2021/09/08 | AB SOP-00065             | SM 23 2540 C m           |
| Total Dissolved Solids - Low Level (1)      | 3        | 2021/09/09 | 2021/09/09 | AB SOP-00065             | SM 23 2540 C m           |
| Total Dissolved Solids - Low Level (1)      | 1        | 2021/09/18 | 2021/09/18 | AB SOP-00065             | SM 23 2540 C m           |
| Total Dissolved Solids - Low Level (1)      | 1        | 2021/09/18 | 2021/09/22 | AB SOP-00065             | SM 23 2540 C m           |
| Total Kjeldahl Nitrogen (Total)             | 15       | N/A        | 2021/09/09 | BBY WI-00033             | Auto Calc                |
| Total Phosphorus Low Level Dissolved (1, 6) | 11       | 2021/09/10 | 2021/09/11 | AB SOP-00024             | SM 23 4500-P A,B,F m     |
| Total Phosphorus Low Level Dissolved (1, 6) | 4        | 2021/09/10 | 2021/09/12 | AB SOP-00024             | SM 23 4500-P A,B,F m     |
| Total Phosphorus Low Level Total (1)        | 10       | 2021/09/10 | 2021/09/11 | AB SOP-00024             | SM 23 4500-P A,B,F m     |
| Total Phosphorus Low Level Total (1)        | 5        | 2021/09/10 | 2021/09/12 | AB SOP-00024             | SM 23 4500-P A,B,F m     |
| Total Suspended Solids (NFR)                | 11       | 2021/09/08 | 2021/09/09 | BBY6SOP-00034            | SM 23 2540 D m           |
| Total Suspended Solids (NFR)                | 4        | 2021/09/09 | 2021/09/10 | BBY6SOP-00034            | SM 23 2540 D m           |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement



Your Project #: 2021-Ketza

Your C.O.C. #: 644610-04-01, 644610-05-01

**Attention: Stephanie Lyons** 

Government of Yukon – Dept of ENV Box 2703 Whitehorse, YT Canada Y1A2C6

Report Date: 2021/09/23

Report #: R3075583 Version: 2 - Final

#### **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: C165509 Received: 2021/09/03, 15:17

Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8
- (2) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) DOC present in the sample should be considered as non-purgeable DOC. Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (4) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (5) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.
- (6) Dissolved Phosphorus > Total Phosphorus Imbalance: When applicable, Dissolved Phosphorus and Total Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.

**Encryption Key** 

Kandise Wilson Customer Solutions Representative 23 Sep 2021 18:20:11

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Customer Solutions, Western Canada Customer Experience Team

Email: customersolutionswest@bureauveritas.com

Phone# (604) 734 7276

\_\_\_\_\_

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFF263              |          | AFF264       |         |          | AFF264                |        |          |
|--------------------------------------|-------|---------------------|----------|--------------|---------|----------|-----------------------|--------|----------|
| Sampling Date                        |       | 2021/09/01<br>09:15 |          | 2021/09/01   |         |          | 2021/09/01            |        |          |
| COC Number                           |       | 644610-04-01        |          | 644610-04-01 |         |          | 644610-04-01          |        |          |
|                                      | UNITS | 2021T25-11          | QC Batch | 2021T25-12   | RDL     | QC Batch | 2021T25-12<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics                     |       |                     |          |              |         |          |                       |        |          |
| Fluoride (F)                         | mg/L  | 0.500               | A348726  | 0.120        | 0.020   | A347643  |                       |        |          |
| Calculated Parameters                |       |                     | I.       |              |         | <u>I</u> |                       |        |          |
| Dissolved Chromium III               | mg/L  | <0.00099            | A341719  | <0.00099     | 0.00099 | A341719  |                       |        |          |
| Filter and HNO3 Preservation         | N/A   | FIELD               | ONSITE   | FIELD        |         | ONSITE   |                       |        |          |
| Dissolved Hardness (CaCO3)           | mg/L  | 404                 | A341393  | 352          | 0.50    | A341393  |                       |        |          |
| Total Hardness (CaCO3)               | mg/L  | 380                 | A341392  | 330          | 0.50    | A341392  |                       |        |          |
| Nitrate (N)                          | mg/L  | 0.451               | A341410  | 0.0768       | 0.0020  | A341410  |                       |        |          |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.067               | A341594  | 0.058        | 0.020   | A341594  |                       |        |          |
| Misc. Inorganics                     |       |                     |          |              |         |          |                       |        |          |
| Conductivity                         | uS/cm | 750                 | A345394  | 630          | 2.0     | A345385  | 630                   | 2.0    | A345385  |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050            | A346114  | <0.00050     | 0.00050 | A346114  |                       |        |          |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050            | A346121  | <0.00050     | 0.00050 | A346121  |                       |        |          |
| Dissolved Organic Carbon (C)         | mg/L  | 0.35                | A347315  | 0.39         | 0.20    | A347315  |                       |        |          |
| рН                                   | рН    | 8.36                | A345387  | 8.20         | N/A     | A345379  | 8.26                  | N/A    | A345379  |
| Total Suspended Solids               | mg/L  | 3.6                 | A344551  | <1.0         | 1.0     | A344551  |                       |        |          |
| Anions                               |       |                     |          |              |         |          |                       |        |          |
| Alkalinity (PP as CaCO3)             | mg/L  | 4.1                 | A345389  | <1.0         | 1.0     | A345383  | <1.0                  | 1.0    | A345383  |
| Alkalinity (Total as CaCO3)          | mg/L  | 360                 | A345389  | 190          | 1.0     | A345383  | 190                   | 1.0    | A345383  |
| Bicarbonate (HCO3)                   | mg/L  | 430                 | A345389  | 240          | 1.0     | A345383  | 240                   | 1.0    | A345383  |
| Carbonate (CO3)                      | mg/L  | 4.9                 | A345389  | <1.0         | 1.0     | A345383  | <1.0                  | 1.0    | A345383  |
| Hydroxide (OH)                       | mg/L  | <1.0                | A345389  | <1.0         | 1.0     | A345383  | <1.0                  | 1.0    | A345383  |
| Dissolved Chloride (CI)              | mg/L  | <0.50               | A348087  | <0.50        | 0.50    | A348087  |                       |        |          |
| Dissolved Sulphate (SO4)             | mg/L  | 85                  | A348087  | 160          | 0.50    | A348087  |                       |        |          |
| Metals                               | •     |                     | -        |              | •       |          |                       |        |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099            | A343723  | <0.00099     | 0.00099 | A343723  |                       |        |          |
| Nutrients                            |       |                     |          |              |         |          |                       |        |          |
| Dissolved Phosphorus (P)             | mg/L  | <0.0010             | A347209  | <0.0010      | 0.0010  | A347209  |                       |        |          |
| Total Phosphorus (P)                 | mg/L  | 0.0034              | A347213  | <0.0010      | 0.0010  | A347455  |                       |        |          |
| Total Ammonia (N)                    | mg/L  | <0.0050             | A348557  | <0.0050      | 0.0050  | A348557  |                       |        |          |
| Nitrate plus Nitrite (N)             | mg/L  | 0.451               | A342326  | 0.0768       | 0.0020  | A342326  | 0.0776                | 0.0020 | A342326  |
| Nitrite (N)                          | mg/L  | <0.0020             | A342330  | <0.0020      | 0.0020  | A342330  | <0.0020               | 0.0020 | A342330  |
| RDL = Reportable Detection Limit     |       |                     |          |              |         |          |                       | ·      |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Sampling Date         2021/09/01<br>09:15         2021/09/01         2021/09/01           COC Number         644610-04-01         644610-04-01         644610-04-01 |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| COC Number         644610-04-01         644610-04-01         644610-04-01                                                                                           |          |
|                                                                                                                                                                     |          |
| UNITS 2021T25-11 QC Batch 2021T25-12 RDL QC Batch 2021T25-12 Lab-Dup RDL QC Batch 2021T25-12 Lab-Dup                                                                | QC Batch |
| Total Nitrogen (N) mg/L 0.518 A345060 0.134 0.020 A345060                                                                                                           |          |
| Physical Properties                                                                                                                                                 |          |
| Total Dissolved Solids mg/L 411 (1) A345116 416 (1) 1.1 A345116                                                                                                     |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

<sup>(1)</sup> Detection limits raised due to insufficient sample volume.



### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFF265       |          | AFF266       |         |          | AFF267       |         |          |
|--------------------------------------|-------|--------------|----------|--------------|---------|----------|--------------|---------|----------|
| Compliant Bata                       |       | 2021/09/01   |          | 2021/09/01   |         |          | 2021/09/01   |         |          |
| Sampling Date                        |       | 10:45        |          | 11:15        |         |          | 12:00        |         |          |
| COC Number                           |       | 644610-04-01 |          | 644610-04-01 |         |          | 644610-04-01 |         |          |
|                                      | UNITS | 2021T25-13   | QC Batch | 2021T25-14   | RDL     | QC Batch | 2021T25-15   | RDL     | QC Batch |
| Misc. Inorganics                     |       |              |          |              |         |          |              |         |          |
| Fluoride (F)                         | mg/L  | 0.084        | A347643  | 0.160        | 0.020   | A348726  | 0.120        | 0.020   | A348726  |
| Calculated Parameters                | •     |              |          |              | •       |          |              | •       |          |
| Dissolved Chromium III               | mg/L  | <0.00099     | A341719  | <0.00099     | 0.00099 | A341719  | <0.00099     | 0.00099 | A341719  |
| Filter and HNO3 Preservation         | N/A   | FIELD        | ONSITE   | FIELD        |         | ONSITE   | FIELD        |         | ONSITE   |
| Dissolved Hardness (CaCO3)           | mg/L  | 611          | A341393  | 1120         | 0.50    | A341393  | 325          | 0.50    | A341393  |
| Total Hardness (CaCO3)               | mg/L  | 580          | A341392  | 1100         | 0.50    | A341392  | 310          | 0.50    | A341392  |
| Nitrate (N)                          | mg/L  | 0.0588       | A341410  | 0.0028       | 0.0020  | A341410  | 0.0491       | 0.0020  | A341410  |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.055        | A341594  | 0.045        | 0.020   | A341594  | 0.096        | 0.020   | A341594  |
| Misc. Inorganics                     |       |              |          |              |         |          |              |         | •        |
| Conductivity                         | uS/cm | 1100         | A345385  | 1800         | 2.0     | A345385  | 610          | 2.0     | A345385  |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050     | A346114  | <0.00050     | 0.00050 | A346114  | <0.00050     | 0.00050 | A346114  |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050     | A346121  | <0.00050     | 0.00050 | A346121  | <0.00050     | 0.00050 | A346121  |
| Dissolved Organic Carbon (C)         | mg/L  | 0.20         | A347315  | <0.20        | 0.20    | A347315  | 0.32         | 0.20    | A347315  |
| рН                                   | рН    | 8.30         | A345379  | 8.18         | N/A     | A345379  | 8.13         | N/A     | A345379  |
| Total Suspended Solids               | mg/L  | 2.0          | A344664  | <1.0         | 1.0     | A344685  | 4.8          | 1.0     | A344551  |
| Anions                               |       |              |          |              |         |          |              |         |          |
| Alkalinity (PP as CaCO3)             | mg/L  | <1.0         | A345383  | <1.0         | 1.0     | A345383  | <1.0         | 1.0     | A345383  |
| Alkalinity (Total as CaCO3)          | mg/L  | 210          | A345383  | 300          | 1.0     | A345383  | 140          | 1.0     | A345383  |
| Bicarbonate (HCO3)                   | mg/L  | 260          | A345383  | 360          | 1.0     | A345383  | 180          | 1.0     | A345383  |
| Carbonate (CO3)                      | mg/L  | <1.0         | A345383  | <1.0         | 1.0     | A345383  | <1.0         | 1.0     | A345383  |
| Hydroxide (OH)                       | mg/L  | <1.0         | A345383  | <1.0         | 1.0     | A345383  | <1.0         | 1.0     | A345383  |
| Dissolved Chloride (CI)              | mg/L  | <0.50        | A348087  | 0.56         | 0.50    | A348087  | <0.50        | 0.50    | A348087  |
| Dissolved Sulphate (SO4)             | mg/L  | 370          | A348087  | 830          | 5.0     | A348087  | 180          | 0.50    | A348087  |
| Metals                               |       |              |          |              |         |          |              |         |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099     | A343723  | <0.00099     | 0.00099 | A343723  | <0.00099     | 0.00099 | A345891  |
| Nutrients                            |       |              |          |              |         |          |              |         |          |
| Dissolved Phosphorus (P)             | mg/L  | <0.0010      | A347209  | <0.0010      | 0.0010  | A347209  | <0.0010      | 0.0010  | A347209  |
| Total Phosphorus (P)                 | mg/L  | <0.0010      | A347455  | <0.0010      | 0.0010  | A347455  | <0.0010      | 0.0010  | A347213  |
| Total Ammonia (N)                    | mg/L  | <0.0050      | A348557  | <0.0050      | 0.0050  | A348557  | <0.0050      | 0.0050  | A348557  |
| Nitrate plus Nitrite (N)             | mg/L  | 0.0588       | A342326  | 0.0028       | 0.0020  | A342326  | 0.0491       | 0.0020  | A342326  |
| Nitrite (N)                          | mg/L  | <0.0020      | A342330  | <0.0020      | 0.0020  | A342330  | <0.0020      | 0.0020  | A342330  |
| Total Nitrogen (N)                   | mg/L  | 0.114        | A345060  | 0.048        | 0.020   | A345060  | 0.145        | 0.020   | A343841  |
| RDL = Reportable Detection Limit     |       |              |          |              |         |          |              |         |          |
| NI/A Nick Amelicable                 |       |              |          |              |         |          |              |         |          |

N/A = Not Applicable



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

|                                  |       | 1            | 1        |              |     |          | I            |     | 1        |
|----------------------------------|-------|--------------|----------|--------------|-----|----------|--------------|-----|----------|
| BV Labs ID                       |       | AFF265       |          | AFF266       |     |          | AFF267       |     |          |
| Samuling Data                    |       | 2021/09/01   |          | 2021/09/01   |     |          | 2021/09/01   |     |          |
| Sampling Date                    |       | 10:45        |          | 11:15        |     |          | 12:00        |     |          |
| COC Number                       |       | 644610-04-01 |          | 644610-04-01 |     |          | 644610-04-01 |     |          |
|                                  | UNITS | 2021T25-13   | QC Batch | 2021T25-14   | RDL | QC Batch | 2021T25-15   | RDL | QC Batch |
| Physical Properties              |       |              |          |              |     |          |              |     |          |
| Total Dissolved Solids           | mg/L  | 795 (1)      | A345116  | 1520 (1)     | 1.1 | A345116  | 411 (1)      | 1.2 | A345116  |
| RDL = Reportable Detection Limit |       |              |          |              |     |          |              |     |          |
| MDE - Reportable Detection Limit |       |              |          |              |     |          |              |     |          |

<sup>(1)</sup> Detection limits raised due to insufficient sample volume.



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFF267                |        |          | AFF268       |         |          | AFF268                |      |          |
|--------------------------------------|-------|-----------------------|--------|----------|--------------|---------|----------|-----------------------|------|----------|
| Sampling Data                        |       | 2021/09/01            |        |          | 2021/09/01   |         |          | 2021/09/01            |      |          |
| Sampling Date                        |       | 12:00                 |        |          | 11:45        |         |          | 11:45                 |      |          |
| COC Number                           |       | 644610-04-01          |        |          | 644610-04-01 |         |          | 644610-04-01          |      |          |
|                                      | UNITS | 2021T25-15<br>Lab-Dup | RDL    | QC Batch | 2021T25-16   | RDL     | QC Batch | 2021T25-16<br>Lab-Dup | RDL  | QC Batch |
| Misc. Inorganics                     |       |                       |        |          |              |         |          |                       |      |          |
| Fluoride (F)                         | mg/L  |                       |        |          | <0.020       | 0.020   | A348726  |                       |      |          |
| Calculated Parameters                |       |                       |        |          |              |         |          |                       | •    |          |
| Dissolved Chromium III               | mg/L  |                       |        |          | <0.00099     | 0.00099 | A341719  |                       |      |          |
| Filter and HNO3 Preservation         | N/A   |                       |        |          | FIELD        |         | ONSITE   |                       |      |          |
| Dissolved Hardness (CaCO3)           | mg/L  |                       |        |          | <0.50        | 0.50    | A341393  |                       |      |          |
| Total Hardness (CaCO3)               | mg/L  |                       |        |          | <0.50        | 0.50    | A341392  |                       |      |          |
| Nitrate (N)                          | mg/L  |                       |        |          | <0.0020      | 0.0020  | A341410  |                       |      |          |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  |                       |        |          | 0.022        | 0.020   | A341594  |                       |      |          |
| Misc. Inorganics                     |       |                       |        |          |              |         |          |                       |      |          |
| Conductivity                         | uS/cm |                       |        |          | <2.0         | 2.0     | A345394  |                       |      |          |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  |                       |        |          | <0.00050     | 0.00050 | A346114  |                       |      |          |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  |                       |        |          | <0.00050     | 0.00050 | A346121  |                       |      |          |
| Dissolved Organic Carbon (C)         | mg/L  |                       |        |          | <0.20        | 0.20    | A347315  | <0.20                 | 0.20 | A347315  |
| рН                                   | рН    |                       |        |          | 6.34         | N/A     | A345387  |                       |      |          |
| Total Suspended Solids               | mg/L  |                       |        |          | <1.0         | 1.0     | A344685  |                       |      |          |
| Anions                               |       |                       |        |          |              |         |          |                       |      |          |
| Alkalinity (PP as CaCO3)             | mg/L  |                       |        |          | <1.0         | 1.0     | A345389  |                       |      |          |
| Alkalinity (Total as CaCO3)          | mg/L  |                       |        |          | 1.2          | 1.0     | A345389  |                       |      |          |
| Bicarbonate (HCO3)                   | mg/L  |                       |        |          | 1.5          | 1.0     | A345389  |                       |      |          |
| Carbonate (CO3)                      | mg/L  |                       |        |          | <1.0         | 1.0     | A345389  |                       |      |          |
| Hydroxide (OH)                       | mg/L  |                       |        |          | <1.0         | 1.0     | A345389  |                       |      |          |
| Dissolved Chloride (CI)              | mg/L  |                       |        |          | <0.50        | 0.50    | A351779  | <0.50                 | 0.50 | A351779  |
| Dissolved Sulphate (SO4)             | mg/L  |                       |        |          | <0.50        | 0.50    | A351779  | <0.50                 | 0.50 | A351779  |
| Metals                               | •     |                       |        |          |              |         |          |                       | •    |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  |                       |        |          | <0.00099     | 0.00099 | A343723  |                       |      |          |
| Nutrients                            |       |                       |        |          |              |         |          |                       | •    |          |
| Dissolved Phosphorus (P)             | mg/L  |                       |        |          | <0.0010      | 0.0010  | A347209  |                       |      |          |
| Total Phosphorus (P)                 | mg/L  | <0.0010               | 0.0010 | A347213  | <0.0010      | 0.0010  | A347213  |                       |      |          |
| Total Ammonia (N)                    | mg/L  |                       |        |          | <0.0050      | 0.0050  | A348557  |                       |      |          |
| Nitrate plus Nitrite (N)             | mg/L  |                       |        |          | <0.0020      | 0.0020  | A342326  |                       |      |          |
| Nitrite (N)                          | mg/L  |                       |        |          | <0.0020      | 0.0020  | A342330  |                       |      |          |
| RDL = Reportable Detection Limit     |       |                       |        |          |              |         |          |                       |      |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID             |       | AFF267                |     |          | AFF268              |       |          | AFF268                |     |          |
|------------------------|-------|-----------------------|-----|----------|---------------------|-------|----------|-----------------------|-----|----------|
| Sampling Date          |       | 2021/09/01<br>12:00   |     |          | 2021/09/01<br>11:45 |       |          | 2021/09/01<br>11:45   |     |          |
| COC Number             |       | 644610-04-01          |     |          | 644610-04-01        |       |          | 644610-04-01          |     |          |
|                        | UNITS | 2021T25-15<br>Lab-Dup | RDL | QC Batch | 2021T25-16          | RDL   | QC Batch | 2021T25-16<br>Lab-Dup | RDL | QC Batch |
| Total Nitrogen (N)     | mg/L  |                       |     |          | 0.022               | 0.020 | A345060  |                       |     |          |
| Physical Properties    |       |                       |     |          |                     |       |          |                       |     |          |
| Total Dissolved Solids | mg/L  |                       |     |          | 2.0 (1)             | 1.0   | A357208  |                       |     |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

(1) Sample was originally processed within hold time. Data quality required investigation. Re-analysis was completed past recommended hold time.



### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFF269       |          | AFF270       |         |          | AFF271       |         |          |
|--------------------------------------|-------|--------------|----------|--------------|---------|----------|--------------|---------|----------|
| Samuling Data                        |       | 2021/09/01   |          | 2021/09/01   |         |          | 2021/09/01   |         |          |
| Sampling Date                        |       | 12:30        |          | 13:15        |         |          | 14:15        |         |          |
| COC Number                           |       | 644610-04-01 |          | 644610-04-01 |         |          | 644610-04-01 |         |          |
|                                      | UNITS | 2021T25-17   | QC Batch | 2021T25-18   | RDL     | QC Batch | 2021T25-19   | RDL     | QC Batch |
| Misc. Inorganics                     |       |              |          |              |         |          |              |         |          |
| Fluoride (F)                         | mg/L  | 0.090        | A348726  | 0.027        | 0.020   | A348726  | 0.170        | 0.020   | A348726  |
| Calculated Parameters                |       |              | •        |              | •       |          |              | •       |          |
| Dissolved Chromium III               | mg/L  | <0.00099     | A341719  | <0.00099     | 0.00099 | A341719  | <0.00099     | 0.00099 | A341719  |
| Filter and HNO3 Preservation         | N/A   | FIELD        | ONSITE   | FIELD        |         | ONSITE   | FIELD        |         | ONSITE   |
| Dissolved Hardness (CaCO3)           | mg/L  | 307          | A341393  | 336          | 0.50    | A341393  | 343          | 0.50    | A341393  |
| Total Hardness (CaCO3)               | mg/L  | 300          | A341392  | 320          | 0.50    | A341392  | 330          | 0.50    | A341392  |
| Nitrate (N)                          | mg/L  | 0.0592       | A341410  | 0.0352       | 0.0020  | A341410  | 0.0218       | 0.0020  | A341410  |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.055        | A341594  | 0.037        | 0.020   | A341594  | 0.048        | 0.020   | A341594  |
| Misc. Inorganics                     |       |              |          |              |         |          |              |         |          |
| Conductivity                         | uS/cm | 590          | A345394  | 600          | 2.0     | A345394  | 650          | 2.0     | A345394  |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050     | A346114  | <0.00050     | 0.00050 | A346114  | <0.00050     | 0.00050 | A346114  |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050     | A346121  | <0.00050     | 0.00050 | A346121  | <0.00050     | 0.00050 | A346121  |
| Dissolved Organic Carbon (C)         | mg/L  | <0.20        | A348719  | 0.38         | 0.20    | A347315  | <0.20        | 0.20    | A348719  |
| рН                                   | рН    | 8.15         | A345387  | 8.34         | N/A     | A345387  | 8.00         | N/A     | A345387  |
| Total Suspended Solids               | mg/L  | 2.8          | A344551  | 1.2          | 1.0     | A344551  | 12           | 1.0     | A344551  |
| Anions                               |       |              |          |              |         |          |              |         |          |
| Alkalinity (PP as CaCO3)             | mg/L  | <1.0         | A345389  | 2.0          | 1.0     | A345389  | <1.0         | 1.0     | A345389  |
| Alkalinity (Total as CaCO3)          | mg/L  | 150          | A345389  | 220          | 1.0     | A345389  | 110          | 1.0     | A345389  |
| Bicarbonate (HCO3)                   | mg/L  | 190          | A345389  | 260          | 1.0     | A345389  | 140          | 1.0     | A345389  |
| Carbonate (CO3)                      | mg/L  | <1.0         | A345389  | 2.4          | 1.0     | A345389  | <1.0         | 1.0     | A345389  |
| Hydroxide (OH)                       | mg/L  | <1.0         | A345389  | <1.0         | 1.0     | A345389  | <1.0         | 1.0     | A345389  |
| Dissolved Chloride (CI)              | mg/L  | <0.50        | A348087  | <0.50        | 0.50    | A348087  | <0.50        | 0.50    | A348087  |
| Dissolved Sulphate (SO4)             | mg/L  | 160          | A348087  | 130          | 0.50    | A348087  | 210          | 5.0     | A348087  |
| Metals                               |       |              |          |              |         |          |              |         |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099     | A345891  | <0.00099     | 0.00099 | A345891  | <0.00099     | 0.00099 | A345891  |
| Nutrients                            |       |              |          |              |         |          |              |         |          |
| Dissolved Phosphorus (P)             | mg/L  | <0.0010      | A347443  | <0.0010      | 0.0010  | A347209  | <0.0010      | 0.0010  | A347443  |
| Total Phosphorus (P)                 | mg/L  | <0.0010      | A347450  | <0.0010      | 0.0010  | A347213  | 0.0017       | 0.0010  | A347213  |
| Total Ammonia (N)                    | mg/L  | <0.0050      | A348557  | <0.0050      | 0.0050  | A348557  | <0.0050      | 0.0050  | A348557  |
| Nitrate plus Nitrite (N)             | mg/L  | 0.0592       | A342326  | 0.0352       | 0.0020  | A342326  | 0.0218       | 0.0020  | A342326  |
| Nitrite (N)                          | mg/L  | <0.0020      | A342330  | <0.0020      | 0.0020  | A342330  | <0.0020      | 0.0020  | A342330  |
| Total Nitrogen (N)                   | mg/L  | 0.114        | A345060  | 0.073        | 0.020   | A345060  | 0.069        | 0.020   | A345060  |
| RDL = Reportable Detection Limit     |       |              |          |              |         |          |              |         |          |
| NI/A Nick Amelicable                 |       |              |          |              |         |          |              |         |          |

N/A = Not Applicable



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                                 |       | AFF269                    |                     | AFF270                       |     |                  | AFF271                    |     |                  |
|--------------------------------------------|-------|---------------------------|---------------------|------------------------------|-----|------------------|---------------------------|-----|------------------|
| Samuling Data                              |       | 2021/09/01                |                     | 2021/09/01                   |     |                  | 2021/09/01                |     |                  |
| Sampling Date                              |       | 12:30                     |                     | 13:15                        |     |                  | 14:15                     |     |                  |
| COC Number                                 |       | 644610-04-01              |                     | 644610-04-01                 |     |                  | 644610-04-01              |     |                  |
|                                            |       |                           |                     |                              |     |                  |                           |     |                  |
|                                            | UNITS | 2021T25-17                | QC Batch            | 2021T25-18                   | RDL | QC Batch         | 2021T25-19                | RDL | QC Batch         |
| Physical Properties                        | UNITS | 2021T25-17                | QC Batch            | 2021T25-18                   | RDL | QC Batch         | 2021T25-19                | RDL | QC Batch         |
| Physical Properties Total Dissolved Solids | mg/L  | <b>2021T25-17</b> 385 (1) | QC Batch<br>A345116 | <b>2021T25-18</b><br>354 (1) | 1.1 | QC Batch A345116 | <b>2021T25-19</b> 453 (1) | 1.1 | QC Batch A345116 |

<sup>(1)</sup> Detection limits raised due to insufficient sample volume.



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFF272       |         |          | AFF272                |         |          | AFF273       |         |          |
|--------------------------------------|-------|--------------|---------|----------|-----------------------|---------|----------|--------------|---------|----------|
|                                      |       | 2021/09/01   |         |          | 2021/09/01            |         |          | 2021/09/01   |         |          |
| Sampling Date                        |       | 15:30        |         |          | 15:30                 |         |          | 15:30        |         |          |
| COC Number                           |       | 644610-04-01 |         |          | 644610-04-01          |         |          | 644610-05-01 |         |          |
|                                      | UNITS | 2021T25-20   | RDL     | QC Batch | 2021T25-20<br>Lab-Dup | RDL     | QC Batch | 2021T25-21   | RDL     | QC Batch |
| Misc. Inorganics                     |       |              |         |          |                       |         |          |              |         |          |
| Fluoride (F)                         | mg/L  | 0.040        | 0.020   | A348726  | 0.038                 | 0.020   | A348726  | 0.810        | 0.020   | A348726  |
| Calculated Parameters                |       |              |         |          |                       | •       |          |              |         |          |
| Dissolved Chromium III               | mg/L  | <0.00099     | 0.00099 | A341719  |                       |         |          | <0.00099     | 0.00099 | A341719  |
| Filter and HNO3 Preservation         | N/A   | FIELD        |         | ONSITE   |                       |         |          | FIELD        |         | ONSITE   |
| Dissolved Hardness (CaCO3)           | mg/L  | 373          | 0.50    | A341393  |                       |         |          | 644          | 0.50    | A341393  |
| Total Hardness (CaCO3)               | mg/L  | 350          | 0.50    | A341392  |                       |         |          | 630          | 0.50    | A341392  |
| Nitrate (N)                          | mg/L  | 0.0626       | 0.0020  | A341410  |                       |         |          | 0.438        | 0.0020  | A341410  |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.048        | 0.020   | A341594  |                       |         |          | 0.032        | 0.020   | A341594  |
| Misc. Inorganics                     |       |              |         |          |                       |         |          |              |         |          |
| Conductivity                         | uS/cm | 690          | 2.0     | A345409  |                       |         |          | 1100         | 2.0     | A345385  |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050     | 0.00050 | A346114  | <0.00050              | 0.00050 | A346114  | <0.00050     | 0.00050 | A346114  |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050     | 0.00050 | A346121  | <0.00050              | 0.00050 | A346121  | <0.00050     | 0.00050 | A346121  |
| Dissolved Organic Carbon (C)         | mg/L  | <0.20        | 0.20    | A348719  |                       |         |          | 0.42         | 0.20    | A347315  |
| рН                                   | рН    | 7.92         | N/A     | A345396  |                       |         |          | 8.12         | N/A     | A345379  |
| Total Suspended Solids               | mg/L  | <1.0         | 1.0     | A344551  |                       |         |          | <1.0         | 1.0     | A344546  |
| Anions                               |       |              |         |          |                       |         |          |              |         |          |
| Alkalinity (PP as CaCO3)             | mg/L  | <1.0         | 1.0     | A345397  |                       |         |          | <1.0         | 1.0     | A345383  |
| Alkalinity (Total as CaCO3)          | mg/L  | 110          | 1.0     | A345397  |                       |         |          | 200          | 1.0     | A345383  |
| Bicarbonate (HCO3)                   | mg/L  | 130          | 1.0     | A345397  |                       |         |          | 250          | 1.0     | A345383  |
| Carbonate (CO3)                      | mg/L  | <1.0         | 1.0     | A345397  |                       |         |          | <1.0         | 1.0     | A345383  |
| Hydroxide (OH)                       | mg/L  | <1.0         | 1.0     | A345397  |                       |         |          | <1.0         | 1.0     | A345383  |
| Dissolved Chloride (CI)              | mg/L  | <0.50        | 0.50    | A348160  |                       |         |          | 0.51         | 0.50    | A348087  |
| Dissolved Sulphate (SO4)             | mg/L  | 250          | 5.0     | A348160  |                       |         |          | 410          | 5.0     | A348087  |
| Metals                               |       |              | •       |          |                       |         | -        |              | •       |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099     | 0.00099 | A345891  | <0.00099              | 0.00099 | A345891  | <0.00099     | 0.00099 | A345891  |
| Nutrients                            |       |              |         |          |                       |         |          |              |         |          |
| Dissolved Phosphorus (P)             | mg/L  | 0.0022       | 0.0010  | A347443  |                       |         |          | 0.0077       | 0.0010  | A347209  |
| Total Phosphorus (P)                 | mg/L  | 0.0029       | 0.0010  | A347455  |                       |         |          | 0.014        | 0.0010  | A347213  |
| Total Ammonia (N)                    | mg/L  | <0.0050      | 0.0050  | A348552  |                       |         |          | <0.0050      | 0.0050  | A348557  |
| Nitrate plus Nitrite (N)             | mg/L  | 0.0626       | 0.0020  | A342326  |                       |         |          | 0.438        | 0.0020  | A342326  |
| Nitrite (N)                          | mg/L  | <0.0020      | 0.0020  | A342330  |                       |         |          | <0.0020      | 0.0020  | A342330  |
| DDI - Donartable Detection Limit     |       |              | •       |          |                       | •       |          |              |         |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID             |       | AFF272       |       |          | AFF272                |     |          | AFF273       |       |          |
|------------------------|-------|--------------|-------|----------|-----------------------|-----|----------|--------------|-------|----------|
| Sampling Date          |       | 2021/09/01   |       |          | 2021/09/01            |     |          | 2021/09/01   |       |          |
| Sampling Date          |       | 15:30        |       |          | 15:30                 |     |          | 15:30        |       |          |
| COC Number             |       | 644610-04-01 |       |          | 644610-04-01          |     |          | 644610-05-01 |       |          |
|                        | UNITS | 2021T25-20   | RDL   | QC Batch | 2021T25-20<br>Lab-Dup | RDL | QC Batch | 2021T25-21   | RDL   | QC Batch |
| Total Nitrogen (N)     | mg/L  | 0.111        | 0.020 | A345060  |                       |     |          | 0.470        | 0.020 | A345060  |
| Physical Properties    |       |              |       |          |                       |     |          |              |       |          |
|                        |       |              |       |          | 1                     |     | 1        |              |       | 1        |
| Total Dissolved Solids | mg/L  | 497 (1)      | 1.1   | A345116  |                       |     |          | 888 (1)      | 1.1   | A34511   |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

(1) Detection limits raised due to insufficient sample volume.

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFF274       | AFF275       |         |          | AFF275                |        |          |
|--------------------------------------|-------|--------------|--------------|---------|----------|-----------------------|--------|----------|
| Sampling Date                        |       | 2021/09/02   | 2021/09/02   |         |          | 2021/09/02            |        |          |
| Sampling Date                        |       | 10:15        | 11:00        |         |          | 11:00                 |        |          |
| COC Number                           |       | 644610-05-01 | 644610-05-01 |         |          | 644610-05-01          |        |          |
|                                      | UNITS | 2021T25-22   | 2021T25-23   | RDL     | QC Batch | 2021T25-23<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics                     |       |              |              |         |          |                       |        |          |
| Fluoride (F)                         | mg/L  | 0.046        | 0.028        | 0.020   | A348726  |                       |        |          |
| Calculated Parameters                |       |              |              |         |          |                       |        |          |
| Dissolved Chromium III               | mg/L  | <0.00099     | <0.00099     | 0.00099 | A341719  |                       |        |          |
| Filter and HNO3 Preservation         | N/A   | FIELD        | FIELD        |         | ONSITE   |                       |        |          |
| Dissolved Hardness (CaCO3)           | mg/L  | 243          | 136          | 0.50    | A341393  |                       |        |          |
| Total Hardness (CaCO3)               | mg/L  | 220          | 130          | 0.50    | A341392  |                       |        |          |
| Nitrate (N)                          | mg/L  | 0.0263       | 0.0500       | 0.0020  | A341410  |                       |        |          |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.039        | 0.039        | 0.020   | A341594  |                       |        |          |
| Misc. Inorganics                     | l     |              |              | •       | L        | •                     |        |          |
| Conductivity                         | uS/cm | 460          | 280          | 2.0     | A345385  |                       |        |          |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050     | <0.00050     | 0.00050 | A346114  |                       |        |          |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050     | <0.00050     | 0.00050 | A346121  |                       |        |          |
| Dissolved Organic Carbon (C)         | mg/L  | 0.22         | <0.20        | 0.20    | A347315  |                       |        |          |
| рН                                   | рН    | 8.12         | 7.73         | N/A     | A345379  |                       |        |          |
| Total Suspended Solids               | mg/L  | 1.6          | 2.4          | 1.0     | A346053  |                       |        |          |
| Anions                               | l     |              |              | •       | L        | •                     |        |          |
| Alkalinity (PP as CaCO3)             | mg/L  | <1.0         | <1.0         | 1.0     | A345383  |                       |        |          |
| Alkalinity (Total as CaCO3)          | mg/L  | 140          | 72           | 1.0     | A345383  |                       |        |          |
| Bicarbonate (HCO3)                   | mg/L  | 170          | 88           | 1.0     | A345383  |                       |        |          |
| Carbonate (CO3)                      | mg/L  | <1.0         | <1.0         | 1.0     | A345383  |                       |        |          |
| Hydroxide (OH)                       | mg/L  | <1.0         | <1.0         | 1.0     | A345383  |                       |        |          |
| Dissolved Chloride (Cl)              | mg/L  | <0.50        | <0.50        | 0.50    | A348087  |                       |        |          |
| Dissolved Sulphate (SO4)             | mg/L  | 110          | 65           | 0.50    | A348087  |                       |        |          |
| Metals                               | Į.    |              |              |         |          |                       |        |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099     | <0.00099     | 0.00099 | A343723  |                       |        |          |
| Nutrients                            |       |              |              | •       |          |                       |        |          |
| Dissolved Phosphorus (P)             | mg/L  | <0.0010      | <0.0010      | 0.0010  | A347209  | <0.0010               | 0.0010 | A347209  |
| Total Phosphorus (P)                 | mg/L  | <0.0010      | <0.0010      | 0.0010  | A347213  |                       |        |          |
| Total Ammonia (N)                    | mg/L  | <0.0050      | <0.0050      | 0.0050  | A348557  | <0.0050               | 0.0050 | A348557  |
| Nitrate plus Nitrite (N)             | mg/L  | 0.0263       | 0.0500       | 0.0020  | A342326  |                       |        |          |
| Nitrite (N)                          | mg/L  | <0.0020      | <0.0020      | 0.0020  | A342330  |                       |        |          |
| RDL = Reportable Detection Limit     |       |              |              | 1       | 1        | ı                     | 1      |          |
| lah Dun - Laharatan/Initiated Dunli  |       |              |              |         |          |                       |        |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID             |       | AFF274              | AFF275              |       |          | AFF275                |     |          |
|------------------------|-------|---------------------|---------------------|-------|----------|-----------------------|-----|----------|
| Sampling Date          |       | 2021/09/02<br>10:15 | 2021/09/02<br>11:00 |       |          | 2021/09/02<br>11:00   |     |          |
| COC Number             |       | 644610-05-01        | 644610-05-01        |       |          | 644610-05-01          |     |          |
|                        | UNITS | 2021T25-22          | 2021T25-23          | RDL   | QC Batch | 2021T25-23<br>Lab-Dup | RDL | QC Batch |
| Total Nitrogen (N)     | mg/L  | 0.066               | 0.089               | 0.020 | A345060  |                       |     |          |
| Physical Properties    |       |                     |                     |       | •        |                       |     | •        |
| Total Dissolved Solids | mg/L  | 263                 | 178                 | 1.0   | A346241  |                       |     |          |

RDL = Reportable Detection Limit



N/A = Not Applicable

BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID                           |       | AFF276       |          | AFF277       |         |          | AFF277                |      |          |
|--------------------------------------|-------|--------------|----------|--------------|---------|----------|-----------------------|------|----------|
| Sampling Data                        |       | 2021/09/02   |          | 2021/09/02   |         |          | 2021/09/02            |      |          |
| Sampling Date                        |       | 11:15        |          | 12:00        |         |          | 12:00                 |      |          |
| COC Number                           |       | 644610-05-01 |          | 644610-05-01 |         |          | 644610-05-01          |      |          |
|                                      | UNITS | 2021T25-24   | QC Batch | 2021T25-25   | RDL     | QC Batch | 2021T25-25<br>Lab-Dup | RDL  | QC Batch |
| Misc. Inorganics                     |       |              |          |              |         |          |                       |      |          |
| Fluoride (F)                         | mg/L  | 0.026        | A348726  | <0.020       | 0.020   | A348726  |                       |      |          |
| Calculated Parameters                |       |              |          |              |         |          |                       |      |          |
| Dissolved Chromium III               | mg/L  | <0.00099     | A341719  | <0.00099     | 0.00099 | A341719  |                       |      |          |
| Filter and HNO3 Preservation         | N/A   | LAB          | A349745  | FIELD        |         | ONSITE   |                       |      |          |
| Dissolved Hardness (CaCO3)           | mg/L  | 131          | A341393  | <0.50        | 0.50    | A341393  |                       |      |          |
| Total Hardness (CaCO3)               | mg/L  | 140          | A341392  | <0.50        | 0.50    | A341392  |                       |      |          |
| Nitrate (N)                          | mg/L  | 0.0495       | A341410  | <0.0020      | 0.0020  | A341410  |                       |      |          |
| Total Total Kjeldahl Nitrogen (Calc) | mg/L  | 0.084        | A341594  | <0.020       | 0.020   | A341594  |                       |      |          |
| Misc. Inorganics                     |       |              | •        |              |         |          |                       |      |          |
| Conductivity                         | uS/cm | 280          | A345385  | <2.0         | 2.0     | A345385  |                       |      |          |
| Strong Acid Dissoc. Cyanide (CN)     | mg/L  | <0.00050     | A346114  | <0.00050     | 0.00050 | A346114  |                       |      |          |
| Weak Acid Dissoc. Cyanide (CN)       | mg/L  | <0.00050     | A346121  | <0.00050     | 0.00050 | A346121  |                       |      |          |
| Dissolved Organic Carbon (C)         | mg/L  | <0.20        | A347315  | <0.20        | 0.20    | A348719  | <0.20                 | 0.20 | A348719  |
| рН                                   | рН    | 7.70         | A345379  | 5.66         | N/A     | A345379  |                       |      |          |
| Total Suspended Solids               | mg/L  | 2.8          | A346053  | 1.6          | 1.0     | A346053  |                       |      |          |
| Anions                               |       |              |          |              |         |          |                       |      |          |
| Alkalinity (PP as CaCO3)             | mg/L  | <1.0         | A345383  | <1.0         | 1.0     | A345383  |                       |      |          |
| Alkalinity (Total as CaCO3)          | mg/L  | 70           | A345383  | <1.0         | 1.0     | A345383  |                       |      |          |
| Bicarbonate (HCO3)                   | mg/L  | 86           | A345383  | <1.0         | 1.0     | A345383  |                       |      |          |
| Carbonate (CO3)                      | mg/L  | <1.0         | A345383  | <1.0         | 1.0     | A345383  |                       |      |          |
| Hydroxide (OH)                       | mg/L  | <1.0         | A345383  | <1.0         | 1.0     | A345383  |                       |      |          |
| Dissolved Chloride (CI)              | mg/L  | <0.50        | A348087  | <0.50        | 0.50    | A348087  |                       |      |          |
| Dissolved Sulphate (SO4)             | mg/L  | 72           | A348087  | 1.2          | 0.50    | A348087  |                       |      |          |
| Metals                               | •     |              | •        |              | •       |          |                       |      |          |
| Dissolved Hex. Chromium (Cr 6+)      | mg/L  | <0.00099     | A343723  | <0.00099     | 0.00099 | A345891  |                       |      |          |
| Nutrients                            |       |              | •        |              |         |          |                       |      |          |
| Dissolved Phosphorus (P)             | mg/L  | <0.0010      | A347209  | <0.0010      | 0.0010  | A347443  |                       |      |          |
| Total Phosphorus (P)                 | mg/L  | <0.0010      | A347213  | <0.0010      | 0.0010  | A347213  |                       |      |          |
| Total Ammonia (N)                    | mg/L  | <0.0050      | A348552  | <0.0050      | 0.0050  | A348557  |                       |      |          |
| Nitrate plus Nitrite (N)             | mg/L  | 0.0495       | A342326  | <0.0020      | 0.0020  | A342326  |                       |      |          |
| Nitrite (N)                          | mg/L  | <0.0020      | A342330  | <0.0020      | 0.0020  | A342330  |                       |      |          |
| RDL = Reportable Detection Limit     |       |              |          |              |         |          |                       |      |          |
| Lab-Dup = Laboratory Initiated Dupli | icate |              |          |              |         |          |                       |      |          |
| 1                                    |       |              |          |              |         |          |                       |      |          |



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID          |       | AFF276              |          | AFF277              |       |          | AFF277                |     |          |
|---------------------|-------|---------------------|----------|---------------------|-------|----------|-----------------------|-----|----------|
| Sampling Date       |       | 2021/09/02<br>11:15 |          | 2021/09/02<br>12:00 |       |          | 2021/09/02<br>12:00   |     |          |
| COC Number          |       | 644610-05-01        |          | 644610-05-01        |       |          | 644610-05-01          |     |          |
|                     | UNITS | 2021T25-24          | QC Batch | 2021T25-25          | RDL   | QC Batch | 2021T25-25<br>Lab-Dup | RDL | QC Batch |
| Total Nitrogen (N)  | mg/L  | 0.133               | A343841  | <0.020              | 0.020 | A345060  |                       |     |          |
| Physical Properties |       |                     |          |                     |       |          |                       |     |          |
|                     |       |                     |          |                     |       | A362419  |                       |     |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

<sup>(1)</sup> Sample was originally processed within hold time. Data quality required investigation. Re-analysis was completed past recommended hold time.



## **MERCURY BY COLD VAPOR (WATER)**

| BV Labs ID                      |              | AFF263              | AFF264             | AFF265              | AFF266              | AFF267              | AFF268              |        |                    |
|---------------------------------|--------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|--------|--------------------|
| Sampling Date                   |              | 2021/09/01<br>09:15 | 2021/09/01         | 2021/09/01<br>10:45 | 2021/09/01<br>11:15 | 2021/09/01<br>12:00 | 2021/09/01<br>11:45 |        |                    |
| COC Number                      |              | 644610-04-01        | 644610-04-01       | 644610-04-01        | 644610-04-01        | 644610-04-01        | 644610-04-01        |        |                    |
|                                 | UNITS        | 2021T25-11          | 2021T25-12         | 2021T25-13          | 2021T25-14          | 2021T25-15          | 2021T25-16          | RDL    | QC Batch           |
|                                 |              |                     |                    |                     |                     |                     |                     |        |                    |
| Elements                        |              |                     |                    |                     |                     |                     |                     |        |                    |
| Elements Dissolved Mercury (Hg) | ug/L         | <0.0019             | <0.0019            | <0.0019             | <0.0019             | <0.0019             | <0.0019             | 0.0019 | A347548            |
|                                 | ug/L<br>ug/L | <0.0019<br><0.0019  | <0.0019<br><0.0019 | <0.0019<br><0.0019  | <0.0019<br><0.0019  | <0.0019<br><0.0019  | <0.0019<br><0.0019  |        | A347548<br>A347313 |

| BV Labs ID                   |       | AFF269              | AFF270       | AFF271       | AFF272       |          | AFF273       |        |          |
|------------------------------|-------|---------------------|--------------|--------------|--------------|----------|--------------|--------|----------|
| Sampling Date                |       | 2021/09/01<br>12:30 | 2021/09/01   | 2021/09/01   | 2021/09/01   |          | 2021/09/01   |        |          |
|                              |       |                     | 13:15        | 14:15        | 15:30        |          | 15:30        |        |          |
| COC Number                   |       | 644610-04-01        | 644610-04-01 | 644610-04-01 | 644610-04-01 |          | 644610-05-01 |        |          |
|                              | UNITS | 2021T25-17          | 2021T25-18   | 2021T25-19   | 2021T25-20   | QC Batch | 2021T25-21   | RDL    | QC Batch |
| Elements                     |       |                     |              |              |              |          |              |        |          |
| Dissolved Mercury (Hg)       | ug/L  | <0.0019             | <0.0019      | <0.0019      | <0.0019      | A347548  | <0.0019      | 0.0019 | A347548  |
| Total Mercury (Hg)           | ug/L  | <0.0019             | <0.0019      | <0.0019      | <0.0019      | A347313  | <0.0019      | 0.0019 | A347795  |
| RDL = Reportable Detection L | imit  |                     |              |              |              |          |              |        |          |

| BV Labs ID             |               | AFF273                |        |          | AFF274              |          | AFF275              | AFF276              |        |          |
|------------------------|---------------|-----------------------|--------|----------|---------------------|----------|---------------------|---------------------|--------|----------|
| Sampling Date          |               | 2021/09/01<br>15:30   |        |          | 2021/09/02<br>10:15 |          | 2021/09/02<br>11:00 | 2021/09/02<br>11:15 |        |          |
| COC Number             |               | 644610-05-01          |        |          | 644610-05-01        |          | 644610-05-01        | 644610-05-01        |        |          |
|                        | UNITS         | 2021T25-21<br>Lab-Dup | RDL    | QC Batch | 2021T25-22          | QC Batch | 2021T25-23          | 2021T25-24          | RDL    | QC Batch |
| Elements               |               |                       |        |          |                     |          |                     |                     |        |          |
| Dissolved Mercury (Hg) | ug/L          |                       |        |          | <0.0019             | A343127  | <0.0019             | <0.0019             | 0.0019 | A347548  |
| Total Mercury (Hg)     | ug/L          | < 0.0019              | 0.0019 | A347795  | <0.0019             | A347795  | < 0.0019            | <0.0019             | 0.0019 | A347795  |
|                        | ∽ <i>6/</i> – | 0.00=0                | 0.00-0 |          |                     |          |                     |                     |        |          |

RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate

| BV Labs ID             |       | AFF277              |        |          |
|------------------------|-------|---------------------|--------|----------|
| Sampling Date          |       | 2021/09/02<br>12:00 |        |          |
| COC Number             |       | 644610-05-01        |        |          |
|                        | UNITS | 2021T25-25          | RDL    | QC Batch |
| Elements               |       |                     |        |          |
| Dissolved Mercury (Hg) | ug/L  | <0.0019             | 0.0019 | A347548  |
| Total Mercury (Hg)     | ug/L  | <0.0019             | 0.0019 | A347795  |
| Total Mercury (Tig)    | ~6/ L | 0.0015              |        |          |



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                     |       | AFF263              |        |          | AFF263              |        |          | AFF264       |        |          |
|--------------------------------|-------|---------------------|--------|----------|---------------------|--------|----------|--------------|--------|----------|
| Sampling Date                  |       | 2021/09/01<br>09:15 |        |          | 2021/09/01<br>09:15 |        |          | 2021/09/01   |        |          |
| COC Number                     |       | 644610-04-01        |        |          | 644610-04-01        |        |          | 644610-04-01 |        |          |
| COC Number                     |       | 644610-04-01        |        |          | 2021T25-11          |        |          | 644610-04-01 |        |          |
|                                | UNITS | 2021T25-11          | RDL    | QC Batch | Lab-Dup             | RDL    | QC Batch | 2021T25-12   | RDL    | QC Batch |
| Dissolved Metals by ICPMS      |       |                     |        |          |                     |        |          |              |        |          |
| Dissolved Aluminum (AI)        | ug/L  | 1.52                | 0.50   | A346416  | 1.43                | 0.50   | A346416  | 1.54         | 0.50   | A346416  |
| Dissolved Antimony (Sb)        | ug/L  | 39.9                | 0.020  | A346416  | 40.1                | 0.020  | A346416  | 0.941        | 0.020  | A346416  |
| Dissolved Arsenic (As)         | ug/L  | 24.3                | 0.020  | A346416  | 24.3                | 0.020  | A346416  | 0.913        | 0.020  | A346416  |
| Dissolved Barium (Ba)          | ug/L  | 29.8                | 0.020  | A346416  | 29.6                | 0.020  | A346416  | 39.1         | 0.020  | A346416  |
| Dissolved Beryllium (Be)       | ug/L  | <0.010              | 0.010  | A346416  | <0.010              | 0.010  | A346416  | <0.010       | 0.010  | A346416  |
| Dissolved Bismuth (Bi)         | ug/L  | <0.0050             | 0.0050 | A346416  | <0.0050             | 0.0050 | A346416  | <0.0050      | 0.0050 | A346416  |
| Dissolved Boron (B)            | ug/L  | 50                  | 10     | A346416  | 49                  | 10     | A346416  | <10          | 10     | A346416  |
| Dissolved Cadmium (Cd)         | ug/L  | 0.0180              | 0.0050 | A346416  | 0.0168              | 0.0050 | A346416  | 0.0069       | 0.0050 | A346416  |
| Dissolved Chromium (Cr)        | ug/L  | <0.10               | 0.10   | A346416  | <0.10               | 0.10   | A346416  | <0.10        | 0.10   | A346416  |
| Dissolved Cobalt (Co)          | ug/L  | 0.119               | 0.0050 | A346416  | 0.114               | 0.0050 | A346416  | 0.0284       | 0.0050 | A346416  |
| Dissolved Copper (Cu)          | ug/L  | 1.10                | 0.050  | A346416  | 1.12                | 0.050  | A346416  | 0.101        | 0.050  | A346416  |
| Dissolved Iron (Fe)            | ug/L  | 2.3                 | 1.0    | A346416  | 2.2                 | 1.0    | A346416  | 4.5          | 1.0    | A346416  |
| Dissolved Lead (Pb)            | ug/L  | 0.289               | 0.0050 | A346416  | 0.275               | 0.0050 | A346416  | 0.0513       | 0.0050 | A346416  |
| Dissolved Lithium (Li)         | ug/L  | 21.4                | 0.50   | A346416  | 21.5                | 0.50   | A346416  | 2.09         | 0.50   | A346416  |
| Dissolved Manganese (Mn)       | ug/L  | 1.92                | 0.050  | A346416  | 1.88                | 0.050  | A346416  | 3.13         | 0.050  | A346416  |
| Dissolved Molybdenum (Mo)      | ug/L  | 0.514               | 0.050  | A346416  | 0.487               | 0.050  | A346416  | 0.225        | 0.050  | A346416  |
| Dissolved Nickel (Ni)          | ug/L  | 0.819               | 0.020  | A346416  | 0.785               | 0.020  | A346416  | 0.168        | 0.020  | A346416  |
| Dissolved Selenium (Se)        | ug/L  | 0.182               | 0.040  | A346416  | 0.159               | 0.040  | A346416  | 0.734        | 0.040  | A346416  |
| Dissolved Silicon (Si)         | ug/L  | 2660                | 50     | A346416  | 2660                | 50     | A346416  | 2020         | 50     | A346416  |
| Dissolved Silver (Ag)          | ug/L  | <0.0050             | 0.0050 | A346416  | <0.0050             | 0.0050 | A346416  | <0.0050      | 0.0050 | A346416  |
| Dissolved Strontium (Sr)       | ug/L  | 1130                | 0.050  | A346416  | 1110                | 0.050  | A346416  | 299          | 0.050  | A346416  |
| Dissolved Tellurium (Te)       | ug/L  | <0.020              | 0.020  | A346416  | <0.020              | 0.020  | A346416  | <0.020       | 0.020  | A346416  |
| Dissolved Thallium (TI)        | ug/L  | 0.0026              | 0.0020 | A346416  | 0.0025              | 0.0020 | A346416  | <0.0020      | 0.0020 | A346416  |
| Dissolved Thorium (Th)         | ug/L  | <0.0050             | 0.0050 | A346416  | <0.0050             | 0.0050 | A346416  | <0.0050      | 0.0050 | A346416  |
| Dissolved Tin (Sn)             | ug/L  | <0.20               | 0.20   | A346416  | <0.20               | 0.20   | A346416  | <0.20        | 0.20   | A346416  |
| Dissolved Titanium (Ti)        | ug/L  | <0.50               | 0.50   | A346416  | <0.50               | 0.50   | A346416  | <0.50        | 0.50   | A346416  |
| Dissolved Tungsten (W)         | ug/L  | 0.170               | 0.010  | A346416  | 0.172               | 0.010  | A346416  | <0.010       | 0.010  | A346416  |
| Dissolved Uranium (U)          | ug/L  | 1.15                | 0.0020 | A346416  | 1.16                | 0.0020 | A346416  | 3.02         | 0.0020 | A346416  |
| Dissolved Vanadium (V)         | ug/L  | <0.20               | 0.20   | A346416  | <0.20               | 0.20   | A346416  | <0.20        | 0.20   | A346416  |
| Dissolved Zinc (Zn)            | ug/L  | 6.53                | 0.10   | A346416  | 6.43                | 0.10   | A346416  | 0.70         | 0.10   | A346416  |
| Dissolved Zirconium (Zr)       | ug/L  | <0.10               | 0.10   | A346416  | <0.10               | 0.10   | A346416  | <0.10        | 0.10   | A346416  |
| Dissolved Calcium (Ca)         | mg/L  | 70.9                | 0.050  | A342028  |                     |        |          | 77.8         | 0.050  | A342028  |
| RDI = Reportable Detection Lin | mit   |                     |        |          |                     |        |          |              |        |          |

RDL = Reportable Detection Limit



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                   |       | AFF263              |        |          | AFF263                |     |          | AFF264       |        |          |
|------------------------------|-------|---------------------|--------|----------|-----------------------|-----|----------|--------------|--------|----------|
| Sampling Date                |       | 2021/09/01<br>09:15 |        |          | 2021/09/01<br>09:15   |     |          | 2021/09/01   |        |          |
| COC Number                   |       | 644610-04-01        |        |          | 644610-04-01          |     |          | 644610-04-01 |        |          |
|                              | UNITS | 2021T25-11          | RDL    | QC Batch | 2021T25-11<br>Lab-Dup | RDL | QC Batch | 2021T25-12   | RDL    | QC Batch |
| Dissolved Magnesium (Mg)     | mg/L  | 55.2                | 0.050  | A342028  |                       |     |          | 38.3         | 0.050  | A342028  |
| Dissolved Potassium (K)      | mg/L  | 3.50                | 0.050  | A342028  |                       |     |          | 0.220        | 0.050  | A342028  |
| Dissolved Sodium (Na)        | mg/L  | 14.2                | 0.050  | A342028  |                       |     |          | 0.406        | 0.050  | A342028  |
| Dissolved Sulphur (S)        | mg/L  | 23.1                | 3.0    | A342028  |                       |     |          | 46.8         | 3.0    | A342028  |
| Total Metals by ICPMS        |       | •                   |        |          |                       |     | •        |              | •      |          |
| Total Aluminum (Al)          | ug/L  | 14.0                | 3.0    | A343719  |                       |     |          | 3.37         | 0.50   | A343687  |
| Total Antimony (Sb)          | ug/L  | 41.1                | 0.020  | A343719  |                       |     |          | 0.923        | 0.020  | A343687  |
| Total Arsenic (As)           | ug/L  | 41.1                | 0.020  | A343719  |                       |     |          | 0.998        | 0.020  | A343687  |
| Total Barium (Ba)            | ug/L  | 29.6                | 0.050  | A343719  |                       |     |          | 38.8         | 0.020  | A343687  |
| Total Beryllium (Be)         | ug/L  | <0.010              | 0.010  | A343719  |                       |     |          | <0.010       | 0.010  | A343687  |
| Total Bismuth (Bi)           | ug/L  | 0.028               | 0.010  | A343719  |                       |     |          | <0.0050      | 0.0050 | A343687  |
| Total Boron (B)              | ug/L  | 49                  | 10     | A343719  |                       |     |          | <10          | 10     | A343687  |
| Total Cadmium (Cd)           | ug/L  | 0.0245              | 0.0050 | A343719  |                       |     |          | 0.0058       | 0.0050 | A343687  |
| Total Chromium (Cr)          | ug/L  | <0.10               | 0.10   | A343719  |                       |     |          | <0.10        | 0.10   | A343687  |
| Total Cobalt (Co)            | ug/L  | 0.078               | 0.010  | A343719  |                       |     |          | 0.0219       | 0.0050 | A343687  |
| Total Copper (Cu)            | ug/L  | 3.66                | 0.10   | A343719  |                       |     |          | 0.079        | 0.050  | A343687  |
| Total Iron (Fe)              | ug/L  | 188                 | 5.0    | A343719  |                       |     |          | 19.6         | 1.0    | A343687  |
| Total Lead (Pb)              | ug/L  | 13.3                | 0.020  | A343719  |                       |     |          | 0.605        | 0.0050 | A343687  |
| Total Lithium (Li)           | ug/L  | 21.4                | 0.50   | A343719  |                       |     |          | 2.07         | 0.50   | A343687  |
| Total Manganese (Mn)         | ug/L  | 11.1                | 0.10   | A343719  |                       |     |          | 3.70         | 0.050  | A343687  |
| Total Molybdenum (Mo)        | ug/L  | 0.233               | 0.050  | A343719  |                       |     |          | 0.248        | 0.050  | A343687  |
| Total Nickel (Ni)            | ug/L  | 0.94                | 0.10   | A343719  |                       |     |          | 0.190        | 0.020  | A343687  |
| Total Selenium (Se)          | ug/L  | 0.192               | 0.040  | A343719  |                       |     |          | 0.864        | 0.040  | A343687  |
| Total Silicon (Si)           | ug/L  | 2750                | 50     | A343719  |                       |     |          | 2140         | 50     | A343687  |
| Total Silver (Ag)            | ug/L  | 0.061               | 0.010  | A343719  |                       |     |          | <0.0050      | 0.0050 | A343687  |
| Total Strontium (Sr)         | ug/L  | 1130                | 0.050  | A343719  |                       |     |          | 303          | 0.050  | A343687  |
| Total Tellurium (Te)         | ug/L  | <0.020              | 0.020  | A343719  |                       |     |          | <0.020       | 0.020  | A343687  |
| Total Thallium (TI)          | ug/L  | 0.0037              | 0.0020 | A343719  |                       |     |          | <0.0020      | 0.0020 | A343687  |
| Total Thorium (Th)           | ug/L  | <0.020              | 0.020  | A343719  |                       |     |          | <0.0050      | 0.0050 | A343687  |
| Total Tin (Sn)               | ug/L  | <0.20               | 0.20   | A343719  |                       |     |          | <0.20        | 0.20   | A343687  |
| Total Titanium (Ti)          | ug/L  | <2.0                | 2.0    | A343719  |                       |     |          | <0.50        | 0.50   | A343687  |
| Total Tungsten (W)           | ug/L  | 0.132               | 0.010  | A343719  |                       |     |          | <0.010       | 0.010  | A343687  |
| Total Uranium (U)            | ug/L  | 1.09                | 0.0050 | A343719  |                       |     |          | 2.85         | 0.0020 | A343687  |
| RDL = Reportable Detection L |       |                     |        |          |                       |     |          |              | •      |          |



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID           |       | AFF263              |      |          | AFF263                |     |          | AFF264       |       |          |
|----------------------|-------|---------------------|------|----------|-----------------------|-----|----------|--------------|-------|----------|
| Sampling Date        |       | 2021/09/01<br>09:15 |      |          | 2021/09/01<br>09:15   |     |          | 2021/09/01   |       |          |
| COC Number           |       | 644610-04-01        |      |          | 644610-04-01          |     |          | 644610-04-01 |       |          |
|                      | UNITS | 2021T25-11          | RDL  | QC Batch | 2021T25-11<br>Lab-Dup | RDL | QC Batch | 2021T25-12   | RDL   | QC Batch |
| Total Vanadium (V)   | ug/L  | <0.20               | 0.20 | A343719  |                       |     |          | <0.20        | 0.20  | A343687  |
| Total Zinc (Zn)      | ug/L  | 8.3                 | 1.0  | A343719  |                       |     |          | 0.73         | 0.10  | A343687  |
| Total Zirconium (Zr) | ug/L  | <0.10               | 0.10 | A343719  |                       |     |          | <0.10        | 0.10  | A343687  |
| Total Calcium (Ca)   | mg/L  | 68.1                | 0.25 | A341601  |                       |     |          | 73.7         | 0.050 | A341601  |
| Total Magnesium (Mg) | mg/L  | 51.1                | 0.25 | A341601  |                       |     |          | 35.8         | 0.050 | A341601  |
| Total Potassium (K)  | mg/L  | 3.28                | 0.25 | A341601  |                       |     |          | 0.214        | 0.050 | A341601  |
| Total Sodium (Na)    | mg/L  | 13.3                | 0.25 | A341601  |                       |     |          | 0.433        | 0.050 | A341601  |
| Total Sulphur (S)    | mg/L  | 23.6                | 3.0  | A341601  |                       |     |          | 50.3         | 3.0   | A341601  |

RDL = Reportable Detection Limit



s Job #: C165509 Government of Yukon – Dept of ENV
Date: 2021/09/23 Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                    |       | AFF264                |     |          | AFF265       |        | AFF266       |        |          |
|-------------------------------|-------|-----------------------|-----|----------|--------------|--------|--------------|--------|----------|
| Sampling Date                 |       | 2021/09/01            |     |          | 2021/09/01   |        | 2021/09/01   |        |          |
| Sampling Date                 |       | 2021/03/01            |     |          | 10:45        |        | 11:15        |        |          |
| COC Number                    |       | 644610-04-01          |     |          | 644610-04-01 |        | 644610-04-01 |        |          |
|                               | UNITS | 2021T25-12<br>Lab-Dup | RDL | QC Batch | 2021T25-13   | RDL    | 2021T25-14   | RDL    | QC Batch |
| Dissolved Metals by ICPMS     |       |                       |     |          |              |        |              |        |          |
| Dissolved Aluminum (AI)       | ug/L  |                       |     |          | 2.11         | 0.50   | 3.1          | 1.0    | A346416  |
| Dissolved Antimony (Sb)       | ug/L  |                       |     |          | 0.297        | 0.020  | 0.231        | 0.040  | A346416  |
| Dissolved Arsenic (As)        | ug/L  |                       |     |          | 0.110        | 0.020  | 0.239        | 0.040  | A346416  |
| Dissolved Barium (Ba)         | ug/L  |                       |     |          | 32.3         | 0.020  | 13.9         | 0.040  | A346416  |
| Dissolved Beryllium (Be)      | ug/L  |                       |     |          | <0.010       | 0.010  | <0.020       | 0.020  | A346416  |
| Dissolved Bismuth (Bi)        | ug/L  |                       |     |          | <0.0050      | 0.0050 | <0.010       | 0.010  | A346416  |
| Dissolved Boron (B)           | ug/L  |                       |     |          | <10          | 10     | <20          | 20     | A346416  |
| Dissolved Cadmium (Cd)        | ug/L  |                       |     |          | <0.0050      | 0.0050 | <0.010       | 0.010  | A346416  |
| Dissolved Chromium (Cr)       | ug/L  |                       |     |          | <0.10        | 0.10   | <0.20        | 0.20   | A346416  |
| Dissolved Cobalt (Co)         | ug/L  |                       |     |          | 0.0349       | 0.0050 | 0.036        | 0.010  | A346416  |
| Dissolved Copper (Cu)         | ug/L  |                       |     |          | 0.057        | 0.050  | <0.10        | 0.10   | A346416  |
| Dissolved Iron (Fe)           | ug/L  |                       |     |          | <1.0         | 1.0    | <2.0         | 2.0    | A346416  |
| Dissolved Lead (Pb)           | ug/L  |                       |     |          | 0.0134       | 0.0050 | <0.010       | 0.010  | A346416  |
| Dissolved Lithium (Li)        | ug/L  |                       |     |          | 4.03         | 0.50   | 6.6          | 1.0    | A346416  |
| Dissolved Manganese (Mn)      | ug/L  |                       |     |          | 0.365        | 0.050  | <0.10        | 0.10   | A346416  |
| Dissolved Molybdenum (Mo)     | ug/L  |                       |     |          | 0.270        | 0.050  | 0.80         | 0.10   | A346416  |
| Dissolved Nickel (Ni)         | ug/L  |                       |     |          | 0.271        | 0.020  | 2.07         | 0.040  | A346416  |
| Dissolved Selenium (Se)       | ug/L  |                       |     |          | 0.879        | 0.040  | 1.06         | 0.080  | A346416  |
| Dissolved Silicon (Si)        | ug/L  |                       |     |          | 2440         | 50     | 2300         | 100    | A346416  |
| Dissolved Silver (Ag)         | ug/L  |                       |     |          | <0.0050      | 0.0050 | <0.010       | 0.010  | A346416  |
| Dissolved Strontium (Sr)      | ug/L  |                       |     |          | 545          | 0.050  | 733          | 0.10   | A346416  |
| Dissolved Tellurium (Te)      | ug/L  |                       |     |          | <0.020       | 0.020  | <0.040       | 0.040  | A346416  |
| Dissolved Thallium (TI)       | ug/L  |                       |     |          | <0.0020      | 0.0020 | <0.0040      | 0.0040 | A346416  |
| Dissolved Thorium (Th)        | ug/L  |                       |     |          | <0.0050      | 0.0050 | <0.010       | 0.010  | A346416  |
| Dissolved Tin (Sn)            | ug/L  |                       |     |          | <0.20        | 0.20   | <0.40        | 0.40   | A346416  |
| Dissolved Titanium (Ti)       | ug/L  |                       |     |          | <0.50        | 0.50   | <1.0         | 1.0    | A346416  |
| Dissolved Tungsten (W)        | ug/L  |                       |     |          | <0.010       | 0.010  | 0.073        | 0.020  | A346416  |
| Dissolved Uranium (U)         | ug/L  |                       |     |          | 8.07         | 0.0020 | 25.1         | 0.0040 | A346416  |
| Dissolved Vanadium (V)        | ug/L  |                       |     |          | <0.20        | 0.20   | <0.40        | 0.40   | A346416  |
| Dissolved Zinc (Zn)           | ug/L  |                       |     |          | 1.15         | 0.10   | 1.80         | 0.20   | A346416  |
| Dissolved Zirconium (Zr)      | ug/L  |                       |     |          | <0.10        | 0.10   | <0.20        | 0.20   | A346416  |
| Dissolved Calcium (Ca)        | mg/L  |                       |     |          | 107          | 0.050  | 162          | 0.10   | A342028  |
| RDI = Reportable Detection Li |       |                       |     |          | •            |        | -            |        |          |

RDL = Reportable Detection Limit

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                    |       | AFF264                |        |          | AFF265              |        | AFF266              |        |          |
|-------------------------------|-------|-----------------------|--------|----------|---------------------|--------|---------------------|--------|----------|
| Sampling Date                 |       | 2021/09/01            |        |          | 2021/09/01<br>10:45 |        | 2021/09/01<br>11:15 |        |          |
| COC Number                    |       | 644610-04-01          |        |          | 644610-04-01        |        | 644610-04-01        |        |          |
|                               | UNITS | 2021T25-12<br>Lab-Dup | RDL    | QC Batch | 2021T25-13          | RDL    | 2021T25-14          | RDL    | QC Batch |
| Dissolved Magnesium (Mg)      | mg/L  |                       |        |          | 83.6                | 0.050  | 175                 | 0.10   | A342028  |
| Dissolved Potassium (K)       | mg/L  |                       |        |          | 0.507               | 0.050  | 0.55                | 0.10   | A342028  |
| Dissolved Sodium (Na)         | mg/L  |                       |        |          | 0.515               | 0.050  | 0.43                | 0.10   | A342028  |
| Dissolved Sulphur (S)         | mg/L  |                       |        |          | 125                 | 3.0    | 284                 | 6.0    | A342028  |
| Total Metals by ICPMS         |       |                       |        |          |                     |        |                     |        |          |
| Total Aluminum (AI)           | ug/L  | 3.36                  | 0.50   | A343687  | 8.54                | 0.50   | 4.3                 | 1.0    | A343687  |
| Total Antimony (Sb)           | ug/L  | 0.902                 | 0.020  | A343687  | 0.284               | 0.020  | 0.208               | 0.040  | A343687  |
| Total Arsenic (As)            | ug/L  | 1.01                  | 0.020  | A343687  | 0.135               | 0.020  | 0.293               | 0.040  | A343687  |
| Total Barium (Ba)             | ug/L  | 37.8                  | 0.020  | A343687  | 31.2                | 0.020  | 13.9                | 0.040  | A343687  |
| Total Beryllium (Be)          | ug/L  | <0.010                | 0.010  | A343687  | <0.010              | 0.010  | <0.020              | 0.020  | A343687  |
| Total Bismuth (Bi)            | ug/L  | <0.0050               | 0.0050 | A343687  | <0.0050             | 0.0050 | <0.010              | 0.010  | A343687  |
| Total Boron (B)               | ug/L  | <10                   | 10     | A343687  | <10                 | 10     | <20                 | 20     | A343687  |
| Total Cadmium (Cd)            | ug/L  | 0.0058                | 0.0050 | A343687  | <0.0050             | 0.0050 | <0.010              | 0.010  | A343687  |
| Total Chromium (Cr)           | ug/L  | <0.10                 | 0.10   | A343687  | 0.12                | 0.10   | <0.20               | 0.20   | A343687  |
| Total Cobalt (Co)             | ug/L  | 0.0259                | 0.0050 | A343687  | 0.0422              | 0.0050 | 0.032               | 0.010  | A343687  |
| Total Copper (Cu)             | ug/L  | 0.079                 | 0.050  | A343687  | 0.064               | 0.050  | <0.10               | 0.10   | A343687  |
| Total Iron (Fe)               | ug/L  | 19.7                  | 1.0    | A343687  | 29.1                | 1.0    | 2.7                 | 2.0    | A343687  |
| Total Lead (Pb)               | ug/L  | 0.603                 | 0.0050 | A343687  | 0.145               | 0.0050 | 0.036               | 0.010  | A343687  |
| Total Lithium (Li)            | ug/L  | 2.06                  | 0.50   | A343687  | 3.84                | 0.50   | 6.4                 | 1.0    | A343687  |
| Total Manganese (Mn)          | ug/L  | 3.55                  | 0.050  | A343687  | 1.30                | 0.050  | 0.56                | 0.10   | A343687  |
| Total Molybdenum (Mo)         | ug/L  | 0.247                 | 0.050  | A343687  | 0.250               | 0.050  | 0.85                | 0.10   | A343687  |
| Total Nickel (Ni)             | ug/L  | 0.164                 | 0.020  | A343687  | 0.263               | 0.020  | 1.73                | 0.040  | A343687  |
| Total Selenium (Se)           | ug/L  | 0.830                 | 0.040  | A343687  | 0.980               | 0.040  | 1.02                | 0.080  | A343687  |
| Total Silicon (Si)            | ug/L  | 2200                  | 50     | A343687  | 2410                | 50     | 2190                | 100    | A343687  |
| Total Silver (Ag)             | ug/L  | <0.0050               | 0.0050 | A343687  | <0.0050             | 0.0050 | <0.010              | 0.010  | A343687  |
| Total Strontium (Sr)          | ug/L  | 299                   | 0.050  | A343687  | 516                 | 0.050  | 724                 | 0.10   | A343687  |
| Total Tellurium (Te)          | ug/L  | <0.020                | 0.020  | A343687  | <0.020              | 0.020  | <0.040              | 0.040  | A343687  |
| Total Thallium (TI)           | ug/L  | <0.0020               | 0.0020 | A343687  | <0.0020             | 0.0020 | <0.0040             | 0.0040 | A343687  |
| Total Thorium (Th)            | ug/L  | <0.0050               | 0.0050 | A343687  | 0.0059              | 0.0050 | <0.010              | 0.010  | A343687  |
| Total Tin (Sn)                | ug/L  | <0.20                 | 0.20   | A343687  | <0.20               | 0.20   | <0.40               | 0.40   | A343687  |
| Total Titanium (Ti)           | ug/L  | <0.50                 | 0.50   | A343687  | <0.50               | 0.50   | <1.0                | 1.0    | A343687  |
| Total Tungsten (W)            | ug/L  | <0.010                | 0.010  | A343687  | <0.010              | 0.010  | 0.187               | 0.020  | A343687  |
| Total Uranium (U)             | ug/L  | 2.83                  | 0.0020 | A343687  | 7.59                | 0.0020 | 24.0                | 0.0040 | A343687  |
| RDL = Reportable Detection Li | mit   |                       |        |          |                     |        |                     |        |          |

RDL = Reportable Detection Limit



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID           |       | AFF264                |      |          | AFF265              |       | AFF266              |      |          |
|----------------------|-------|-----------------------|------|----------|---------------------|-------|---------------------|------|----------|
| Sampling Date        |       | 2021/09/01            |      |          | 2021/09/01<br>10:45 |       | 2021/09/01<br>11:15 |      |          |
| COC Number           |       | 644610-04-01          |      |          | 644610-04-01        |       | 644610-04-01        |      |          |
|                      | UNITS | 2021T25-12<br>Lab-Dup | RDL  | QC Batch | 2021T25-13          | RDL   | 2021T25-14          | RDL  | QC Batch |
| Total Vanadium (V)   | ug/L  | <0.20                 | 0.20 | A343687  | <0.20               | 0.20  | <0.40               | 0.40 | A343687  |
| Total Zinc (Zn)      | ug/L  | 0.76                  | 0.10 | A343687  | 1.14                | 0.10  | 1.93                | 0.20 | A343687  |
| Total Zirconium (Zr) | ug/L  | <0.10                 | 0.10 | A343687  | <0.10               | 0.10  | <0.20               | 0.20 | A343687  |
| Total Calcium (Ca)   | mg/L  |                       |      |          | 103                 | 0.050 | 159                 | 0.10 | A341601  |
| Total Magnesium (Mg) | mg/L  |                       |      |          | 78.4                | 0.050 | 169                 | 0.10 | A341601  |
| Total Potassium (K)  | mg/L  |                       |      |          | 0.464               | 0.050 | 0.54                | 0.10 | A341601  |
| Total Sodium (Na)    | mg/L  |                       |      |          | 0.510               | 0.050 | 0.43                | 0.10 | A341601  |
| Total Sulphur (S)    | mg/L  |                       |      |          | 122                 | 3.0   | 268                 | 6.0  | A341601  |

RDL = Reportable Detection Limit



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                     |       | AEE267              | AEE269              | A E E 2 6 0         | A E E 2 7 0         |            | A E E 2 7 1         |        |            |
|--------------------------------|-------|---------------------|---------------------|---------------------|---------------------|------------|---------------------|--------|------------|
| DV LdDS ID                     |       | AFF267              | AFF268              | AFF269              | AFF270              |            | AFF271              |        |            |
| Sampling Date                  |       | 2021/09/01<br>12:00 | 2021/09/01<br>11:45 | 2021/09/01<br>12:30 | 2021/09/01<br>13:15 |            | 2021/09/01<br>14:15 |        |            |
| COC Number                     |       | 644610-04-01        | 644610-04-01        | 644610-04-01        | 644610-04-01        |            | 644610-04-01        |        |            |
| COC NUMBER                     | UNITS | 2021T25-15          | 2021T25-16          | 2021T25-17          | 2021T25-18          | QC Batch   | 2021T25-19          | RDL    | QC Batch   |
| D' I Ind I I I IODAG           | ONITS | 2021123-13          | 2021125-10          | 2021125-17          | 2021125-10          | QC Daten   | 2021123-13          | NDL    | QC Daten   |
| Dissolved Metals by ICPMS      |       | _                   |                     |                     |                     |            |                     |        |            |
| Dissolved Aluminum (Al)        | ug/L  | 140                 | 1.17                | 76.2                | 1.74                | A346416    | 228                 | 0.50   | A346095    |
| Dissolved Antimony (Sb)        | ug/L  | 0.222               | <0.020              | 0.223               | 0.297               | A346416    | 0.218               | 0.020  | A346095    |
| Dissolved Arsenic (As)         | ug/L  | 4.83                | <0.020              | 6.50                | 0.345               | A346416    | 2.80                | 0.020  | A346095    |
| Dissolved Barium (Ba)          | ug/L  | 17.7                | <0.020              | 13.6                | 21.2                | A346416    | 24.8                | 0.020  | A346095    |
| Dissolved Beryllium (Be)       | ug/L  | <0.010              | <0.010              | <0.010              | <0.010              | A346416    | <0.010              | 0.010  | A346095    |
| Dissolved Bismuth (Bi)         | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | A346416    | <0.0050             | 0.0050 | A346095    |
| Dissolved Boron (B)            | ug/L  | <10                 | <10                 | <10                 | <10                 | A346416    | <10                 | 10     | A346095    |
| Dissolved Cadmium (Cd)         | ug/L  | 0.244               | <0.0050             | 0.119               | <0.0050             | A346416    | 0.494               | 0.0050 | A346095    |
| Dissolved Chromium (Cr)        | ug/L  | <0.10               | <0.10               | <0.10               | <0.10               | A346416    | <0.10               | 0.10   | A346095    |
| Dissolved Cobalt (Co)          | ug/L  | 9.48                | <0.0050             | 8.10                | 0.0150              | A346416    | 14.1                | 0.0050 | A346095    |
| Dissolved Copper (Cu)          | ug/L  | 0.996               | <0.050              | 0.222               | <0.050              | A346416    | 1.62                | 0.050  | A346095    |
| Dissolved Iron (Fe)            | ug/L  | 6.3                 | <1.0                | 18.5                | <1.0                | A346416    | <1.0                | 1.0    | A346095    |
| Dissolved Lead (Pb)            | ug/L  | 0.0097              | <0.0050             | 0.0106              | <0.0050             | A346416    | 0.0135              | 0.0050 | A346095    |
| Dissolved Lithium (Li)         | ug/L  | 2.77                | <0.50               | 2.29                | 3.63                | A346416    | 4.27                | 0.50   | A346095    |
| Dissolved Manganese (Mn)       | ug/L  | 268                 | <0.050              | 72.8                | <0.050              | A346416    | 683                 | 0.050  | A346095    |
| Dissolved Molybdenum (Mo)      | ug/L  | 0.221               | <0.050              | 0.230               | 0.279               | A346416    | 0.214               | 0.050  | A346095    |
| Dissolved Nickel (Ni)          | ug/L  | 14.2                | <0.020              | 5.54                | 0.049               | A346416    | 32.1                | 0.020  | A346095    |
| Dissolved Selenium (Se)        | ug/L  | 0.739               | <0.040              | 0.682               | 0.431               | A346416    | 0.853               | 0.040  | A346095    |
| Dissolved Silicon (Si)         | ug/L  | 2970                | <50                 | 2750                | 2330                | A346416    | 3200                | 50     | A346095    |
| Dissolved Silver (Ag)          | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | A346416    | <0.0050             | 0.0050 | A346095    |
| Dissolved Strontium (Sr)       | ug/L  | 245                 | <0.050              | 228                 | 315                 | A346416    | 269                 | 0.050  | A346095    |
| Dissolved Tellurium (Te)       | ug/L  | <0.020              | <0.020              | <0.020              | <0.020              | A346416    | <0.020              | 0.020  | A346095    |
| Dissolved Thallium (TI)        | ug/L  | <0.0020             | <0.0020             | <0.0020             | <0.0020             | A346416    | <0.0020             | 0.0020 | A346095    |
| Dissolved Thorium (Th)         | ug/L  | <0.0050             | <0.0050             | <0.0050             | <0.0050             | A346416    | <0.0050             | 0.0050 |            |
| Dissolved Tin (Sn)             | ug/L  | <0.20               | <0.20               | <0.20               | <0.20               | A346416    | <0.20               | 0.20   | A346095    |
| Dissolved Titanium (Ti)        | ug/L  | <0.50               | <0.50               | <0.50               | <0.50               | A346416    | <0.50               | 0.50   | A346095    |
| Dissolved Tungsten (W)         | ug/L  | 0.053               | <0.010              | 0.091               | <0.010              | A346416    | <0.010              | 0.010  | A346095    |
| Dissolved Uranium (U)          | ug/L  | 1.65                | 0.0024              | 1.95                | 1.84                | A346416    | 1.15                |        | A346095    |
| Dissolved Vanadium (V)         | ug/L  | <0.20               | <0.20               | <0.20               | <0.20               | A346416    | <0.20               | 0.20   | A346095    |
| Dissolved Zinc (Zn)            | ug/L  | 13.1                | 0.13                | 17.3                | 0.16                | A346416    | 10.7                | 0.10   | A346095    |
| Dissolved Zirconium (Zr)       | ug/L  | <0.10               | <0.10               | <0.10               | <0.10               | A346416    | <0.10               | 0.10   | A346095    |
| Dissolved Calcium (Ca)         | mg/L  | 81.9                | <0.050              | 78.6                | 43.4                | A342028    | 80.0                | 0.050  | A342028    |
| Dissolved Magnesium (Mg)       | mg/L  | 29.2                | <0.050              | 27.0                | 55.3                | A342028    | 34.6                | 0.050  | A342028    |
| RDL = Reportable Detection Lin |       | 23.2                | -0.050              | 27.0                | 33.3                | . 10 12020 | 3 7.0               | 0.000  | . 13 12020 |
| NDL - Reportable Detection Li  | 1111  |                     |                     |                     |                     |            |                     |        |            |



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                    |       | AFF267       | AFF268       | AFF269       | AFF270       |          | AFF271       |        |          |
|-------------------------------|-------|--------------|--------------|--------------|--------------|----------|--------------|--------|----------|
| DV 140315                     |       | 2021/09/01   | 2021/09/01   | 2021/09/01   | 2021/09/01   |          | 2021/09/01   |        |          |
| Sampling Date                 |       | 12:00        | 11:45        | 12:30        | 13:15        |          | 14:15        |        |          |
| COC Number                    |       | 644610-04-01 | 644610-04-01 | 644610-04-01 | 644610-04-01 |          | 644610-04-01 |        |          |
|                               | UNITS | 2021T25-15   | 2021T25-16   | 2021T25-17   | 2021T25-18   | QC Batch | 2021T25-19   | RDL    | QC Batch |
| Dissolved Potassium (K)       | mg/L  | 0.355        | <0.050       | 0.362        | 0.557        | A342028  | 0.378        | 0.050  | A342028  |
| Dissolved Sodium (Na)         | mg/L  | 0.874        | <0.050       | 0.962        | 0.620        | A342028  | 0.805        | 0.050  | A342028  |
| Dissolved Sulphur (S)         | mg/L  | 58.7         | <3.0         | 52.0         | 38.3         | A342028  | 74.9         | 3.0    | A342028  |
| Total Metals by ICPMS         |       |              |              |              |              |          |              |        |          |
| Total Aluminum (AI)           | ug/L  | 987          | 1.06         | 262          | 2.76         | A343687  | 2690         | 0.50   | A343687  |
| Total Antimony (Sb)           | ug/L  | 0.205        | <0.020       | 0.221        | 0.287        | A343687  | 0.216        | 0.020  | A343687  |
| Total Arsenic (As)            | ug/L  | 13.4         | <0.020       | 15.9         | 0.361        | A343687  | 13.4         | 0.020  | A343687  |
| Total Barium (Ba)             | ug/L  | 17.8         | <0.020       | 13.8         | 20.6         | A343687  | 25.3         | 0.020  | A343687  |
| Total Beryllium (Be)          | ug/L  | 0.080        | <0.010       | 0.016        | <0.010       | A343687  | 0.206        | 0.010  | A343687  |
| Total Bismuth (Bi)            | ug/L  | <0.0050      | <0.0050      | <0.0050      | <0.0050      | A343687  | <0.0050      | 0.0050 | A343687  |
| Total Boron (B)               | ug/L  | <10          | <10          | <10          | <10          | A343687  | <10          | 10     | A343687  |
| Total Cadmium (Cd)            | ug/L  | 0.344        | <0.0050      | 0.154        | <0.0050      | A343687  | 0.767        | 0.0050 | A343687  |
| Total Chromium (Cr)           | ug/L  | <0.10        | <0.10        | <0.10        | <0.10        | A343687  | <0.10        | 0.10   | A343687  |
| Total Cobalt (Co)             | ug/L  | 9.94         | <0.0050      | 7.98         | 0.0255       | A343687  | 15.4         | 0.0050 | A343687  |
| Total Copper (Cu)             | ug/L  | 6.51         | <0.050       | 0.757        | 0.052        | A343687  | 18.5         | 0.050  | A343687  |
| Total Iron (Fe)               | ug/L  | 375          | <1.0         | 592          | 15.5         | A343687  | 46.5         | 1.0    | A343687  |
| Total Lead (Pb)               | ug/L  | 0.229        | <0.0050      | 0.226        | 0.0392       | A343687  | 0.275        | 0.0050 | A343687  |
| Total Lithium (Li)            | ug/L  | 2.81         | <0.50        | 2.33         | 3.57         | A343687  | 4.06         | 0.50   | A343687  |
| Total Manganese (Mn)          | ug/L  | 266          | <0.050       | 69.1         | 0.741        | A343687  | 660          | 0.050  | A343687  |
| Total Molybdenum (Mo)         | ug/L  | 0.203        | <0.050       | 0.231        | 0.297        | A343687  | 0.195        | 0.050  | A343687  |
| Total Nickel (Ni)             | ug/L  | 14.6         | <0.020       | 5.55         | 0.071        | A343687  | 33.9         | 0.020  | A343687  |
| Total Selenium (Se)           | ug/L  | 0.744        | <0.040       | 0.747        | 0.473        | A343687  | 0.953        | 0.040  | A343687  |
| Total Silicon (Si)            | ug/L  | 2960         | <50          | 2830         | 2410         | A343687  | 3560         | 50     | A343687  |
| Total Silver (Ag)             | ug/L  | <0.0050      | <0.0050      | <0.0050      | <0.0050      | A343687  | <0.0050      | 0.0050 | A343687  |
| Total Strontium (Sr)          | ug/L  | 242          | 0.057        | 236          | 316          | A343687  | 269          | 0.050  | A343687  |
| Total Tellurium (Te)          | ug/L  | <0.020       | <0.020       | <0.020       | <0.020       | A343687  | <0.020       | 0.020  | A343687  |
| Total Thallium (TI)           | ug/L  | <0.0020      | <0.0020      | <0.0020      | <0.0020      | A343687  | <0.0020      | 0.0020 | A343687  |
| Total Thorium (Th)            | ug/L  | 0.0084       | <0.0050      | 0.0052       | <0.0050      | A343687  | 0.0104       | 0.0050 | A343687  |
| Total Tin (Sn)                | ug/L  | <0.20        | <0.20        | <0.20        | <0.20        | A343687  | <0.20        | 0.20   | A343687  |
| Total Titanium (Ti)           | ug/L  | <0.50        | <0.50        | <0.50        | <0.50        | A343687  | <0.50        | 0.50   | A343687  |
| Total Tungsten (W)            | ug/L  | 0.051        | <0.010       | 0.089        | <0.010       | A343687  | <0.010       | 0.010  | A343687  |
| Total Uranium (U)             | ug/L  | 1.77         | <0.0020      | 1.92         | 1.76         | A343687  | 1.56         | 0.0020 | A343687  |
| Total Vanadium (V)            | ug/L  | <0.20        | <0.20        | <0.20        | <0.20        | A343687  | <0.20        | 0.20   | A343687  |
| Total Zinc (Zn)               | ug/L  | 52.2         | <0.10        | 39.4         | 0.20         | A343687  | 91.4         | 0.10   | A343687  |
| RDL = Reportable Detection Li | mit   |              |              |              |              |          |              | -      |          |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                   |       | AFF267       | AFF268       | AFF269       | AFF270       |          | AFF271       |       |          |
|------------------------------|-------|--------------|--------------|--------------|--------------|----------|--------------|-------|----------|
| Sampling Date                |       | 2021/09/01   | 2021/09/01   | 2021/09/01   | 2021/09/01   |          | 2021/09/01   |       |          |
| Sampling Date                |       | 12:00        | 11:45        | 12:30        | 13:15        |          | 14:15        |       |          |
| COC Number                   |       | 644610-04-01 | 644610-04-01 | 644610-04-01 | 644610-04-01 |          | 644610-04-01 |       |          |
|                              | UNITS | 2021T25-15   | 2021T25-16   | 2021T25-17   | 2021T25-18   | QC Batch | 2021T25-19   | RDL   | QC Batch |
| Total Zirconium (Zr)         | ug/L  | <0.10        | <0.10        | <0.10        | <0.10        | A343687  | <0.10        | 0.10  | A343687  |
| Total Calcium (Ca)           | mg/L  | 78.6         | <0.050       | 78.4         | 42.7         | A341601  | 78.2         | 0.050 | A341601  |
| Total Magnesium (Mg)         | mg/L  | 28.0         | <0.050       | 25.9         | 52.4         | A341601  | 33.4         | 0.050 | A341601  |
| Total Potassium (K)          | mg/L  | 0.347        | <0.050       | 0.342        | 0.532        | A341601  | 0.371        | 0.050 | A341601  |
| Total Sodium (Na)            | mg/L  | 0.863        | <0.050       | 2.44         | 0.638        | A341601  | 0.774        | 0.050 | A341601  |
| Total Sulphur (S)            | mg/L  | 57.2         | <3.0         | 51.7         | 40.4         | A341601  | 75.6         | 3.0   | A341601  |
| RDL = Reportable Detection L | imit  | •            |              |              | •            |          |              |       |          |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                |       | AFF271                |        |          | AFF272       | AFF273       | AFF274       | AFF275       |        |          |
|---------------------------|-------|-----------------------|--------|----------|--------------|--------------|--------------|--------------|--------|----------|
| Sampling Date             |       | 2021/09/01            |        |          | 2021/09/01   | 2021/09/01   | 2021/09/02   | 2021/09/02   |        |          |
| Jamping Date              |       | 14:15                 |        |          | 15:30        | 15:30        | 10:15        | 11:00        |        |          |
| COC Number                |       | 644610-04-01          |        |          | 644610-04-01 | 644610-05-01 | 644610-05-01 | 644610-05-01 |        |          |
|                           | UNITS | 2021T25-19<br>Lab-Dup | RDL    | QC Batch | 2021T25-20   | 2021T25-21   | 2021T25-22   | 2021T25-23   | RDL    | QC Batch |
| Dissolved Metals by ICPMS |       |                       |        |          |              |              |              |              |        |          |
| Dissolved Aluminum (Al)   | ug/L  | 233                   | 0.50   | A346095  | 1.53         | 1.56         | 4.36         | 43.0         | 0.50   | A346095  |
| Dissolved Antimony (Sb)   | ug/L  | 0.214                 | 0.020  | A346095  | 0.369        | 0.235        | 0.386        | 0.061        | 0.020  | A346095  |
| Dissolved Arsenic (As)    | ug/L  | 2.85                  | 0.020  | A346095  | 37.6         | 202          | 12.3         | 0.992        | 0.020  | A346095  |
| Dissolved Barium (Ba)     | ug/L  | 25.0                  | 0.020  | A346095  | 16.3         | 4.17         | 7.85         | 2.44         | 0.020  | A346095  |
| Dissolved Beryllium (Be)  | ug/L  | <0.010                | 0.010  | A346095  | <0.010       | <0.010       | <0.010       | <0.010       | 0.010  | A346095  |
| Dissolved Bismuth (Bi)    | ug/L  | <0.0050               | 0.0050 | A346095  | <0.0050      | <0.0050      | <0.0050      | <0.0050      | 0.0050 | A346095  |
| Dissolved Boron (B)       | ug/L  | <10                   | 10     | A346095  | <10          | <10          | <10          | <10          | 10     | A346095  |
| Dissolved Cadmium (Cd)    | ug/L  | 0.496                 | 0.0050 | A346095  | 0.0085       | 0.143        | 0.0091       | 0.170        | 0.0050 | A346095  |
| Dissolved Chromium (Cr)   | ug/L  | <0.10                 | 0.10   | A346095  | <0.10        | <0.10        | <0.10        | <0.10        | 0.10   | A346095  |
| Dissolved Cobalt (Co)     | ug/L  | 14.5                  | 0.0050 | A346095  | 0.0258       | 0.236        | 0.0217       | 1.59         | 0.0050 | A346095  |
| Dissolved Copper (Cu)     | ug/L  | 1.65                  | 0.050  | A346095  | 0.058        | 0.079        | 0.105        | 0.224        | 0.050  | A346095  |
| Dissolved Iron (Fe)       | ug/L  | <1.0                  | 1.0    | A346095  | <1.0         | 4.8          | <1.0         | 2.3          | 1.0    | A346095  |
| Dissolved Lead (Pb)       | ug/L  | 0.0133                | 0.0050 | A346095  | <0.0050      | <0.0050      | 0.0061       | <0.0050      | 0.0050 | A346095  |
| Dissolved Lithium (Li)    | ug/L  | 4.15                  | 0.50   | A346095  | 0.77         | 3.69         | 0.99         | 1.09         | 0.50   | A346095  |
| Dissolved Manganese (Mn)  | ug/L  | 683                   | 0.050  | A346095  | 0.133        | 20.3         | 0.083        | 32.7         | 0.050  | A346095  |
| Dissolved Molybdenum (Mo) | ug/L  | 0.235                 | 0.050  | A346095  | 0.251        | 0.692        | 0.210        | 0.169        | 0.050  | A346095  |
| Dissolved Nickel (Ni)     | ug/L  | 32.7                  | 0.020  | A346095  | 0.910        | 2.23         | 0.474        | 9.23         | 0.020  | A346095  |
| Dissolved Selenium (Se)   | ug/L  | 0.867                 | 0.040  | A346095  | 1.80         | 0.638        | 0.339        | 0.058        | 0.040  | A346095  |
| Dissolved Silicon (Si)    | ug/L  | 3150                  | 50     | A346095  | 1880         | 5570         | 1760         | 940          | 50     | A346095  |
| Dissolved Silver (Ag)     | ug/L  | <0.0050               | 0.0050 | A346095  | <0.0050      | <0.0050      | <0.0050      | <0.0050      | 0.0050 | A346095  |
| Dissolved Strontium (Sr)  | ug/L  | 263                   | 0.050  | A346095  | 263          | 775          | 186          | 108          | 0.050  | A346095  |
| Dissolved Tellurium (Te)  | ug/L  | <0.020                | 0.020  | A346095  | <0.020       | <0.020       | <0.020       | <0.020       | 0.020  | A346095  |
| Dissolved Thallium (TI)   | ug/L  | <0.0020               | 0.0020 | A346095  | <0.0020      | 0.0092       | <0.0020      | 0.0046       | 0.0020 | A346095  |
| Dissolved Thorium (Th)    | ug/L  | <0.0050               | 0.0050 | A346095  | <0.0050      | 0.0059       | <0.0050      | <0.0050      | 0.0050 | A346095  |
| Dissolved Tin (Sn)        | ug/L  | <0.20                 | 0.20   | A346095  | <0.20        | <0.20        | <0.20        | <0.20        | 0.20   | A346095  |
| Dissolved Titanium (Ti)   | ug/L  | <0.50                 | 0.50   | A346095  | <0.50        | <0.50        | <0.50        | <0.50        | 0.50   | A346095  |
| Dissolved Tungsten (W)    | ug/L  | <0.010                | 0.010  | A346095  | <0.010       | 0.012        | <0.010       | <0.010       | 0.010  | A346095  |
| Dissolved Uranium (U)     | ug/L  | 1.13                  | 0.0020 | A346095  | 2.24         | 4.26         | 1.81         | 1.16         | 0.0020 | A346095  |
| Dissolved Vanadium (V)    | ug/L  | <0.20                 | 0.20   | A346095  | <0.20        | <0.20        | <0.20        | <0.20        | 0.20   | A346095  |
| Dissolved Zinc (Zn)       | ug/L  | 11.0                  | 0.10   | A346095  | 1.20         | 47.2         | 0.56         | 7.04         | 0.10   | A346095  |
| Dissolved Zirconium (Zr)  | ug/L  | <0.10                 | 0.10   | A346095  | <0.10        | <0.10        | <0.10        | <0.10        | 0.10   | A346095  |
| Dissolved Calcium (Ca)    | mg/L  |                       |        |          | 94.4         | 188          | 67.8         | 35.8         | 0.050  | A342028  |

RDL = Reportable Detection Limit



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID               |       | AFF271                |     |          | AFF272       | AFF273       | AFF274       | AFF275       |        |          |
|--------------------------|-------|-----------------------|-----|----------|--------------|--------------|--------------|--------------|--------|----------|
|                          |       | 2021/09/01            |     |          | 2021/09/01   | 2021/09/01   | 2021/09/02   | 2021/09/02   |        |          |
| Sampling Date            |       | 14:15                 |     |          | 15:30        | 15:30        | 10:15        | 11:00        |        |          |
| COC Number               |       | 644610-04-01          |     |          | 644610-04-01 | 644610-05-01 | 644610-05-01 | 644610-05-01 |        |          |
|                          | UNITS | 2021T25-19<br>Lab-Dup | RDL | QC Batch | 2021T25-20   | 2021T25-21   | 2021T25-22   | 2021T25-23   | RDL    | QC Batch |
| Dissolved Magnesium (Mg) | mg/L  |                       |     |          | 33.2         | 42.4         | 17.8         | 11.5         | 0.050  | A342028  |
| Dissolved Potassium (K)  | mg/L  |                       |     |          | 0.288        | 0.990        | 0.151        | 0.120        | 0.050  | A342028  |
| Dissolved Sodium (Na)    | mg/L  |                       |     |          | 0.539        | 3.52         | 0.305        | 0.164        | 0.050  | A342028  |
| Dissolved Sulphur (S)    | mg/L  |                       |     |          | 83.4         | 144          | 32.2         | 20.9         | 3.0    | A342028  |
| Total Metals by ICPMS    | •     |                       |     |          |              |              |              |              |        |          |
| Total Aluminum (Al)      | ug/L  |                       |     |          | 4.09         | 3.22         | 5.54         | 63.6         | 0.50   | A343687  |
| Total Antimony (Sb)      | ug/L  |                       |     |          | 0.377        | 0.241        | 0.399        | 0.051        | 0.020  | A343687  |
| Total Arsenic (As)       | ug/L  |                       |     |          | 39.7         | 269          | 13.0         | 2.05         | 0.020  | A343687  |
| Total Barium (Ba)        | ug/L  |                       |     |          | 15.8         | 4.11         | 7.47         | 2.44         | 0.020  | A343687  |
| Total Beryllium (Be)     | ug/L  |                       |     |          | <0.010       | <0.010       | <0.010       | <0.010       | 0.010  | A343687  |
| Total Bismuth (Bi)       | ug/L  |                       |     |          | <0.0050      | 0.0059       | <0.0050      | <0.0050      | 0.0050 | A343687  |
| Total Boron (B)          | ug/L  |                       |     |          | <10          | <10          | <10          | <10          | 10     | A343687  |
| Total Cadmium (Cd)       | ug/L  |                       |     |          | 0.0065       | 0.154        | 0.0091       | 0.165        | 0.0050 | A343687  |
| Total Chromium (Cr)      | ug/L  |                       |     |          | <0.10        | <0.10        | <0.10        | <0.10        | 0.10   | A343687  |
| Total Cobalt (Co)        | ug/L  |                       |     |          | 0.0309       | 0.250        | 0.0213       | 1.46         | 0.0050 | A343687  |
| Total Copper (Cu)        | ug/L  |                       |     |          | 0.107        | 0.158        | 0.165        | 0.405        | 0.050  | A343687  |
| Total Iron (Fe)          | ug/L  |                       |     |          | 13.3         | 256          | 7.8          | 82.1         | 1.0    | A343687  |
| Total Lead (Pb)          | ug/L  |                       |     |          | 0.0198       | 0.0056       | 0.0348       | 0.0297       | 0.0050 | A343687  |
| Total Lithium (Li)       | ug/L  |                       |     |          | 0.75         | 3.48         | 0.92         | 1.08         | 0.50   | A343687  |
| Total Manganese (Mn)     | ug/L  |                       |     |          | 0.565        | 20.5         | 0.650        | 30.2         | 0.050  | A343687  |
| Total Molybdenum (Mo)    | ug/L  |                       |     |          | 0.211        | 0.685        | 0.243        | 0.156        | 0.050  | A343687  |
| Total Nickel (Ni)        | ug/L  |                       |     |          | 0.843        | 2.13         | 0.415        | 8.64         | 0.020  | A343687  |
| Total Selenium (Se)      | ug/L  |                       |     |          | 1.95         | 0.611        | 0.352        | 0.074        | 0.040  | A343687  |
| Total Silicon (Si)       | ug/L  |                       |     |          | 1980         | 5290         | 1700         | 924          | 50     | A343687  |
| Total Silver (Ag)        | ug/L  |                       |     |          | <0.0050      | <0.0050      | <0.0050      | <0.0050      | 0.0050 | A343687  |
| Total Strontium (Sr)     | ug/L  |                       |     |          | 253          | 754          | 175          | 108          | 0.050  | A343687  |
| Total Tellurium (Te)     | ug/L  |                       |     |          | <0.020       | <0.020       | <0.020       | <0.020       | 0.020  | A343687  |
| Total Thallium (TI)      | ug/L  |                       |     |          | <0.0020      | 0.0092       | <0.0020      | 0.0034       | 0.0020 | A343687  |
| Total Thorium (Th)       | ug/L  |                       |     |          | <0.0050      | <0.0050      | <0.0050      | 0.0060       | 0.0050 | A343687  |
| Total Tin (Sn)           | ug/L  |                       |     |          | <0.20        | <0.20        | <0.20        | <0.20        | 0.20   | A343687  |
| Total Titanium (Ti)      | ug/L  |                       |     |          | <0.50        | <0.50        | <0.50        | <0.50        | 0.50   | A343687  |
| Total Tungsten (W)       | ug/L  |                       |     |          | <0.010       | 0.010        | <0.010       | <0.010       | 0.010  | A343687  |
| Total Uranium (U)        | ug/L  |                       |     |          | 2.09         | 4.03         | 1.69         | 1.13         | 0.0020 | A343687  |
|                          |       |                       |     | •        | •            | •            |              |              |        | •        |

RDL = Reportable Detection Limit



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID           |       | AFF271                |     |          | AFF272       | AFF273       | AFF274       | AFF275       |       |          |
|----------------------|-------|-----------------------|-----|----------|--------------|--------------|--------------|--------------|-------|----------|
| Sampling Date        |       | 2021/09/01            |     |          | 2021/09/01   | 2021/09/01   | 2021/09/02   | 2021/09/02   |       |          |
| Sampling Date        |       | 14:15                 |     |          | 15:30        | 15:30        | 10:15        | 11:00        |       |          |
| COC Number           |       | 644610-04-01          |     |          | 644610-04-01 | 644610-05-01 | 644610-05-01 | 644610-05-01 |       |          |
|                      | UNITS | 2021T25-19<br>Lab-Dup | RDL | QC Batch | 2021T25-20   | 2021T25-21   | 2021T25-22   | 2021T25-23   | RDL   | QC Batch |
| Total Vanadium (V)   | ug/L  |                       |     |          | <0.20        | <0.20        | <0.20        | <0.20        | 0.20  | A343687  |
| Total Zinc (Zn)      | ug/L  |                       |     |          | 1.17         | 50.7         | 1.47         | 9.47         | 0.10  | A343687  |
| Total Zirconium (Zr) | ug/L  |                       |     |          | <0.10        | <0.10        | <0.10        | <0.10        | 0.10  | A343687  |
| Total Calcium (Ca)   | mg/L  |                       |     |          | 90.9         | 183          | 62.8         | 34.8         | 0.050 | A341601  |
| Total Magnesium (Mg) | mg/L  |                       |     |          | 29.8         | 40.7         | 16.5         | 10.5         | 0.050 | A341601  |
| Total Potassium (K)  | mg/L  |                       |     |          | 0.258        | 0.943        | 0.135        | 0.112        | 0.050 | A341601  |
| Total Sodium (Na)    | mg/L  |                       |     |          | 0.511        | 3.29         | 0.275        | 0.145        | 0.050 | A341601  |
| Total Sulphur (S)    | mg/L  |                       |     |          | 82.3         | 147          | 31.7         | 21.4         | 3.0   | A341601  |

RDL = Reportable Detection Limit



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                     |       | AFF276       |        |          | AFF276                |     |          | AFF277       |        |          |
|--------------------------------|-------|--------------|--------|----------|-----------------------|-----|----------|--------------|--------|----------|
| Campling Data                  |       | 2021/09/02   |        |          | 2021/09/02            |     |          | 2021/09/02   |        |          |
| Sampling Date                  |       | 11:15        |        |          | 11:15                 |     |          | 12:00        |        |          |
| COC Number                     |       | 644610-05-01 |        |          | 644610-05-01          |     |          | 644610-05-01 |        |          |
|                                | UNITS | 2021T25-24   | RDL    | QC Batch | 2021T25-24<br>Lab-Dup | RDL | QC Batch | 2021T25-25   | RDL    | QC Batch |
| Dissolved Metals by ICPMS      |       |              |        |          |                       |     |          |              |        |          |
| Dissolved Aluminum (AI)        | ug/L  | 48.0         | 0.50   | A351252  |                       |     |          | <0.50        | 0.50   | A346095  |
| Dissolved Antimony (Sb)        | ug/L  | 0.049        | 0.020  | A351252  |                       |     |          | <0.020       | 0.020  | A346095  |
| Dissolved Arsenic (As)         | ug/L  | 1.27         | 0.020  | A351252  |                       |     |          | <0.020       | 0.020  | A346095  |
| Dissolved Barium (Ba)          | ug/L  | 2.58         | 0.020  | A351252  |                       |     |          | <0.020       | 0.020  | A346095  |
| Dissolved Beryllium (Be)       | ug/L  | <0.010       | 0.010  | A351252  |                       |     |          | <0.010       | 0.010  | A346095  |
| Dissolved Bismuth (Bi)         | ug/L  | <0.0050      | 0.0050 | A351252  |                       |     |          | <0.0050      | 0.0050 | A346095  |
| Dissolved Boron (B)            | ug/L  | <10          | 10     | A351252  |                       |     |          | <10          | 10     | A346095  |
| Dissolved Cadmium (Cd)         | ug/L  | 0.159        | 0.0050 | A351252  |                       |     |          | <0.0050      | 0.0050 | A346095  |
| Dissolved Chromium (Cr)        | ug/L  | <0.10        | 0.10   | A351252  |                       |     |          | <0.10        | 0.10   | A346095  |
| Dissolved Cobalt (Co)          | ug/L  | 1.56         | 0.0050 | A351252  |                       |     |          | <0.0050      | 0.0050 | A346095  |
| Dissolved Copper (Cu)          | ug/L  | 0.147        | 0.050  | A351252  |                       |     |          | <0.050       | 0.050  | A346095  |
| Dissolved Iron (Fe)            | ug/L  | 1.1          | 1.0    | A351252  |                       |     |          | <1.0         | 1.0    | A346095  |
| Dissolved Lead (Pb)            | ug/L  | <0.0050      | 0.0050 | A351252  |                       |     |          | <0.0050      | 0.0050 | A346095  |
| Dissolved Lithium (Li)         | ug/L  | 1.02         | 0.50   | A351252  |                       |     |          | <0.50        | 0.50   | A346095  |
| Dissolved Manganese (Mn)       | ug/L  | 31.0         | 0.050  | A351252  |                       |     |          | <0.050       | 0.050  | A346095  |
| Dissolved Molybdenum (Mo)      | ug/L  | 0.173        | 0.050  | A351252  |                       |     |          | <0.050       | 0.050  | A346095  |
| Dissolved Nickel (Ni)          | ug/L  | 9.01         | 0.020  | A351252  |                       |     |          | <0.020       | 0.020  | A346095  |
| Dissolved Selenium (Se)        | ug/L  | 0.060        | 0.040  | A351252  |                       |     |          | <0.040       | 0.040  | A346095  |
| Dissolved Silicon (Si)         | ug/L  | 894          | 50     | A351252  |                       |     |          | <50          | 50     | A346095  |
| Dissolved Silver (Ag)          | ug/L  | <0.0050      | 0.0050 | A351252  |                       |     |          | <0.0050      | 0.0050 | A346095  |
| Dissolved Strontium (Sr)       | ug/L  | 112          | 0.050  | A351252  |                       |     |          | 0.058        | 0.050  | A346095  |
| Dissolved Tellurium (Te)       | ug/L  | <0.020       | 0.020  | A351252  |                       |     |          | <0.020       | 0.020  | A346095  |
| Dissolved Thallium (TI)        | ug/L  | 0.0028       | 0.0020 | A351252  |                       |     |          | <0.0020      | 0.0020 | A346095  |
| Dissolved Thorium (Th)         | ug/L  | <0.0050      | 0.0050 | A351252  |                       |     |          | <0.0050      | 0.0050 | A346095  |
| Dissolved Tin (Sn)             | ug/L  | <0.20        | 0.20   | A351252  |                       |     |          | <0.20        | 0.20   | A346095  |
| Dissolved Titanium (Ti)        | ug/L  | <0.50        | 0.50   | A351252  |                       |     |          | <0.50        | 0.50   | A346095  |
| Dissolved Tungsten (W)         | ug/L  | <0.010       | 0.010  | A351252  |                       |     |          | <0.010       | 0.010  | A346095  |
| Dissolved Uranium (U)          | ug/L  | 1.12         | 0.0020 | A351252  |                       |     |          | <0.0020      | 0.0020 | A346095  |
| Dissolved Vanadium (V)         | ug/L  | <0.20        | 0.20   | A351252  |                       |     |          | <0.20        | 0.20   | A346095  |
| Dissolved Zinc (Zn)            | ug/L  | 5.76         | 0.10   | A351252  |                       |     |          | 0.17         | 0.10   | A346095  |
| Dissolved Zirconium (Zr)       | ug/L  | <0.10        | 0.10   | A351252  |                       |     |          | <0.10        | 0.10   | A346095  |
| Dissolved Calcium (Ca)         | mg/L  | 34.3         | 0.050  | A342028  |                       |     |          | <0.050       | 0.050  | A342028  |
| RDI = Reportable Detection Lin | mit   |              |        |          |                       |     |          |              |        |          |

RDL = Reportable Detection Limit



#### **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID                    |       | AFF276       |        |          | AFF276                |        |          | AFF277       |        |          |
|-------------------------------|-------|--------------|--------|----------|-----------------------|--------|----------|--------------|--------|----------|
| Sampling Date                 |       | 2021/09/02   |        |          | 2021/09/02            |        |          | 2021/09/02   |        |          |
| Sampling Date                 |       | 11:15        |        |          | 11:15                 |        |          | 12:00        |        |          |
| COC Number                    |       | 644610-05-01 |        |          | 644610-05-01          |        |          | 644610-05-01 |        |          |
|                               | UNITS | 2021T25-24   | RDL    | QC Batch | 2021T25-24<br>Lab-Dup | RDL    | QC Batch | 2021T25-25   | RDL    | QC Batch |
| Dissolved Magnesium (Mg)      | mg/L  | 11.0         | 0.050  | A342028  |                       |        |          | <0.050       | 0.050  | A342028  |
| Dissolved Potassium (K)       | mg/L  | 0.111        | 0.050  | A342028  |                       |        |          | <0.050       | 0.050  | A342028  |
| Dissolved Sodium (Na)         | mg/L  | 0.154        | 0.050  | A342028  |                       |        |          | <0.050       | 0.050  | A342028  |
| Dissolved Sulphur (S)         | mg/L  | 21.4         | 3.0    | A342028  |                       |        |          | <3.0         | 3.0    | A342028  |
| Total Metals by ICPMS         |       |              | ē      | •        | •                     | ē      |          | •            | •      |          |
| Total Aluminum (AI)           | ug/L  | 70.7         | 0.50   | A347639  | 68.0                  | 0.50   | A347639  | <0.50        | 0.50   | A343687  |
| Total Antimony (Sb)           | ug/L  | 0.056        | 0.020  | A347639  | 0.050                 | 0.020  | A347639  | <0.020       | 0.020  | A343687  |
| Total Arsenic (As)            | ug/L  | 1.84         | 0.020  | A347639  | 1.79                  | 0.020  | A347639  | <0.020       | 0.020  | A343687  |
| Total Barium (Ba)             | ug/L  | 2.75         | 0.020  | A347639  | 2.75                  | 0.020  | A347639  | <0.020       | 0.020  | A343687  |
| Total Beryllium (Be)          | ug/L  | <0.010       | 0.010  | A347639  | <0.010                | 0.010  | A347639  | <0.010       | 0.010  | A343687  |
| Total Bismuth (Bi)            | ug/L  | <0.0050      | 0.0050 | A347639  | <0.0050               | 0.0050 | A347639  | <0.0050      | 0.0050 | A343687  |
| Total Boron (B)               | ug/L  | <10          | 10     | A347639  | <10                   | 10     | A347639  | <10          | 10     | A343687  |
| Total Cadmium (Cd)            | ug/L  | 0.183        | 0.0050 | A347639  | 0.175                 | 0.0050 | A347639  | <0.0050      | 0.0050 | A343687  |
| Total Chromium (Cr)           | ug/L  | <0.10        | 0.10   | A347639  | <0.10                 | 0.10   | A347639  | <0.10        | 0.10   | A343687  |
| Total Cobalt (Co)             | ug/L  | 1.78         | 0.0050 | A347639  | 1.75                  | 0.0050 | A347639  | <0.0050      | 0.0050 | A343687  |
| Total Copper (Cu)             | ug/L  | 0.372        | 0.050  | A347639  | 0.390                 | 0.050  | A347639  | <0.050       | 0.050  | A343687  |
| Total Iron (Fe)               | ug/L  | 80.4         | 1.0    | A347639  | 81.2                  | 1.0    | A347639  | <1.0         | 1.0    | A343687  |
| Total Lead (Pb)               | ug/L  | 0.0277       | 0.0050 | A347639  | 0.0270                | 0.0050 | A347639  | <0.0050      | 0.0050 | A343687  |
| Total Lithium (Li)            | ug/L  | 1.14         | 0.50   | A347639  | 1.11                  | 0.50   | A347639  | <0.50        | 0.50   | A343687  |
| Total Manganese (Mn)          | ug/L  | 36.5         | 0.050  | A347639  | 36.2                  | 0.050  | A347639  | <0.050       | 0.050  | A343687  |
| Total Molybdenum (Mo)         | ug/L  | 0.175        | 0.050  | A347639  | 0.156                 | 0.050  | A347639  | <0.050       | 0.050  | A343687  |
| Total Nickel (Ni)             | ug/L  | 9.67         | 0.020  | A347639  | 9.39                  | 0.020  | A347639  | <0.020       | 0.020  | A343687  |
| Total Selenium (Se)           | ug/L  | 0.072        | 0.040  | A347639  | 0.063                 | 0.040  | A347639  | <0.040       | 0.040  | A343687  |
| Total Silicon (Si)            | ug/L  | 1020         | 50     | A347639  | 1020                  | 50     | A347639  | <50          | 50     | A343687  |
| Total Silver (Ag)             | ug/L  | <0.0050      | 0.0050 | A347639  | <0.0050               | 0.0050 | A347639  | <0.0050      | 0.0050 | A343687  |
| Total Strontium (Sr)          | ug/L  | 117          | 0.050  | A347639  | 115                   | 0.050  | A347639  | 0.059        | 0.050  | A343687  |
| Total Tellurium (Te)          | ug/L  | <0.020       | 0.020  | A347639  | <0.020                | 0.020  | A347639  | <0.020       | 0.020  | A343687  |
| Total Thallium (TI)           | ug/L  | 0.0057       | 0.0020 | A347639  | 0.0054                | 0.0020 | A347639  | <0.0020      | 0.0020 | A343687  |
| Total Thorium (Th)            | ug/L  | 0.0071       | 0.0050 | A347639  | 0.0074                | 0.0050 | A347639  | <0.0050      | 0.0050 | A343687  |
| Total Tin (Sn)                | ug/L  | <0.20        | 0.20   | A347639  | <0.20                 | 0.20   | A347639  | <0.20        | 0.20   | A343687  |
| Total Titanium (Ti)           | ug/L  | <0.50        | 0.50   | A347639  | <0.50                 | 0.50   | A347639  | <0.50        | 0.50   | A343687  |
| Total Tungsten (W)            | ug/L  | 0.029        | 0.010  | A347639  | 0.032                 | 0.010  | A347639  | <0.010       | 0.010  | A343687  |
| Total Uranium (U)             | ug/L  | 1.22         | 0.0020 | A347639  | 1.21                  | 0.0020 | A347639  | <0.0020      | 0.0020 | A343687  |
| RDL = Reportable Detection Li |       |              |        | •        | -                     |        | -        | -            | •      | -        |

Lab-Dup = Laboratory Initiated Duplicate



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

#### **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| BV Labs ID           |       | AFF276       |       |          | AFF276                |      |          | AFF277       |       |          |
|----------------------|-------|--------------|-------|----------|-----------------------|------|----------|--------------|-------|----------|
| Sampling Date        |       | 2021/09/02   |       |          | 2021/09/02            |      |          | 2021/09/02   |       |          |
| Sampling Date        |       | 11:15        |       |          | 11:15                 |      |          | 12:00        |       |          |
| COC Number           |       | 644610-05-01 |       |          | 644610-05-01          |      |          | 644610-05-01 |       |          |
|                      | UNITS | 2021T25-24   | RDL   | QC Batch | 2021T25-24<br>Lab-Dup | RDL  | QC Batch | 2021T25-25   | RDL   | QC Batch |
| Total Vanadium (V)   | ug/L  | <0.20        | 0.20  | A347639  | <0.20                 | 0.20 | A347639  | <0.20        | 0.20  | A343687  |
| Total Zinc (Zn)      | ug/L  | 9.63         | 0.10  | A347639  | 9.31                  | 0.10 | A347639  | 0.81         | 0.10  | A349611  |
| Total Zirconium (Zr) | ug/L  | <0.10        | 0.10  | A347639  | <0.10                 | 0.10 | A347639  | <0.10        | 0.10  | A343687  |
| Total Calcium (Ca)   | mg/L  | 36.7         | 0.050 | A341601  |                       |      |          | <0.050       | 0.050 | A341601  |
| Total Magnesium (Mg) | mg/L  | 11.4         | 0.050 | A341601  |                       |      |          | <0.050       | 0.050 | A341601  |
| Total Potassium (K)  | mg/L  | 0.125        | 0.050 | A341601  |                       |      |          | <0.050       | 0.050 | A341601  |
| Total Sodium (Na)    | mg/L  | 0.154        | 0.050 | A341601  |                       |      |          | <0.050       | 0.050 | A341601  |
| Total Sulphur (S)    | mg/L  | 21.9         | 3.0   | A341601  |                       |      |          | <3.0         | 3.0   | A341601  |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate



BV Labs Job #: C165509 Government of Yukon – Dept of ENV Report Date: 2021/09/23 Client Project #: 2021-Ketza

#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

| Package 1 | 6.0°C |
|-----------|-------|
| Package 2 | 4.0°C |
| Package 3 | 7.0°C |

Sample AFF268 [2021T25-16]: Sample was analyzed past method specified hold time for Total Dissolved Solids - Low Level. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample AFF276 [2021T25-24]: The sample for dissolved metals was filtered and preserved at the lab. Values may not reflect concentrations at the time of sampling.

Sample AFF277 [2021T25-25]: Sample was analyzed past method specified hold time for Total Dissolved Solids - Low Level. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample AFF277, Elements by ICPMS Low Level (total): Test repeated.

Results relate only to the items tested.



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

#### **QUALITY ASSURANCE REPORT**

| BANCH         Rist         CType         Parameter         Date Analyzed         Value         Recovery         UNITS         Oct Linds           A342326         TSO         Makris Spike [AFZ64-02]         Nitrate plus Nitrite (N)         2021/09/94         102         %         80 - 120           A34226         TSO         Method Blank         Nitrate plus Nitrite (N)         2021/09/94         0.0000         mg/L           A34236         TSO         Method Blank         Nitrite (N)         2021/09/94         0.0000         mg/L           A342380         TSO         Spiked Blank         Nitrite (N)         2021/09/94         0.0000         mg/L           A342380         TSO         Method Blank         Nitrite (N)         2021/09/97         0.0000         mg/L           A343237         CP         Method Blank         Dissolved Methorury (Ng)         2021/09/97         0.0019         mg/L           A343237         CP         Repol Jambiner         Dissolved Methorury (Ng)         2021/09/97         0.0019         mg/L           A343237         CP         Repol Jambiner         Dissolved Methorury (Ng)         2021/09/97         0.0019         mg/L           A343237         CP         RPO) Jambiner         Dissolved Methorury (Ng)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | QUALITY ASSURANCE REPORT |                          |                          |               |         |          |       |           |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|--------------------------|--------------------------|---------------|---------|----------|-------|-----------|--|--|--|--|
| A342328 1750 Spiked Blank         Niritare plus Niriter (N)         2021/09/04 d. 0.0020 mg/L         mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -       | Init                     | QC Type                  | Parameter                | Date Analyzed | Value   | Recovery | UNITS | QC Limits |  |  |  |  |
| Mart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A342326 | TSO                      | Matrix Spike [AFF264-02] | Nitrate plus Nitrite (N) | 2021/09/04    |         | 102      | %     | 80 - 120  |  |  |  |  |
| 1842-138   780   8P0 [AP78-4-02]   Mirate glus Mirite [N]   2011/69/04   100   5   80   50   1842-138   780   Solked Blank   Mirite (N)   2011/69/04   0.0020   mg/L    1842-138   780   Solked Blank   Mirite (N)   2011/69/04   0.0020   mg/L    1842-138   780   Solked Blank   Mirite (N)   2011/69/04   0.0020   mg/L    1842-138   780   SP0 [AP78-402]   Mirite (N)   2011/69/04   0.0020   mg/L    1842-138   780   SP0 [AP78-402]   Mirite (N)   2011/69/07   0.0039   3   5   80   120     1842-138   780   Mirite Splite   Mirite (N)   2011/69/07   0.0039   mg/L    1842-138   780   Mirite Splite   Mirite (N)   2011/69/07   0.0039   mg/L    1842-138   780   Mirite Splite   Mirite (N)   2011/69/07   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/07   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/07   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/07   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   Mirite Mirite Mirite (N)   2011/69/08   0.0039   mg/L    1842-138   Mirite Splite   AP78-404   mg/L    1842-138   Mirite Splite   AP78-404   mg/L    184   | A342326 | TSO                      | Spiked Blank             | Nitrate plus Nitrite (N) | 2021/09/04    |         | 105      | %     | 80 - 120  |  |  |  |  |
| Martin Spike   Martin Spike   Martin Spike   Martin Ke   No.   2011/89/04   0.0020   mg   No.   100   Mg   80 - 120   Mg   Mg   Mg   Mg   Mg   Mg   Mg   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A342326 | TSO                      | Method Blank             | Nitrate plus Nitrite (N) | 2021/09/04    | <0.0020 |          | mg/L  |           |  |  |  |  |
| Math   Mintro   Min   | A342326 | TSO                      | RPD [AFF264-02]          | Nitrate plus Nitrite (N) | 2021/09/04    | 1.0     |          | %     | 25        |  |  |  |  |
| May 13, 13, 13, 13, 14, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A342330 | TSO                      | Matrix Spike [AFF264-02] |                          | 2021/09/04    |         | 100      | %     | 80 - 120  |  |  |  |  |
| May   Mark   Spin   Rep   Merke   Rep   Mirtie   N)   201/89/06   NC   18   18   18   18   19   19   19   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A342330 | TSO                      | Spiked Blank             | Nitrite (N)              | 2021/09/04    |         | 102      | %     | 80 - 120  |  |  |  |  |
| A343127         CV         Matrix Spike         Dissolved Mercury (Hg)         2021/09/07         38         %         80-120           A343127         CV         Method Blank         Dissolved Mercury (Hg)         2021/09/07         <0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A342330 | TSO                      | Method Blank             | Nitrite (N)              | 2021/09/04    | <0.0020 |          | mg/L  |           |  |  |  |  |
| A343127   CV   Spiked Blank   Dissolved Mercury (Hg)   2021/09/07   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.0019   <0.001   | A342330 | TSO                      | RPD [AFF264-02]          | • •                      | 2021/09/04    | NC      |          | %     | 25        |  |  |  |  |
| A343127   CJV   MeD   Dissolved Mercury (Hg)   2021/09/07   NC   %   2014   NA43687   A343147   CJV   RD   Dissolved Mercury (Hg)   2021/09/08   100   %   80-120   NA54587   A343687      | A343127 | CJY                      | Matrix Spike             | Dissolved Mercury (Hg)   | 2021/09/07    |         | 93       | %     | 80 - 120  |  |  |  |  |
| A343127         V. M. PRD         Dissolved Mercury (Hg)         2021/09/098         NC         %         20.1           A34587         AA1         Matrix Spike (AFF264-03)         Total Alminum (Hd)         2021/09/08         100         %         80-120           Total Artseinc (As)         2021/09/08         105         %         80-120           Total Barlum (Ba)         2021/09/08         99         %         80-120           Total Barlum (Ba)         2021/09/08         92         %         80-120           Total Bernill (Bi)         2021/09/08         92         %         80-120           Total Gardium (Gd)         2021/09/08         93         %         80-120           Total Cadmium (Cd)         2021/09/08         93         %         80-120           Total Cobalt (Co)         2021/09/08         93         %         80-120           Total Cobalt (Co)         2021/09/08         93         %         80-120           Total Cobalt (Co)         2021/09/08         90         %         80-120           Total Cobalt (Co)         2021/09/08         90         %         80-120           Total Cobalt (Co)         2021/09/08         90         %         80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A343127 | CJY                      | Spiked Blank             |                          | 2021/09/07    |         | 83       | %     | 80 - 120  |  |  |  |  |
| A343 887 B. A3 B. A B. A B. A B. A B. A B. A B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A343127 | CJY                      | Method Blank             | Dissolved Mercury (Hg)   | 2021/09/07    |         |          | ug/L  |           |  |  |  |  |
| Total Antimony (Sb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A343127 | CJY                      | RPD                      | Dissolved Mercury (Hg)   | 2021/09/07    | NC      |          | %     | 20        |  |  |  |  |
| Total Arsenic (As) 2021/09/08 90 % 80 - 120 Total Barium (Ba) 2021/09/08 99 % 80 - 120 Total Barium (Ba) 2021/09/08 100 % 80 - 120 Total Barium (Ba) 2021/09/08 100 % 80 - 120 Total Born (B) 2021/09/08 94 % 80 - 120 Total Born (B) 2021/09/08 94 % 80 - 120 Total Born (B) 2021/09/08 97 % 80 - 120 Total Chromium (Cr) 2021/09/08 97 % 80 - 120 Total Chromium (Cr) 2021/09/08 97 % 80 - 120 Total Chromium (Cr) 2021/09/08 99 % 80 - 120 Total Copper (Cu) 2021/09/08 99 % 80 - 120 Total Lotal (Total Lotal (Pb) 2021/09/08 97 % 80 - 120 Total Lotal (Total Lotal (Pb) 2021/09/08 97 % 80 - 120 Total Lotal (Unit (Library (Libr | A343687 | AA1                      | Matrix Spike [AFF264-03] | Total Aluminum (Al)      | 2021/09/08    |         | 100      | %     | 80 - 120  |  |  |  |  |
| Total Barium (Ba)   2021/09/08   99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                          |                          | Total Antimony (Sb)      | 2021/09/08    |         | 105      | %     | 80 - 120  |  |  |  |  |
| Total Benyllium (Re)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                          |                          | Total Arsenic (As)       | 2021/09/08    |         | 109      | %     | 80 - 120  |  |  |  |  |
| Total Bismuth (Bi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                          |                          | Total Barium (Ba)        | 2021/09/08    |         | 99       | %     | 80 - 120  |  |  |  |  |
| Total Boron (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                          |                          | Total Beryllium (Be)     | 2021/09/08    |         | 100      | %     | 80 - 120  |  |  |  |  |
| Total Cadmium (Cd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                          |                          |                          | 2021/09/08    |         | 92       | %     | 80 - 120  |  |  |  |  |
| Total Chromium (Cr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                          |                          | Total Boron (B)          | 2021/09/08    |         | 94       | %     | 80 - 120  |  |  |  |  |
| Total Cobalt (Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |                          | Total Cadmium (Cd)       | 2021/09/08    |         | 103      | %     | 80 - 120  |  |  |  |  |
| Total Copper (Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |                          | Total Chromium (Cr)      | 2021/09/08    |         | 97       | %     | 80 - 120  |  |  |  |  |
| Total Iron (Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                          |                          | Total Cobalt (Co)        | 2021/09/08    |         | 93       | %     | 80 - 120  |  |  |  |  |
| Total Lead (Pb)   2021/09/08   103   %   80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |                          | Total Copper (Cu)        | 2021/09/08    |         | 90       | %     | 80 - 120  |  |  |  |  |
| Total Manganese (Mn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                          |                          | Total Iron (Fe)          | 2021/09/08    |         | 101      | %     | 80 - 120  |  |  |  |  |
| Total Manganese (Mn)   2021/09/08   96   %   80 - 120     Total Mickel (Ni)   2021/09/08   92   %   80 - 120     Total Nickel (Ni)   2021/09/08   92   %   80 - 120     Total Sileenium (Se)   2021/09/08   112   %   80 - 120     Total Sileenium (Se)   2021/09/08   112   %   80 - 120     Total Sileenium (Se)   2021/09/08   106   %   80 - 120     Total Sileenium (Sr)   2021/09/08   96   %   80 - 120     Total Sirontium (Sr)   2021/09/08   NC   %   80 - 120     Total Total Trontium (Te)   2021/09/08   104   %   80 - 120     Total Trontium (Th)   2021/09/08   103   %   80 - 120     Total Trontium (Th)   2021/09/08   103   %   80 - 120     Total Trontium (Th)   2021/09/08   103   %   80 - 120     Total Trontium (Th)   2021/09/08   103   %   80 - 120     Total Trontium (Ti)   2021/09/08   104   %   80 - 120     Total Trantium (Ti)   2021/09/08   101   %   80 - 120     Total Trantium (U)   2021/09/08   102   %   80 - 120     Total Vanadium (V)   2021/09/08   105   %   80 - 120     Total Ziric (Zh)   2021/09/08   100   %   80 - 120     Total Ziric (Zh)   2021/09/08   109   %   80 - 120     Total Ziric (Zh)   2021/09/08   109   %   80 - 120     Total Ziric (Zh)   2021/09/08   109   %   80 - 120     Total Ziric (Zh)   2021/09/08   100   %   80 - 120     Total Ziric (Zh)   2021/09/08   100   %   80 - 120     Total Ziric (Zh)   2021/09/08   100   %   80 - 120     Total Artsenic (As)   2021/09/08   99   %   80 - 120     Total Artsenic (As)   2021/09/08   99   %   80 - 120     Total Barium (Ba)   2021/09/08   99   %   80 - 120     Total Barium (Ba)   2021/09/08   99   %   80 - 120     Total Barium (Ba)   2021/09/08   99   %   80 - 120     Total Barium (Ba)   2021/09/08   99   %   80 - 120     Total Cadmium (Cd)   2021/09/08   99   %   80 - 120     Total Cadmium (Cd)   2021/09/08   99   %   80 - 120     Total Cadmium (Cd)   2021/09/08   99   %   80 - 120     Total Cadmium (Cd)   2021/09/08   99   %   80 - 120     Total Cadmium (Cd)   2021/09/08   99   %   80 - 120     Total Cadmium (Cd)   2021/09/08   99   %   80 - 120     To   |         |                          |                          | Total Lead (Pb)          | 2021/09/08    |         | 103      | %     | 80 - 120  |  |  |  |  |
| Total Molybdenum (Mo)   2021/09/08   108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                          |                          | Total Lithium (Li)       | 2021/09/08    |         | 97       | %     | 80 - 120  |  |  |  |  |
| Total Nickel (Ni)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |                          | Total Manganese (Mn)     | 2021/09/08    |         | 96       | %     | 80 - 120  |  |  |  |  |
| Total Selenium (Se)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                          |                          | Total Molybdenum (Mo)    | 2021/09/08    |         | 108      | %     | 80 - 120  |  |  |  |  |
| Total Silicon (Si)   2021/09/08   106   % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                          |                          | Total Nickel (Ni)        | 2021/09/08    |         | 92       | %     | 80 - 120  |  |  |  |  |
| Total Silver (Ag)   2021/09/08   96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                          |                          | Total Selenium (Se)      | 2021/09/08    |         | 112      | %     | 80 - 120  |  |  |  |  |
| Total Strontium (Sr)   2021/09/08   NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                          |                          | • •                      | 2021/09/08    |         | 106      | %     | 80 - 120  |  |  |  |  |
| Total Tellurium (Te)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                          |                          | Total Silver (Ag)        | 2021/09/08    |         | 96       | %     | 80 - 120  |  |  |  |  |
| Total Thallium (Ti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                          |                          | Total Strontium (Sr)     | 2021/09/08    |         | NC       | %     | 80 - 120  |  |  |  |  |
| Total Thorium (Th)   2021/09/08   103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                          |                          | Total Tellurium (Te)     | 2021/09/08    |         | 104      | %     | 80 - 120  |  |  |  |  |
| Total Tin (Sn)   2021/09/08   104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |                          | Total Thallium (TI)      | 2021/09/08    |         | 103      | %     | 80 - 120  |  |  |  |  |
| Total Titanium (Ti)   2021/09/08   101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                          |                          | Total Thorium (Th)       | 2021/09/08    |         | 103      | %     | 80 - 120  |  |  |  |  |
| Total Uranium (U)   2021/09/08   102    % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                          |                          | Total Tin (Sn)           | 2021/09/08    |         | 104      | %     | 80 - 120  |  |  |  |  |
| Total Uranium (U)   2021/09/08   105   %   80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                          |                          | Total Titanium (Ti)      | 2021/09/08    |         | 101      | %     | 80 - 120  |  |  |  |  |
| Total Vanadium (V) 2021/09/08 100 % 80 - 120 Total Zinc (Zn) 2021/09/08 99 % 80 - 120 Total Zinc (Zn) 2021/09/08 109 % 80 - 120 Total Zinconium (Zr) 2021/09/08 109 % 80 - 120 Total Aluminum (Al) 2021/09/08 99 % 80 - 120 Total Antimony (Sb) 2021/09/08 100 % 80 - 120 Total Arsenic (As) 2021/09/08 100 % 80 - 120 Total Barium (Ba) 2021/09/08 100 % 80 - 120 Total Barium (Ba) 2021/09/08 98 % 80 - 120 Total Barium (Ba) 2021/09/08 98 % 80 - 120 Total Bismuth (Bi) 2021/09/08 99 % 80 - 120 Total Boron (B) 2021/09/08 99 % 80 - 120 Total Cadmium (Cd) 2021/09/08 99 % 80 - 120 Total Cadmium (Cd) 2021/09/08 99 % 80 - 120 Total Cadmium (Cd) 2021/09/08 99 % 80 - 120 Total Cobalt (Co) 2021/09/08 97 % 80 - 120 Total Cobalt (Co) 2021/09/08 96 % 80 - 120 Total Cobalt (Co) 2021/09/08 96 % 80 - 120 Total Copper (Cu) 2021/09/08 96 % 80 - 120 Total Copper (Cu) 2021/09/08 96 % 80 - 120 Total Copper (Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                          |                          | Total Tungsten (W)       | 2021/09/08    |         | 102      | %     | 80 - 120  |  |  |  |  |
| Total Zinc (Zn)   Z021/09/08   99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |                          | Total Uranium (U)        | 2021/09/08    |         | 105      | %     | 80 - 120  |  |  |  |  |
| A343687 AA1 Spiked Blank Total Zirconium (Zr) 2021/09/08 99 % 80 - 120  Total Aluminum (Al) 2021/09/08 99 % 80 - 120  Total Antimony (Sb) 2021/09/08 100 % 80 - 120  Total Arsenic (As) 2021/09/08 100 % 80 - 120  Total Barium (Ba) 2021/09/08 98 % 80 - 120  Total Beryllium (Be) 2021/09/08 99 % 80 - 120  Total Bismuth (Bi) 2021/09/08 99 % 80 - 120  Total Boron (B) 2021/09/08 99 % 80 - 120  Total Cadmium (Cd) 2021/09/08 99 % 80 - 120  Total Cadmium (Cr) 2021/09/08 99 % 80 - 120  Total Cobalt (Co) 2021/09/08 97 % 80 - 120  Total Cobalt (Co) 2021/09/08 96 % 80 - 120  Total Copper (Cu) 2021/09/08 96 % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |                          | Total Vanadium (V)       | 2021/09/08    |         | 100      | %     | 80 - 120  |  |  |  |  |
| A343687 AA1 Spiked Blank Total Aluminum (Al) 2021/09/08 99 % 80 - 120 Total Antimony (Sb) 2021/09/08 100 % 80 - 120 Total Arsenic (As) 2021/09/08 100 % 80 - 120 Total Barium (Ba) 2021/09/08 98 % 80 - 120 Total Beryllium (Be) 2021/09/08 99 % 80 - 120 Total Bismuth (Bi) 2021/09/08 99 % 80 - 120 Total Boron (B) 2021/09/08 99 % 80 - 120 Total Cadmium (Cd) 2021/09/08 99 % 80 - 120 Total Chromium (Cr) 2021/09/08 99 % 80 - 120 Total Cobalt (Co) 2021/09/08 96 % 80 - 120 Total Copper (Cu) 2021/09/08 96 % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                          |                          | Total Zinc (Zn)          | 2021/09/08    |         | 99       | %     | 80 - 120  |  |  |  |  |
| Total Antimony (Sb)       2021/09/08       100       % 80 - 120         Total Arsenic (As)       2021/09/08       100       % 80 - 120         Total Barium (Ba)       2021/09/08       98       % 80 - 120         Total Beryllium (Be)       2021/09/08       99       % 80 - 120         Total Bismuth (Bi)       2021/09/08       97       % 80 - 120         Total Boron (B)       2021/09/08       99       % 80 - 120         Total Cadmium (Cd)       2021/09/08       99       % 80 - 120         Total Chromium (Cr)       2021/09/08       97       % 80 - 120         Total Cobalt (Co)       2021/09/08       96       % 80 - 120         Total Copper (Cu)       2021/09/08       96       % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                          |                          | Total Zirconium (Zr)     | 2021/09/08    |         | 109      | %     | 80 - 120  |  |  |  |  |
| Total Arsenic (As)       2021/09/08       100       % 80 - 120         Total Barium (Ba)       2021/09/08       98       % 80 - 120         Total Beryllium (Be)       2021/09/08       99       % 80 - 120         Total Bismuth (Bi)       2021/09/08       97       % 80 - 120         Total Boron (B)       2021/09/08       99       % 80 - 120         Total Cadmium (Cd)       2021/09/08       99       % 80 - 120         Total Chromium (Cr)       2021/09/08       97       % 80 - 120         Total Cobalt (Co)       2021/09/08       96       % 80 - 120         Total Copper (Cu)       2021/09/08       96       % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A343687 | AA1                      | Spiked Blank             | Total Aluminum (Al)      | 2021/09/08    |         | 99       | %     | 80 - 120  |  |  |  |  |
| Total Barium (Ba)       2021/09/08       98       %       80 - 120         Total Beryllium (Be)       2021/09/08       99       %       80 - 120         Total Bismuth (Bi)       2021/09/08       97       %       80 - 120         Total Boron (B)       2021/09/08       99       %       80 - 120         Total Cadmium (Cd)       2021/09/08       99       %       80 - 120         Total Chromium (Cr)       2021/09/08       97       %       80 - 120         Total Cobalt (Co)       2021/09/08       96       %       80 - 120         Total Copper (Cu)       2021/09/08       96       %       80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                          |                          | Total Antimony (Sb)      | 2021/09/08    |         | 100      | %     | 80 - 120  |  |  |  |  |
| Total Beryllium (Be)       2021/09/08       99       %       80 - 120         Total Bismuth (Bi)       2021/09/08       97       %       80 - 120         Total Boron (B)       2021/09/08       99       %       80 - 120         Total Cadmium (Cd)       2021/09/08       99       %       80 - 120         Total Chromium (Cr)       2021/09/08       97       %       80 - 120         Total Cobalt (Co)       2021/09/08       96       %       80 - 120         Total Copper (Cu)       2021/09/08       96       %       80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                          |                          | Total Arsenic (As)       | 2021/09/08    |         | 100      | %     | 80 - 120  |  |  |  |  |
| Total Bismuth (Bi)       2021/09/08       97       %       80 - 120         Total Boron (B)       2021/09/08       99       %       80 - 120         Total Cadmium (Cd)       2021/09/08       99       %       80 - 120         Total Chromium (Cr)       2021/09/08       97       %       80 - 120         Total Cobalt (Co)       2021/09/08       96       %       80 - 120         Total Copper (Cu)       2021/09/08       96       %       80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                          |                          | Total Barium (Ba)        | 2021/09/08    |         | 98       | %     | 80 - 120  |  |  |  |  |
| Total Boron (B)       2021/09/08       99       %       80 - 120         Total Cadmium (Cd)       2021/09/08       99       %       80 - 120         Total Chromium (Cr)       2021/09/08       97       %       80 - 120         Total Cobalt (Co)       2021/09/08       96       %       80 - 120         Total Copper (Cu)       2021/09/08       96       %       80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                          |                          | Total Beryllium (Be)     | 2021/09/08    |         | 99       | %     | 80 - 120  |  |  |  |  |
| Total Cadmium (Cd)       2021/09/08       99       %       80 - 120         Total Chromium (Cr)       2021/09/08       97       %       80 - 120         Total Cobalt (Co)       2021/09/08       96       %       80 - 120         Total Copper (Cu)       2021/09/08       96       %       80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                          |                          | Total Bismuth (Bi)       | 2021/09/08    |         | 97       | %     | 80 - 120  |  |  |  |  |
| Total Chromium (Cr)       2021/09/08       97       %       80 - 120         Total Cobalt (Co)       2021/09/08       96       %       80 - 120         Total Copper (Cu)       2021/09/08       96       %       80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                          |                          | Total Boron (B)          | 2021/09/08    |         | 99       | %     | 80 - 120  |  |  |  |  |
| Total Cobalt (Co)       2021/09/08       96       %       80 - 120         Total Copper (Cu)       2021/09/08       96       %       80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                          |                          | Total Cadmium (Cd)       | 2021/09/08    |         | 99       | %     | 80 - 120  |  |  |  |  |
| Total Copper (Cu) 2021/09/08 96 % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                          |                          | Total Chromium (Cr)      | 2021/09/08    |         | 97       | %     | 80 - 120  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                          |                          | Total Cobalt (Co)        | 2021/09/08    |         | 96       | %     | 80 - 120  |  |  |  |  |
| Total Iron (Fe) 2021/09/08 101 % 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                          |                          | Total Copper (Cu)        | 2021/09/08    |         | 96       | %     | 80 - 120  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                          |                          | Total Iron (Fe)          | 2021/09/08    |         | 101      | %     | 80 - 120  |  |  |  |  |



| QA/QC<br>Batch | Init | QC Type           | Parameter                               | Date Analyzed | Value       | Recovery | UNITS        | QC Limits |
|----------------|------|-------------------|-----------------------------------------|---------------|-------------|----------|--------------|-----------|
|                |      |                   |                                         |               |             |          |              |           |
|                |      |                   | Total Lead (Pb)                         | 2021/09/08    |             | 99       | %            | 80 - 120  |
|                |      |                   | Total Lithium (Li)                      | 2021/09/08    |             | 96       | %            | 80 - 120  |
|                |      |                   | Total Manganese (Mn)                    | 2021/09/08    |             | 98       | %            | 80 - 120  |
|                |      |                   | Total Molybdenum (Mo)                   | 2021/09/08    |             | 102      | %            | 80 - 120  |
|                |      |                   | Total Nickel (Ni)                       | 2021/09/08    |             | 98       | %            | 80 - 120  |
|                |      |                   | Total Selenium (Se)                     | 2021/09/08    |             | 99       | %            | 80 - 120  |
|                |      |                   | Total Silicon (Si)                      | 2021/09/08    |             | 102      | %            | 80 - 120  |
|                |      |                   | Total Silver (Ag)                       | 2021/09/08    |             | 98       | %            | 80 - 120  |
|                |      |                   | Total Strontium (Sr)                    | 2021/09/08    |             | 100      | %            | 80 - 120  |
|                |      |                   | Total Tellurium (Te)                    | 2021/09/08    |             | 98       | %            | 80 - 120  |
|                |      |                   | Total Thallium (TI)                     | 2021/09/08    |             | 96       | %            | 80 - 120  |
|                |      |                   | Total Thorium (Th)                      | 2021/09/08    |             | 96       | %            | 80 - 120  |
|                |      |                   | Total Tin (Sn)                          | 2021/09/08    |             | 99       | %            | 80 - 120  |
|                |      |                   | Total Titanium (Ti)                     | 2021/09/08    |             | 100      | %            | 80 - 120  |
|                |      |                   | Total Tungsten (W)                      | 2021/09/08    |             | 99       | %            | 80 - 120  |
|                |      |                   | Total Uranium (U)                       | 2021/09/08    |             | 101      | %            | 80 - 120  |
|                |      |                   | Total Vanadium (V)                      | 2021/09/08    |             | 99       | %            | 80 - 120  |
|                |      |                   | Total Zinc (Zn)                         | 2021/09/08    |             | 99       | %            | 80 - 120  |
|                |      |                   | Total Zirconium (Zr)                    | 2021/09/08    |             | 100      | %            | 80 - 120  |
| A343687        | AA1  | Method Blank      | Total Aluminum (AI)                     | 2021/09/08    | <0.50       |          | ug/L         |           |
|                |      |                   | Total Antimony (Sb)                     | 2021/09/08    | <0.020      |          | ug/L         |           |
|                |      |                   | Total Arsenic (As)                      | 2021/09/08    | <0.020      |          | ug/L         |           |
|                |      |                   | Total Barium (Ba)                       | 2021/09/08    | <0.020      |          | ug/L         |           |
|                |      |                   | Total Beryllium (Be)                    | 2021/09/08    | <0.010      |          | ug/L         |           |
|                |      |                   | Total Bismuth (Bi)                      | 2021/09/08    | <0.0050     |          | ug/L         |           |
|                |      |                   | Total Boron (B)                         | 2021/09/08    | <10         |          | ug/L         |           |
|                |      |                   | Total Cadmium (Cd)                      | 2021/09/08    | <0.0050     |          | ug/L         |           |
|                |      |                   | Total Chromium (Cr)                     | 2021/09/08    | <0.10       |          | ug/L         |           |
|                |      |                   | Total Cobalt (Co)                       | 2021/09/08    | <0.0050     |          | ug/L         |           |
|                |      |                   | Total Copper (Cu)                       | 2021/09/08    | <0.050      |          | ug/L         |           |
|                |      |                   | Total Iron (Fe)                         | 2021/09/08    | <1.0        |          | ug/L         |           |
|                |      |                   | Total Lead (Pb)                         | 2021/09/08    | <0.0050     |          | ug/L         |           |
|                |      |                   | Total Lithium (Li)                      | 2021/09/08    | <0.50       |          | ug/L         |           |
|                |      |                   | Total Manganese (Mn)                    | 2021/09/08    | <0.050      |          | ug/L         |           |
|                |      |                   | Total Molybdenum (Mo)                   | 2021/09/08    | <0.050      |          | ug/L         |           |
|                |      |                   | Total Nickel (Ni)                       | 2021/09/08    | <0.020      |          | ug/L         |           |
|                |      |                   | Total Selenium (Se)                     | 2021/09/08    | <0.040      |          | ug/L         |           |
|                |      |                   | Total Silicon (Si)                      | 2021/09/08    | <50         |          | ug/L         |           |
|                |      |                   | Total Silver (Ag)                       | 2021/09/08    | <0.0050     |          | ug/L         |           |
|                |      |                   | Total Strontium (Sr)                    | 2021/09/08    | <0.050      |          | ug/L         |           |
|                |      |                   | Total Tellurium (Te)                    | 2021/09/08    | <0.020      |          | ug/L         |           |
|                |      |                   | Total Thallium (TI)                     | 2021/09/08    | <0.0020     |          | ug/L         |           |
|                |      |                   | Total Thorium (Th)                      | 2021/09/08    | <0.0050     |          | ug/L         |           |
|                |      |                   | Total Tin (Sn)                          | 2021/09/08    | <0.20       |          | ug/L         |           |
|                |      |                   | Total Titanium (Ti)                     | 2021/09/08    | <0.50       |          | ug/L         |           |
|                |      |                   | Total Tungsten (W)                      | 2021/09/08    | <0.010      |          | ug/L         |           |
|                |      |                   | Total Transum (U)                       | 2021/09/08    | <0.0020     |          | ug/L         |           |
|                |      |                   | Total Vanadium (V)                      | 2021/09/08    | <0.20       |          | ug/L         |           |
|                |      |                   | Total Zinc (Zn)                         | 2021/09/08    | <0.10       |          | ug/L         |           |
|                |      |                   | Total Ziric (Zri)  Total Zirconium (Zr) | 2021/09/08    | <0.10       |          | ug/L<br>ug/L |           |
| A343687        | AA1  | RPD [AFF264-03]   | Total Aluminum (Al)                     | 2021/09/08    | 0.10        |          | ug/L<br>%    | 20        |
| MJ-13007       | ~~1  | M D [Al 1 204-03] | Total Antimony (Sb)                     | 2021/09/08    | 2.3         |          | %<br>%       | 20        |
|                |      |                   | Total Artimony (Sb)  Total Arsenic (As) | 2021/09/08    | 2.3<br>0.72 |          | %<br>%       | 20        |
|                |      |                   | Total Barium (Ba)                       | 2021/09/08    | 2.6         |          | %<br>%       |           |
|                |      |                   | Total Barium (Ba) Total Beryllium (Be)  | 2021/09/08    | NC          |          | %<br>%       | 20<br>20  |

|                |      |              | QUALITY ASSURANCE     |               |          |          |        |           |
|----------------|------|--------------|-----------------------|---------------|----------|----------|--------|-----------|
| QA/QC<br>Batch | Init | QC Type      | Parameter             | Date Analyzed | Value    | Recovery | UNITS  | QC Limits |
|                |      |              | Total Bismuth (Bi)    | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Boron (B)       | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Cadmium (Cd)    | 2021/09/08    | 0.69     |          | %      | 20        |
|                |      |              | Total Chromium (Cr)   | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Cobalt (Co)     | 2021/09/08    | 17       |          | %      | 20        |
|                |      |              | Total Copper (Cu)     | 2021/09/08    | 0.83     |          | %      | 20        |
|                |      |              | Total Iron (Fe)       | 2021/09/08    | 0.46     |          | %      | 20        |
|                |      |              | Total Lead (Pb)       | 2021/09/08    | 0.35     |          | %      | 20        |
|                |      |              | Total Lithium (Li)    | 2021/09/08    | 0.25     |          | %      | 20        |
|                |      |              | Total Manganese (Mn)  | 2021/09/08    | 4.1      |          | %      | 20        |
|                |      |              | Total Molybdenum (Mo) | 2021/09/08    | 0.38     |          | %      | 20        |
|                |      |              | Total Nickel (Ni)     | 2021/09/08    | 14       |          | %      | 20        |
|                |      |              | Total Selenium (Se)   | 2021/09/08    | 4.0      |          | %      | 20        |
|                |      |              | Total Silicon (Si)    | 2021/09/08    | 2.5      |          | %      | 20        |
|                |      |              | Total Silver (Ag)     | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Strontium (Sr)  | 2021/09/08    | 1.4      |          | %      | 20        |
|                |      |              | Total Tellurium (Te)  | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Thallium (TI)   | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Thorium (Th)    | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Tin (Sn)        | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Titanium (Ti)   | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Tungsten (W)    | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Uranium (U)     | 2021/09/08    | 0.67     |          | %      | 20        |
|                |      |              | Total Vanadium (V)    | 2021/09/08    | NC       |          | %      | 20        |
|                |      |              | Total Zinc (Zn)       | 2021/09/08    | 4.6      |          | %      | 20        |
|                |      |              | Total Zinc (Zin)      | 2021/09/08    | NC       |          | %      | 20        |
| A343687        | AA1  | RPD          | Total Aluminum (Al)   | 2021/09/09    | 1.5      |          | %      | 20        |
| A343007        | AAI  | IVED         | Total Antimony (Sb)   | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | • • • •               | 2021/09/09    | NC       |          |        |           |
|                |      |              | Total Parium (Pa)     |               | NC<br>NC |          | %<br>% | 20        |
|                |      |              | Total Barium (Ba)     | 2021/09/09    |          |          |        | 20        |
|                |      |              | Total Bisserth (Bi)   | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Bismuth (Bi)    | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Boron (B)       | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Cadmium (Cd)    | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Chromium (Cr)   | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Cobalt (Co)     | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Copper (Cu)     | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Iron (Fe)       | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Lead (Pb)       | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Lithium (Li)    | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Manganese (Mn)  | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Molybdenum (Mo) | 2021/09/09    | 7.5      |          | %      | 20        |
|                |      |              | Total Nickel (Ni)     | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Selenium (Se)   | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Silicon (Si)    | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Silver (Ag)     | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Strontium (Sr)  | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Thallium (TI)   | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Tin (Sn)        | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Titanium (Ti)   | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Uranium (U)     | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Vanadium (V)    | 2021/09/09    | NC       |          | %      | 20        |
|                |      |              | Total Zinc (Zn)       | 2021/09/09    | 14       |          | %      | 20        |
|                |      |              | Total Ziric (Zr)      | 2021/09/09    | 6.7      |          | %      | 20        |
| A343719        | AA1  | Matrix Spike | Total Aluminum (AI)   | 2021/09/09    | <b></b>  | 101      | %      | 80 - 120  |



| QA/QC   |      |              |                                     |               |       |          |       |           |
|---------|------|--------------|-------------------------------------|---------------|-------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                           | Date Analyzed | Value | Recovery | UNITS | QC Limits |
|         |      | ζο./ρο       | Total Antimony (Sb)                 | 2021/09/09    | 74.40 | 104      | %     | 80 - 120  |
|         |      |              | Total Arsenic (As)                  | 2021/09/09    |       | 107      | %     | 80 - 120  |
|         |      |              | Total Barium (Ba)                   | 2021/09/09    |       | NC       | %     | 80 - 120  |
|         |      |              | Total Beryllium (Be)                | 2021/09/09    |       | 96       | %     | 80 - 120  |
|         |      |              | Total Bismuth (Bi)                  | 2021/09/09    |       | 95       | %     | 80 - 120  |
|         |      |              | Total Boron (B)                     | 2021/09/09    |       | NC       | %     | 80 - 120  |
|         |      |              | Total Cadmium (Cd)                  | 2021/09/09    |       | 96       | %     | 80 - 120  |
|         |      |              | Total Chromium (Cr)                 | 2021/09/09    |       | 96       | %     | 80 - 120  |
|         |      |              | Total Cobalt (Co)                   | 2021/09/09    |       | 94       | %     | 80 - 120  |
|         |      |              | Total Copper (Cu)                   | 2021/09/09    |       | 91       | %     | 80 - 120  |
|         |      |              | Total Iron (Fe)                     | 2021/09/09    |       | NC       | %     | 80 - 120  |
|         |      |              | Total Lead (Pb)                     | 2021/09/09    |       | 96       | %     | 80 - 120  |
|         |      |              | Total Lead (Fb)  Total Lithium (Li) | 2021/09/09    |       | NC       | %     | 80 - 120  |
|         |      |              | Total Manganese (Mn)                | 2021/09/09    |       | NC       | %     | 80 - 120  |
|         |      |              |                                     | • •           |       | NC       |       |           |
|         |      |              | Total Miskel (Ni)                   | 2021/09/09    |       |          | %     | 80 - 120  |
|         |      |              | Total Salanium (Sa)                 | 2021/09/09    |       | 92       | %     | 80 - 120  |
|         |      |              | Total Selenium (Se)                 | 2021/09/09    |       | 107      | %     | 80 - 120  |
|         |      |              | Total Silicon (Si)                  | 2021/09/09    |       | 107      | %     | 80 - 120  |
|         |      |              | Total Silver (Ag)                   | 2021/09/09    |       | 94       | %     | 80 - 120  |
|         |      |              | Total Strontium (Sr)                | 2021/09/09    |       | NC       | %     | 80 - 120  |
|         |      |              | Total Tellurium (Te)                | 2021/09/09    |       | 108      | %     | 80 - 120  |
|         |      |              | Total Thallium (TI)                 | 2021/09/09    |       | 98       | %     | 80 - 120  |
|         |      |              | Total Thorium (Th)                  | 2021/09/09    |       | 99       | %     | 80 - 120  |
|         |      |              | Total Tin (Sn)                      | 2021/09/09    |       | 99       | %     | 80 - 120  |
|         |      |              | Total Titanium (Ti)                 | 2021/09/09    |       | 102      | %     | 80 - 120  |
|         |      |              | Total Tungsten (W)                  | 2021/09/09    |       | 107      | %     | 80 - 120  |
|         |      |              | Total Uranium (U)                   | 2021/09/09    |       | 104      | %     | 80 - 120  |
|         |      |              | Total Vanadium (V)                  | 2021/09/09    |       | 102      | %     | 80 - 120  |
|         |      |              | Total Zinc (Zn)                     | 2021/09/09    |       | 96       | %     | 80 - 120  |
|         |      |              | Total Zirconium (Zr)                | 2021/09/09    |       | 107      | %     | 80 - 120  |
| A343719 | AA1  | Spiked Blank | Total Aluminum (Al)                 | 2021/09/09    |       | 99       | %     | 80 - 120  |
|         |      |              | Total Antimony (Sb)                 | 2021/09/09    |       | 102      | %     | 80 - 120  |
|         |      |              | Total Arsenic (As)                  | 2021/09/09    |       | 102      | %     | 80 - 120  |
|         |      |              | Total Barium (Ba)                   | 2021/09/09    |       | 100      | %     | 80 - 120  |
|         |      |              | Total Beryllium (Be)                | 2021/09/09    |       | 101      | %     | 80 - 120  |
|         |      |              | Total Bismuth (Bi)                  | 2021/09/09    |       | 100      | %     | 80 - 120  |
|         |      |              | Total Boron (B)                     | 2021/09/09    |       | 98       | %     | 80 - 120  |
|         |      |              | Total Cadmium (Cd)                  | 2021/09/09    |       | 100      | %     | 80 - 120  |
|         |      |              | Total Chromium (Cr)                 | 2021/09/09    |       | 98       | %     | 80 - 120  |
|         |      |              | Total Cobalt (Co)                   | 2021/09/09    |       | 95       | %     | 80 - 120  |
|         |      |              | Total Copper (Cu)                   | 2021/09/09    |       | 96       | %     | 80 - 120  |
|         |      |              | Total Iron (Fe)                     | 2021/09/09    |       | 102      | %     | 80 - 120  |
|         |      |              | Total Lead (Pb)                     | 2021/09/09    |       | 101      | %     | 80 - 120  |
|         |      |              | Total Lithium (Li)                  | 2021/09/09    |       | 97       | %     | 80 - 120  |
|         |      |              | Total Manganese (Mn)                | 2021/09/09    |       | 97       | %     | 80 - 120  |
|         |      |              | Total Molybdenum (Mo)               | 2021/09/09    |       | 103      | %     | 80 - 120  |
|         |      |              | Total Nickel (Ni)                   | 2021/09/09    |       | 97       | %     | 80 - 120  |
|         |      |              | Total Selenium (Se)                 | 2021/09/09    |       | 100      | %     | 80 - 120  |
|         |      |              | Total Silicon (Si)                  | 2021/09/09    |       | 105      | %     | 80 - 120  |
|         |      |              | Total Silver (Ag)                   | 2021/09/09    |       | 98       | %     | 80 - 120  |
|         |      |              | Total Strontium (Sr)                | 2021/09/09    |       | 101      | %     | 80 - 120  |
|         |      |              | Total Tellurium (Te)                | 2021/09/09    |       | 103      | %     | 80 - 120  |
|         |      |              | Total Thallium (TI)                 | 2021/09/09    |       | 100      | %     | 80 - 120  |
|         |      |              | Total Thailidin (11)                | 2021/09/09    |       |          |       |           |
|         |      |              | Lotal Thorium (Th)                  | /(1/1/19/19   |       | 99       | %     | 80 - 120  |



| QA/QC   |      |              |                       |               |          |          |        |           |
|---------|------|--------------|-----------------------|---------------|----------|----------|--------|-----------|
| Batch   | Init | QC Type      | Parameter             | Date Analyzed | Value    | Recovery | UNITS  | QC Limits |
|         |      | •            | Total Titanium (Ti)   | 2021/09/09    |          | 100      | %      | 80 - 120  |
|         |      |              | Total Tungsten (W)    | 2021/09/09    |          | 102      | %      | 80 - 120  |
|         |      |              | Total Uranium (U)     | 2021/09/09    |          | 103      | %      | 80 - 120  |
|         |      |              | Total Vanadium (V)    | 2021/09/09    |          | 99       | %      | 80 - 120  |
|         |      |              | Total Zinc (Zn)       | 2021/09/09    |          | 100      | %      | 80 - 120  |
|         |      |              | Total Zirconium (Zr)  | 2021/09/09    |          | 103      | %      | 80 - 120  |
| A343719 | AA1  | Method Blank | Total Aluminum (AI)   | 2021/09/09    | <3.0     |          | ug/L   |           |
|         |      |              | Total Antimony (Sb)   | 2021/09/09    | <0.020   |          | ug/L   |           |
|         |      |              | Total Arsenic (As)    | 2021/09/09    | <0.020   |          | ug/L   |           |
|         |      |              | Total Barium (Ba)     | 2021/09/09    | <0.050   |          | ug/L   |           |
|         |      |              | Total Beryllium (Be)  | 2021/09/09    | < 0.010  |          | ug/L   |           |
|         |      |              | Total Bismuth (Bi)    | 2021/09/09    | < 0.010  |          | ug/L   |           |
|         |      |              | Total Boron (B)       | 2021/09/09    | <10      |          | ug/L   |           |
|         |      |              | Total Cadmium (Cd)    | 2021/09/09    | <0.0050  |          | ug/L   |           |
|         |      |              | Total Cadmum (Cu)     | 2021/09/09    | <0.10    |          | ug/L   |           |
|         |      |              | Total Cobalt (Co)     |               | <0.10    |          | -      |           |
|         |      |              | ` '                   | 2021/09/09    |          |          | ug/L   |           |
|         |      |              | Total Copper (Cu)     | 2021/09/09    | <0.10    |          | ug/L   |           |
|         |      |              | Total Iron (Fe)       | 2021/09/09    | <5.0     |          | ug/L   |           |
|         |      |              | Total Lead (Pb)       | 2021/09/09    | <0.020   |          | ug/L   |           |
|         |      |              | Total Lithium (Li)    | 2021/09/09    | <0.50    |          | ug/L   |           |
|         |      |              | Total Manganese (Mn)  | 2021/09/09    | <0.10    |          | ug/L   |           |
|         |      |              | Total Molybdenum (Mo) | 2021/09/09    | <0.050   |          | ug/L   |           |
|         |      |              | Total Nickel (Ni)     | 2021/09/09    | <0.10    |          | ug/L   |           |
|         |      |              | Total Selenium (Se)   | 2021/09/09    | <0.040   |          | ug/L   |           |
|         |      |              | Total Silicon (Si)    | 2021/09/09    | <50      |          | ug/L   |           |
|         |      |              | Total Silver (Ag)     | 2021/09/09    | <0.010   |          | ug/L   |           |
|         |      |              | Total Strontium (Sr)  | 2021/09/09    | <0.050   |          | ug/L   |           |
|         |      |              | Total Tellurium (Te)  | 2021/09/09    | <0.020   |          | ug/L   |           |
|         |      |              | Total Thallium (Tl)   | 2021/09/09    | <0.0020  |          | ug/L   |           |
|         |      |              | Total Thorium (Th)    | 2021/09/09    | <0.020   |          | ug/L   |           |
|         |      |              | Total Tin (Sn)        | 2021/09/09    | <0.20    |          | ug/L   |           |
|         |      |              | Total Titanium (Ti)   | 2021/09/09    | <2.0     |          | ug/L   |           |
|         |      |              | Total Tungsten (W)    | 2021/09/09    | < 0.010  |          | ug/L   |           |
|         |      |              | Total Uranium (U)     | 2021/09/09    | < 0.0050 |          | ug/L   |           |
|         |      |              | Total Vanadium (V)    | 2021/09/09    | <0.20    |          | ug/L   |           |
|         |      |              | Total Zinc (Zn)       | 2021/09/09    | <1.0     |          | ug/L   |           |
|         |      |              | Total Zirconium (Zr)  | 2021/09/09    | <0.10    |          | ug/L   |           |
| A343719 | AA1  | RPD          | Total Aluminum (Al)   | 2021/09/09    | NC       |          | %      | 20        |
|         |      |              | Total Antimony (Sb)   | 2021/09/09    | NC       |          | %      | 20        |
|         |      |              | Total Arsenic (As)    | 2021/09/09    | 0.52     |          | %      | 20        |
|         |      |              | Total Barium (Ba)     | 2021/09/09    | 0.92     |          | %      | 20        |
|         |      |              | Total Beryllium (Be)  | 2021/09/09    | NC       |          | %      | 20        |
|         |      |              | Total Bismuth (Bi)    | 2021/09/09    | NC       |          | %<br>% | 20        |
|         |      |              |                       |               |          |          | %<br>% |           |
|         |      |              | Total Boron (B)       | 2021/09/09    | 0.18     |          |        | 20        |
|         |      |              | Total Characters (Cd) | 2021/09/09    | NC       |          | %      | 20        |
|         |      |              | Total Chromium (Cr)   | 2021/09/09    | NC       |          | %      | 20        |
|         |      |              | Total Cobalt (Co)     | 2021/09/09    | 5.7      |          | %      | 20        |
|         |      |              | Total Copper (Cu)     | 2021/09/09    | 4.5      |          | %      | 20        |
|         |      |              | Total Iron (Fe)       | 2021/09/09    | 1.3      |          | %      | 20        |
|         |      |              | Total Lead (Pb)       | 2021/09/09    | 5.7      |          | %      | 20        |
|         |      |              | Total Lithium (Li)    | 2021/09/09    | 1.9      |          | %      | 20        |
|         |      |              | Total Manganese (Mn)  | 2021/09/09    | 3.2      |          | %      | 20        |
|         |      |              | Total Molybdenum (Mo) | 2021/09/09    | 0.67     |          | %      | 20        |
|         |      |              | Total Nickel (Ni)     | 2021/09/09    | 4.7      |          | %      | 20        |
|         |      |              | Total Selenium (Se)   | 2021/09/09    | 9.1      |          | %      | 20        |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

| QA/QC<br>Batch | Init | QC Type                  | Parameter                                             | Date Analyzed | Value        | Recovery | UNITS                                  | QC Limits            |
|----------------|------|--------------------------|-------------------------------------------------------|---------------|--------------|----------|----------------------------------------|----------------------|
|                |      | . //                     | Total Silicon (Si)                                    | 2021/09/09    | 2.4          | •        | %                                      | 20                   |
|                |      |                          | Total Silver (Ag)                                     | 2021/09/09    | NC           |          | %                                      | 20                   |
|                |      |                          | Total Strontium (Sr)                                  | 2021/09/09    | 1.7          |          | %                                      | 20                   |
|                |      |                          | Total Thallium (TI)                                   | 2021/09/09    | NC           |          | %                                      | 20                   |
|                |      |                          | Total Tin (Sn)                                        | 2021/09/09    | NC           |          | %                                      | 20                   |
|                |      |                          | Total Titanium (Ti)                                   | 2021/09/09    | NC           |          | %                                      | 20                   |
|                |      |                          | Total Uranium (U)                                     | 2021/09/09    | 2.3          |          | %                                      | 20                   |
|                |      |                          | Total Vanadium (V)                                    | 2021/09/09    | NC           |          | %                                      | 20                   |
|                |      |                          | Total Zinc (Zn)                                       | 2021/09/09    | 1.0          |          | %                                      | 20                   |
|                |      |                          | Total Zirconium (Zr)                                  | 2021/09/09    | 14           |          | %                                      | 20                   |
| A343723        | KWE  | Matrix Spike             | Dissolved Hex. Chromium (Cr 6+)                       | 2021/09/09    |              | 93       | %                                      | 80 - 120             |
| A343723        | KWE  | Spiked Blank             | Dissolved Hex. Chromium (Cr 6+)                       | 2021/09/09    |              | 105      | %                                      | 80 - 120             |
| A343723        | KWE  | Method Blank             | Dissolved Hex. Chromium (Cr 6+)                       | 2021/09/09    | <0.00099     | 103      | mg/L                                   | 00 120               |
| A343723        | KWE  | RPD                      | Dissolved Hex. Chromium (Cr 6+)                       | 2021/09/09    | NC           |          | // // // // // // // // // // // // // | 20                   |
| A343841        | TSO  | Matrix Spike             | Total Nitrogen (N)                                    | 2021/09/09    | IVC          | 101      | %                                      | 80 - 120             |
| A343841        |      | •                        |                                                       | 2021/09/09    |              |          | %<br>%                                 | 80 - 120<br>80 - 120 |
|                | TSO  | Spiked Blank             | Total Nitrogen (N)                                    | 2021/09/09    | 40 O2O       | 100      |                                        | 80 - 120             |
| A343841        | TSO  | Method Blank             | Total Nitrogen (N)                                    |               | <0.020       |          | mg/L                                   | 20                   |
| A343841        | TSO  | RPD                      | Total Suggest ded Salida                              | 2021/09/09    | 0.54         | 402      | %                                      | 20                   |
| A344546        | BTM  | Matrix Spike             | Total Suspended Solids                                | 2021/09/09    |              | 103      | %                                      | 80 - 120             |
| A344546        | BTM  | Spiked Blank             | Total Suspended Solids                                | 2021/09/09    |              | 102      | %                                      | 80 - 120             |
| A344546        | BTM  | Method Blank             | Total Suspended Solids                                | 2021/09/09    | <1.0         |          | mg/L                                   |                      |
| A344546        | BTM  | RPD                      | Total Suspended Solids                                | 2021/09/09    | NC           |          | %                                      | 20                   |
| A344551        | BTM  | Matrix Spike             | Total Suspended Solids                                | 2021/09/09    |              | 103      | %                                      | 80 - 120             |
| A344551        | BTM  | Spiked Blank             | Total Suspended Solids                                | 2021/09/09    |              | 101      | %                                      | 80 - 120             |
| A344551        | BTM  | Method Blank             | Total Suspended Solids                                | 2021/09/09    | <1.0         |          | mg/L                                   |                      |
| A344551        | BTM  | RPD                      | Total Suspended Solids                                | 2021/09/09    | NC           |          | %                                      | 20                   |
| A344664        | BTM  | Matrix Spike             | Total Suspended Solids                                | 2021/09/09    |              | 102      | %                                      | 80 - 120             |
| A344664        | BTM  | Spiked Blank             | Total Suspended Solids                                | 2021/09/09    |              | 102      | %                                      | 80 - 120             |
| A344664        | BTM  | Method Blank             | Total Suspended Solids                                | 2021/09/09    | <1.0         |          | mg/L                                   |                      |
| A344664        | BTM  | RPD                      | Total Suspended Solids                                | 2021/09/09    | NC           |          | %                                      | 20                   |
| A344685        | BTM  | Matrix Spike [AFF268-01] | Total Suspended Solids                                | 2021/09/09    |              | 104      | %                                      | 80 - 120             |
| A344685        | BTM  | Spiked Blank             | Total Suspended Solids                                | 2021/09/09    |              | 102      | %                                      | 80 - 120             |
| A344685        | BTM  | Method Blank             | Total Suspended Solids                                | 2021/09/09    | <1.0         |          | mg/L                                   |                      |
| A344685        | BTM  | RPD                      | Total Suspended Solids                                | 2021/09/09    | NC           |          | %                                      | 20                   |
| A345060        | TSO  | Matrix Spike             | Total Nitrogen (N)                                    | 2021/09/09    |              | 103      | %                                      | 80 - 120             |
| A345060        | TSO  | Spiked Blank             | Total Nitrogen (N)                                    | 2021/09/09    |              | 108      | %                                      | 80 - 120             |
| A345060        | TSO  | Method Blank             | Total Nitrogen (N)                                    | 2021/09/09    | <0.020       |          | mg/L                                   |                      |
| A345060        | TSO  | RPD                      | Total Nitrogen (N)                                    | 2021/09/09    | 1.2          |          | %                                      | 20                   |
| A345116        | AP1  | Spiked Blank             | Total Dissolved Solids                                | 2021/09/08    |              | 104      | %                                      | 80 - 120             |
| A345116        | AP1  | Method Blank             | Total Dissolved Solids                                | 2021/09/08    | <1.0         |          | mg/L                                   |                      |
| A345379        | BB3  | Spiked Blank             | pH                                                    | 2021/09/07    |              | 101      | %                                      | 97 - 103             |
| A345379        | BB3  | RPD                      | pH                                                    | 2021/09/07    | 0.13         |          | %                                      | N/A                  |
| A345379        | BB3  | RPD [AFF264-02]          | pH                                                    | 2021/09/07    | 0.73         |          | %                                      | N/A                  |
| A345383        | BB3  | Matrix Spike [AFF264-02] | Alkalinity (Total as CaCO3)                           | 2021/09/07    |              | NC       | %                                      | 80 - 120             |
| A345383        | BB3  | Spiked Blank             | Alkalinity (Total as CaCO3)                           | 2021/09/07    |              | 96       | %                                      | 80 - 120             |
| A345383        | BB3  | Method Blank             | Alkalinity (PP as CaCO3)                              | 2021/09/07    | <1.0         |          | mg/L                                   |                      |
|                | -    |                          | Alkalinity (Total as CaCO3)                           | 2021/09/07    | <1.0         |          | mg/L                                   |                      |
|                |      |                          | Bicarbonate (HCO3)                                    | 2021/09/07    | <1.0         |          | mg/L                                   |                      |
|                |      |                          | Carbonate (CO3)                                       | 2021/09/07    | <1.0         |          | mg/L                                   |                      |
|                |      |                          | Hydroxide (OH)                                        | 2021/09/07    | <1.0         |          | mg/L                                   |                      |
| A345383        | BB3  | RPD [AFF264-02]          | Alkalinity (PP as CaCO3)                              | 2021/09/07    | NC           |          | // // // // // // // // // // // // // | 20                   |
| , 13-3303      | כטט  | 111 2 [A11 207-02]       | Alkalinity (Fr as CaCO3)  Alkalinity (Total as CaCO3) | 2021/09/07    | 0.0052       |          | %                                      | 20                   |
|                |      |                          | Bicarbonate (HCO3)                                    | 2021/09/07    | 0.0052       |          | %<br>%                                 | 20                   |
|                |      |                          | Carbonate (CO3)                                       | 2021/09/07    | 0.0052<br>NC |          | %<br>%                                 | 20                   |
|                |      |                          | Carbonate (COS)                                       | 2021/09/07    | INC          |          | 70                                     | 20                   |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

| QA/QC            | I-a.!+      | OC Tuno                  | Darameter                                  | Data Analisasal          | Value         | D               | LINUTC     | OC Livelite           |
|------------------|-------------|--------------------------|--------------------------------------------|--------------------------|---------------|-----------------|------------|-----------------------|
| Batch<br>A345385 | Init<br>BB3 | QC Type<br>Spiked Blank  | Parameter Conductivity                     | Date Analyzed 2021/09/07 | Value         | Recovery<br>100 | UNITS<br>% | QC Limits<br>80 - 120 |
|                  |             | •                        | •                                          |                          | <b>-2.0</b>   | 100             |            | 80 - 120              |
| A345385          | BB3<br>BB3  | Method Blank<br>RPD      | Conductivity                               | 2021/09/07<br>2021/09/07 | <2.0<br>0.097 |                 | uS/cm<br>% | 10                    |
| A345385          |             |                          | Conductivity                               |                          |               |                 |            | 10                    |
| A345385          | BB3         | RPD [AFF264-02]          | Conductivity                               | 2021/09/07               | 0.16          | 101             | %          | 10                    |
| A345387          | BB3         | Spiked Blank             | pH                                         | 2021/09/07               | 0.12          | 101             | %          | 97 - 103              |
| A345387          | BB3         | RPD                      | pH                                         | 2021/09/08               | 0.13          |                 | %          | N/A                   |
| 4245200          | 222         |                          | pH                                         | 2021/09/08               | 0             | NG              | %          | N/A                   |
| A345389          | BB3         | Matrix Spike             | Alkalinity (Total as CaCO3)                | 2021/09/08               |               | NC              | %          | 80 - 120              |
| A345389          | BB3         | Spiked Blank             | Alkalinity (Total as CaCO3)                | 2021/09/07               |               | 84              | %          | 80 - 120              |
| A345389          | BB3         | Method Blank             | Alkalinity (PP as CaCO3)                   | 2021/09/07               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Alkalinity (Total as CaCO3)                | 2021/09/07               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Bicarbonate (HCO3)                         | 2021/09/07               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Carbonate (CO3)                            | 2021/09/07               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Hydroxide (OH)                             | 2021/09/07               | <1.0          |                 | mg/L       |                       |
| A345389          | BB3         | RPD                      | Alkalinity (PP as CaCO3)                   | 2021/09/08               | NC            |                 | %          | 20                    |
|                  |             |                          | Alkalinity (Total as CaCO3)                | 2021/09/08               | 1.2           |                 | %          | 20                    |
|                  |             |                          | Bicarbonate (HCO3)                         | 2021/09/08               | 1.2           |                 | %          | 20                    |
|                  |             |                          | Carbonate (CO3)                            | 2021/09/08               | NC            |                 | %          | 20                    |
|                  |             |                          | Hydroxide (OH)                             | 2021/09/08               | NC            |                 | %          | 20                    |
| A345394          | BB3         | Spiked Blank             | Conductivity                               | 2021/09/07               |               | 98              | %          | 80 - 120              |
| A345394          | BB3         | Method Blank             | Conductivity                               | 2021/09/07               | <2.0          |                 | uS/cm      |                       |
| A345396          | BB3         | Spiked Blank             | рН                                         | 2021/09/07               |               | 98              | %          | 97 - 103              |
| A345397          | BB3         | Matrix Spike [AFF272-02] | Alkalinity (Total as CaCO3)                | 2021/09/08               |               | NC              | %          | 80 - 120              |
| A345397          | BB3         | Spiked Blank             | Alkalinity (Total as CaCO3)                | 2021/09/08               |               | 92              | %          | 80 - 120              |
| A345397          | BB3         | Method Blank             | Alkalinity (PP as CaCO3)                   | 2021/09/08               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Alkalinity (Total as CaCO3)                | 2021/09/08               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Bicarbonate (HCO3)                         | 2021/09/08               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Carbonate (CO3)                            | 2021/09/08               | <1.0          |                 | mg/L       |                       |
|                  |             |                          | Hydroxide (OH)                             | 2021/09/08               | <1.0          |                 | mg/L       |                       |
| A345409          | BB3         | Spiked Blank             | Conductivity                               | 2021/09/08               |               | 99              | %          | 80 - 120              |
| A345409          | BB3         | Method Blank             | Conductivity                               | 2021/09/08               | <2.0          |                 | uS/cm      |                       |
| A345891          | KWE         | Matrix Spike [AFF272-11] | Dissolved Hex. Chromium (Cr 6+)            | 2021/09/09               |               | 94              | %          | 80 - 120              |
| A345891          | KWE         | Spiked Blank             | Dissolved Hex. Chromium (Cr 6+)            | 2021/09/09               |               | 107             | %          | 80 - 120              |
| A345891          | KWE         | Method Blank             | Dissolved Hex. Chromium (Cr 6+)            | 2021/09/09               | <0.00099      |                 | mg/L       |                       |
| A345891          | KWE         | RPD [AFF272-11]          | Dissolved Hex. Chromium (Cr 6+)            | 2021/09/09               | NC            |                 | %          | 20                    |
| A346053          | втм         | Matrix Spike             | Total Suspended Solids                     | 2021/09/10               |               | 105             | %          | 80 - 120              |
| A346053          | втм         | Spiked Blank             | Total Suspended Solids                     | 2021/09/10               |               | 101             | %          | 80 - 120              |
| A346053          | втм         | Method Blank             | Total Suspended Solids                     | 2021/09/10               | <1.0          |                 | mg/L       |                       |
| A346053          | втм         | RPD                      | Total Suspended Solids                     | 2021/09/10               | 18            |                 | %          | 20                    |
| A346095          | AA1         | Matrix Spike [AFF271-05] | Dissolved Aluminum (AI)                    | 2021/09/11               |               | 100             | %          | 80 - 120              |
|                  |             |                          | Dissolved Antimony (Sb)                    | 2021/09/11               |               | 102             | %          | 80 - 120              |
|                  |             |                          | Dissolved Arsenic (As)                     | 2021/09/11               |               | 101             | %          | 80 - 120              |
|                  |             |                          | Dissolved Barium (Ba)                      | 2021/09/11               |               | 97              | %          | 80 - 120              |
|                  |             |                          | Dissolved Beryllium (Be)                   | 2021/09/11               |               | 98              | %          | 80 - 120              |
|                  |             |                          | Dissolved Bismuth (Bi)                     | 2021/09/11               |               | 98              | %          | 80 - 120              |
|                  |             |                          | Dissolved Bismath (B)                      | 2021/09/11               |               | 99              | %          | 80 - 120              |
|                  |             |                          | Dissolved Cadmium (Cd)                     | 2021/09/11               |               | 101             | %          | 80 - 120              |
|                  |             |                          | Dissolved Chromium (Cr)                    | 2021/09/11               |               | 98              | %          | 80 - 120              |
|                  |             |                          | Dissolved Cobalt (Co)                      | 2021/09/11               |               | 93              | %          | 80 - 120              |
|                  |             |                          | Dissolved Copper (Cu)                      | 2021/09/11               |               | 92              | %          | 80 - 120              |
|                  |             |                          | Dissolved Copper (Cu) Dissolved Iron (Fe)  | 2021/09/11               |               | 103             | %<br>%     | 80 - 120              |
|                  |             |                          | Dissolved Iron (Fe) Dissolved Lead (Pb)    | 2021/09/11               |               | 98              | %<br>%     | 80 - 120              |
|                  |             |                          | Dissolved Lead (PD) Dissolved Lithium (Li) | 2021/09/11               |               | 98<br>95        | %<br>%     | 80 - 120<br>80 - 120  |
|                  |             |                          | ` '                                        |                          |               |                 |            |                       |
|                  |             |                          | Dissolved Malyhdanum (Ma)                  | 2021/09/11               |               | NC<br>106       | %<br>%     | 80 - 120<br>80 - 120  |
| <u> </u>         |             |                          | Dissolved Molybdenum (Mo)                  | 2021/09/11               |               | 106             | %          | 80 - 120              |



| QA/QC<br>Batch | Init | QC Type      | Parameter                                         | Date Analyzed | Value          | Recovery | UNITS        | QC Limit |
|----------------|------|--------------|---------------------------------------------------|---------------|----------------|----------|--------------|----------|
|                |      |              | Dissolved Nickel (Ni)                             | 2021/09/11    |                | 92       | %            | 80 - 120 |
|                |      |              | Dissolved Selenium (Se)                           | 2021/09/11    |                | 104      | %            | 80 - 120 |
|                |      |              | Dissolved Silicon (Si)                            | 2021/09/11    |                | 106      | %            | 80 - 120 |
|                |      |              | Dissolved Silver (Ag)                             | 2021/09/11    |                | 96       | %            | 80 - 120 |
|                |      |              | Dissolved Strontium (Sr)                          | 2021/09/11    |                | NC       | %            | 80 - 120 |
|                |      |              | Dissolved Tellurium (Te)                          | 2021/09/11    |                | 100      | %            | 80 - 120 |
|                |      |              | Dissolved Thallium (TI)                           | 2021/09/11    |                | 101      | %            | 80 - 120 |
|                |      |              | Dissolved Thorium (Th)                            | 2021/09/11    |                | 105      | %            | 80 - 120 |
|                |      |              | Dissolved Tin (Sn)                                | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Titanium (Ti)                           | 2021/09/11    |                | 103      | %            | 80 - 120 |
|                |      |              | Dissolved Tungsten (W)                            | 2021/09/11    |                | 101      | %            | 80 - 120 |
|                |      |              | Dissolved Uranium (U)                             | 2021/09/11    |                | 107      | %            | 80 - 120 |
|                |      |              | Dissolved Vanadium (V)                            | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Zinc (Zn)                               | 2021/09/11    |                | 99       | %            | 80 - 120 |
|                |      |              | Dissolved Zirconium (Zr)                          | 2021/09/11    |                | 108      | %            | 80 - 120 |
| A346095        | AA1  | Spiked Blank | Dissolved Aluminum (Al)                           | 2021/09/11    |                | 103      | %            | 80 - 120 |
| A340033        | 771  | Spiked blank | Dissolved Antimony (Sb)                           | 2021/09/11    |                | 103      | %            | 80 - 120 |
|                |      |              | Dissolved Antimony (3b)  Dissolved Arsenic (As)   | 2021/09/11    |                | 100      | %            | 80 - 120 |
|                |      |              | Dissolved Arsenic (As)  Dissolved Barium (Ba)     | 2021/09/11    |                |          |              |          |
|                |      |              | ,                                                 | • •           |                | 101      | %            | 80 - 120 |
|                |      |              | Dissolved Beryllium (Be)                          | 2021/09/11    |                | 100      | %            | 80 - 120 |
|                |      |              | Dissolved Bismuth (Bi)                            | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Boron (B)                               | 2021/09/11    |                | 99       | %            | 80 - 120 |
|                |      |              | Dissolved Cadmium (Cd)                            | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Chromium (Cr)                           | 2021/09/11    |                | 101      | %            | 80 - 120 |
|                |      |              | Dissolved Cobalt (Co)                             | 2021/09/11    |                | 99       | %            | 80 - 120 |
|                |      |              | Dissolved Copper (Cu)                             | 2021/09/11    |                | 99       | %            | 80 - 120 |
|                |      |              | Dissolved Iron (Fe)                               | 2021/09/11    |                | 104      | %            | 80 - 120 |
|                |      |              | Dissolved Lead (Pb)                               | 2021/09/11    |                | 101      | %            | 80 - 120 |
|                |      |              | Dissolved Lithium (Li)                            | 2021/09/11    |                | 97       | %            | 80 - 120 |
|                |      |              | Dissolved Manganese (Mn)                          | 2021/09/11    |                | 101      | %            | 80 - 120 |
|                |      |              | Dissolved Molybdenum (Mo)                         | 2021/09/11    |                | 104      | %            | 80 - 120 |
|                |      |              | Dissolved Nickel (Ni)                             | 2021/09/11    |                | 101      | %            | 80 - 120 |
|                |      |              | Dissolved Selenium (Se)                           | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Silicon (Si)                            | 2021/09/11    |                | 107      | %            | 80 - 120 |
|                |      |              | Dissolved Silver (Ag)                             | 2021/09/11    |                | 99       | %            | 80 - 120 |
|                |      |              | Dissolved Strontium (Sr)                          | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Tellurium (Te)                          | 2021/09/11    |                | 103      | %            | 80 - 120 |
|                |      |              | Dissolved Thallium (TI)                           | 2021/09/11    |                | 100      | %            | 80 - 120 |
|                |      |              | Dissolved Thorium (Th)                            | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Tin (Sn)                                | 2021/09/11    |                | 103      | %            | 80 - 120 |
|                |      |              | Dissolved Titanium (Ti)                           | 2021/09/11    |                | 105      | %            | 80 - 120 |
|                |      |              | Dissolved Tungsten (W)                            | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Uranium (U)                             | 2021/09/11    |                | 106      | %            | 80 - 120 |
|                |      |              | Dissolved Vanadium (V)                            | 2021/09/11    |                | 102      | %            | 80 - 120 |
|                |      |              | Dissolved Zinc (Zn)                               | 2021/09/11    |                | 104      | %            | 80 - 120 |
|                |      |              | Dissolved Zirconium (Zr)                          | 2021/09/11    |                | 103      | %            | 80 - 120 |
| A346095        | AA1  | Method Blank | Dissolved Aluminum (AI)                           | 2021/09/11    | <0.50          |          | ug/L         |          |
|                |      |              | Dissolved Antimony (Sb)                           | 2021/09/11    | <0.020         |          | ug/L         |          |
|                |      |              | Dissolved Arsenic (As)                            | 2021/09/11    | <0.020         |          | ug/L         |          |
|                |      |              | Dissolved Barium (Ba)                             | 2021/09/11    | <0.020         |          | ug/L         |          |
|                |      |              | Dissolved Baridin (Ba)  Dissolved Beryllium (Be)  | 2021/09/11    | <0.020         |          | ug/L<br>ug/L |          |
|                |      |              | Dissolved Beryllulli (Be)  Dissolved Bismuth (Bi) | 2021/09/11    |                |          |              |          |
|                |      |              | Dissolved Bismuth (BI)  Dissolved Boron (B)       |               | <0.0050<br><10 |          | ug/L         |          |
|                |      |              | ` '                                               | 2021/09/11    |                |          | ug/L         |          |
|                |      |              | Dissolved Cadmium (Cd)                            | 2021/09/11    | <0.0050        |          | ug/L         |          |



| QA/QC   |      |                                         |                                  |               |               |          |        |           |
|---------|------|-----------------------------------------|----------------------------------|---------------|---------------|----------|--------|-----------|
| Batch   | Init | QC Type                                 | Parameter                        | Date Analyzed | Value         | Recovery | UNITS  | QC Limits |
|         |      | • • • • • • • • • • • • • • • • • • • • | Dissolved Cobalt (Co)            | 2021/09/11    | <0.0050       | •        | ug/L   |           |
|         |      |                                         | Dissolved Copper (Cu)            | 2021/09/11    | <0.050        |          | ug/L   |           |
|         |      |                                         | Dissolved Iron (Fe)              | 2021/09/11    | <1.0          |          | ug/L   |           |
|         |      |                                         | Dissolved Lead (Pb)              | 2021/09/11    | <0.0050       |          | ug/L   |           |
|         |      |                                         | Dissolved Lithium (Li)           | 2021/09/11    | <0.50         |          | ug/L   |           |
|         |      |                                         | Dissolved Manganese (Mn)         | 2021/09/11    | <0.050        |          | ug/L   |           |
|         |      |                                         | Dissolved Molybdenum (Mo)        | 2021/09/11    | <0.050        |          | ug/L   |           |
|         |      |                                         | Dissolved Nickel (Ni)            | 2021/09/11    | <0.020        |          | ug/L   |           |
|         |      |                                         | Dissolved Selenium (Se)          | 2021/09/11    | <0.040        |          | ug/L   |           |
|         |      |                                         | Dissolved Silicon (Si)           | 2021/09/11    | <50           |          | ug/L   |           |
|         |      |                                         | Dissolved Silver (Ag)            | 2021/09/11    | <0.0050       |          | ug/L   |           |
|         |      |                                         | Dissolved Strontium (Sr)         | 2021/09/11    | 0.056,        |          | ug/L   |           |
|         |      |                                         | , ,                              |               | RDL=0.050 (1) |          | O,     |           |
|         |      |                                         | Dissolved Tellurium (Te)         | 2021/09/11    | <0.020        |          | ug/L   |           |
|         |      |                                         | Dissolved Thallium (TI)          | 2021/09/11    | <0.0020       |          | ug/L   |           |
|         |      |                                         | Dissolved Thorium (Th)           | 2021/09/11    | <0.0050       |          | ug/L   |           |
|         |      |                                         | Dissolved Tin (Sn)               | 2021/09/11    | <0.20         |          | ug/L   |           |
|         |      |                                         | Dissolved Titanium (Ti)          | 2021/09/11    | <0.50         |          | ug/L   |           |
|         |      |                                         | Dissolved Tungsten (W)           | 2021/09/11    | <0.010        |          | ug/L   |           |
|         |      |                                         | Dissolved Uranium (U)            | 2021/09/11    | <0.0020       |          | ug/L   |           |
|         |      |                                         | Dissolved Vanadium (V)           | 2021/09/11    | <0.20         |          | ug/L   |           |
|         |      |                                         | Dissolved Zinc (Zn)              | 2021/09/11    | <0.10         |          | ug/L   |           |
|         |      |                                         | Dissolved Zirconium (Zr)         | 2021/09/11    | <0.10         |          | ug/L   |           |
| A346095 | AA1  | RPD [AFF271-05]                         | Dissolved Aluminum (Al)          | 2021/09/11    | 2.0           |          | %      | 20        |
|         |      | [ ]                                     | Dissolved Antimony (Sb)          | 2021/09/11    | 1.9           |          | %      | 20        |
|         |      |                                         | Dissolved Arsenic (As)           | 2021/09/11    | 1.9           |          | %      | 20        |
|         |      |                                         | Dissolved Barium (Ba)            | 2021/09/11    | 1.0           |          | %      | 20        |
|         |      |                                         | Dissolved Beryllium (Be)         | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | Dissolved Bismuth (Bi)           | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | Dissolved Boron (B)              | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | Dissolved Cadmium (Cd)           | 2021/09/11    | 0.29          |          | %      | 20        |
|         |      |                                         | Dissolved Chromium (Cr)          | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | Dissolved Cobalt (Co)            | 2021/09/11    | 2.2           |          | %      | 20        |
|         |      |                                         | Dissolved Copper (Cu)            | 2021/09/11    | 2.1           |          | %      | 20        |
|         |      |                                         | Dissolved Iron (Fe)              | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | Dissolved Lead (Pb)              | 2021/09/11    | 1.9           |          | %      | 20        |
|         |      |                                         | Dissolved Lithium (Li)           | 2021/09/11    | 2.9           |          | %      | 20        |
|         |      |                                         | Dissolved Manganese (Mn)         | 2021/09/11    | 0.040         |          | %      | 20        |
|         |      |                                         | Dissolved Molybdenum (Mo)        | 2021/09/11    | 9.3           |          | %      | 20        |
|         |      |                                         | Dissolved Nickel (Ni)            | 2021/09/11    | 2.0           |          | %      | 20        |
|         |      |                                         | Dissolved Selenium (Se)          | 2021/09/11    | 1.6           |          | %      | 20        |
|         |      |                                         | Dissolved Silicon (Si)           | 2021/09/11    | 1.6           |          | %      |           |
|         |      |                                         | Dissolved Silver (Ag)            | 2021/09/11    | NC            |          | %<br>% | 20<br>20  |
|         |      |                                         | Dissolved Strontium (Sr)         | 2021/09/11    | 2.2           |          | %      | 20        |
|         |      |                                         | Dissolved Tellurium (Te)         | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | , ,                              | 2021/09/11    |               |          |        |           |
|         |      |                                         | Dissolved Thallium (Tl)          | 2021/09/11    | NC<br>NC      |          | %      | 20        |
|         |      |                                         | Dissolved Thorium (Th)           |               | NC<br>NC      |          | %<br>% | 20<br>20  |
|         |      |                                         | Dissolved Titanium (Ti)          | 2021/09/11    | NC<br>NC      |          | %      | 20        |
|         |      |                                         | Dissolved Titanium (Ti)          | 2021/09/11    | NC<br>NC      |          | %      | 20        |
|         |      |                                         | Dissolved Tungsten (W)           | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | Dissolved Uranium (U)            | 2021/09/11    | 1.3           |          | %      | 20        |
|         |      |                                         | Dissolved Vanadium (V)           | 2021/09/11    | NC            |          | %      | 20        |
|         |      |                                         | Dissolved Zinc (Zn)              | 2021/09/11    | 2.1           |          | %      | 20        |
|         |      |                                         | Dissolved Zirconium (Zr)         | 2021/09/11    | NC            | 40.      | %      | 20        |
| A346114 | TMU  | Matrix Spike [AFF272-10]                | Strong Acid Dissoc. Cyanide (CN) | 2021/09/10    |               | 104      | %      | 80 - 120  |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

| 04/00          |      |                          | · · · · · · · · · · · · · · · · · · ·   |                          |          |           |        |                      |
|----------------|------|--------------------------|-----------------------------------------|--------------------------|----------|-----------|--------|----------------------|
| QA/QC<br>Batch | Init | QC Type                  | Parameter                               | Date Analyzed            | Value    | Recovery  | UNITS  | QC Limits            |
| A346114        | TMU  | Spiked Blank             | Strong Acid Dissoc. Cyanide (CN)        | 2021/09/10               |          | 101       | %      | 80 - 120             |
| A346114        | TMU  | Method Blank             | Strong Acid Dissoc. Cyanide (CN)        | 2021/09/10               | <0.00050 |           | mg/L   |                      |
| A346114        | TMU  | RPD [AFF272-10]          | Strong Acid Dissoc. Cyanide (CN)        | 2021/09/10               | NC       |           | %      | 20                   |
| A346121        | TMU  | Matrix Spike [AFF272-10] | Weak Acid Dissoc. Cyanide (CN)          | 2021/09/10               |          | 102       | %      | 80 - 120             |
| A346121        | TMU  | Spiked Blank             | Weak Acid Dissoc. Cyanide (CN)          | 2021/09/10               |          | 104       | %      | 80 - 120             |
| A346121        | TMU  | Method Blank             | Weak Acid Dissoc. Cyanide (CN)          | 2021/09/10               | <0.00050 |           | mg/L   |                      |
| A346121        | TMU  | RPD [AFF272-10]          | Weak Acid Dissoc. Cyanide (CN)          | 2021/09/10               | NC       |           | %      | 20                   |
| A346241        | KGA  | Matrix Spike             | Total Dissolved Solids                  | 2021/09/13               |          | 109       | %      | 80 - 120             |
| A346241        | KGA  | Spiked Blank             | Total Dissolved Solids                  | 2021/09/09               |          | 100       | %      | 80 - 120             |
| A346241        | KGA  | Method Blank             | Total Dissolved Solids                  | 2021/09/09               | <1.0     |           | mg/L   |                      |
| A346241        | KGA  | RPD                      | Total Dissolved Solids                  | 2021/09/13               | 2.0      |           | %      | 20                   |
| A346416        | AA1  | Matrix Spike [AFF263-05] | Dissolved Aluminum (AI)                 | 2021/09/11               | 0        | 101       | %      | 80 - 120             |
| 7.5 .5 .12     |      |                          | Dissolved Antimony (Sb)                 | 2021/09/11               |          | NC        | %      | 80 - 120             |
|                |      |                          | Dissolved Arsenic (As)                  | 2021/09/11               |          | 102       | %      | 80 - 120             |
|                |      |                          | Dissolved Barium (Ba)                   | 2021/09/11               |          | 100       | %      | 80 - 120             |
|                |      |                          | Dissolved Beryllium (Be)                | 2021/09/11               |          | 98        | %      | 80 - 120             |
|                |      |                          | Dissolved Bismuth (Bi)                  | 2021/09/11               |          | 97        | %      | 80 - 120             |
|                |      |                          | Dissolved Bismuth (B)                   | 2021/09/11               |          | 98        | %      | 80 - 120             |
|                |      |                          | Dissolved Cadmium (Cd)                  | 2021/09/11               |          | 100       | %      | 80 - 120             |
|                |      |                          | Dissolved Chromium (Cr)                 | 2021/09/11               |          | 97        | %      | 80 - 120             |
|                |      |                          | Dissolved Cobalt (Co)                   | 2021/09/11               |          | 92        | %      | 80 - 120             |
|                |      |                          | • •                                     | 2021/09/11               |          | 92<br>91  | %      | 80 - 120<br>80 - 120 |
|                |      |                          | Dissolved Copper (Cu)                   |                          |          |           |        |                      |
|                |      |                          | Dissolved Iron (Fe)                     | 2021/09/11               |          | 102       | %      | 80 - 120             |
|                |      |                          | Dissolved Lead (Pb)                     | 2021/09/11               |          | 98        | %      | 80 - 120             |
|                |      |                          | Dissolved Lithium (Li)                  | 2021/09/11               |          | 93        | %      | 80 - 120             |
|                |      |                          | Dissolved Manganese (Mn)                | 2021/09/11               |          | 96        | %      | 80 - 120             |
|                |      |                          | Dissolved Molybdenum (Mo)               | 2021/09/11               |          | 108       | %      | 80 - 120             |
|                |      |                          | Dissolved Nickel (Ni)                   | 2021/09/11               |          | 92        | %      | 80 - 120             |
|                |      |                          | Dissolved Selenium (Se)                 | 2021/09/11               |          | 103       | %      | 80 - 120             |
|                |      |                          | Dissolved Silicon (Si)                  | 2021/09/11               |          | 95        | %      | 80 - 120             |
|                |      |                          | Dissolved Silver (Ag)                   | 2021/09/11               |          | 97        | %      | 80 - 120             |
|                |      |                          | Dissolved Strontium (Sr)                | 2021/09/11               |          | NC        | %      | 80 - 120             |
|                |      |                          | Dissolved Tellurium (Te)                | 2021/09/11               |          | 99        | %      | 80 - 120             |
|                |      |                          | Dissolved Thallium (TI)                 | 2021/09/11               |          | 101       | %      | 80 - 120             |
|                |      |                          | Dissolved Thorium (Th)                  | 2021/09/11               |          | 105       | %      | 80 - 120             |
|                |      |                          | Dissolved Tin (Sn)                      | 2021/09/11               |          | 104       | %      | 80 - 120             |
|                |      |                          | Dissolved Titanium (Ti)                 | 2021/09/11               |          | 102       | %      | 80 - 120             |
|                |      |                          | Dissolved Tungsten (W)                  | 2021/09/11               |          | 108       | %      | 80 - 120             |
|                |      |                          | Dissolved Uranium (U)                   | 2021/09/11               |          | 109       | %      | 80 - 120             |
|                |      |                          | Dissolved Vanadium (V)                  | 2021/09/11               |          | 101       | %      | 80 - 120             |
|                |      |                          | Dissolved Zinc (Zn)                     | 2021/09/11               |          | 96        | %      | 80 - 120             |
|                |      |                          | Dissolved Zirconium (Zr)                | 2021/09/11               |          | 107       | %      | 80 - 120             |
| A346416        | AA1  | Spiked Blank             | Dissolved Aluminum (Al)                 | 2021/09/11               |          | 104       | %      | 80 - 120             |
|                |      |                          | Dissolved Antimony (Sb)                 | 2021/09/11               |          | 102       | %      | 80 - 120             |
|                |      |                          | Dissolved Arsenic (As)                  | 2021/09/11               |          | 99        | %      | 80 - 120             |
|                |      |                          | Dissolved Barium (Ba)                   | 2021/09/11               |          | 100       | %      | 80 - 120             |
|                |      |                          | Dissolved Beryllium (Be)                | 2021/09/11               |          | 101       | %      | 80 - 120             |
|                |      |                          | Dissolved Bismuth (Bi)                  | 2021/09/11               |          | 102       | %      | 80 - 120             |
|                |      |                          | Dissolved Boron (B)                     | 2021/09/11               |          | 100       | %      | 80 - 120             |
|                |      |                          | Dissolved Cadmium (Cd)                  | 2021/09/11               |          | 100       | %      | 80 - 120             |
|                |      |                          | Dissolved Chromium (Cr)                 | 2021/09/11               |          | 102       | %      | 80 - 120             |
|                |      |                          | Dissolved Cobalt (Co)                   | 2021/09/11               |          | 100       | %      | 80 - 120             |
|                |      |                          | Dissolved Copper (Cu)                   | 2021/09/11               |          | 101       | %      | 80 - 120             |
|                |      |                          |                                         |                          |          |           |        |                      |
|                |      |                          | Dissolved Iron (Fe) Dissolved Lead (Pb) | 2021/09/11<br>2021/09/11 |          | 105<br>99 | %<br>% | 80 - 120<br>80 - 120 |
|                |      |                          | Pissolved read (Ln)                     | 2021/09/11               |          | <u> </u>  | /0     | 00 - 120             |



| QA/QC   |      |                 |                           |               |                       |          |       |           |
|---------|------|-----------------|---------------------------|---------------|-----------------------|----------|-------|-----------|
| Batch   | Init | QC Type         | Parameter                 | Date Analyzed | Value                 | Recovery | UNITS | QC Limits |
|         |      | . 71            | Dissolved Lithium (Li)    | 2021/09/11    |                       | 98       | %     | 80 - 120  |
|         |      |                 | Dissolved Manganese (Mn)  | 2021/09/11    |                       | 103      | %     | 80 - 120  |
|         |      |                 | Dissolved Molybdenum (Mo) | 2021/09/11    |                       | 103      | %     | 80 - 120  |
|         |      |                 | Dissolved Nickel (Ni)     | 2021/09/11    |                       | 101      | %     | 80 - 120  |
|         |      |                 | Dissolved Selenium (Se)   | 2021/09/11    |                       | 101      | %     | 80 - 120  |
|         |      |                 | Dissolved Silicon (Si)    | 2021/09/11    |                       | 111      | %     | 80 - 120  |
|         |      |                 | Dissolved Silver (Ag)     | 2021/09/11    |                       | 98       | %     | 80 - 120  |
|         |      |                 | Dissolved Strontium (Sr)  | 2021/09/11    |                       | 102      | %     | 80 - 120  |
|         |      |                 | Dissolved Tellurium (Te)  | 2021/09/11    |                       | 102      | %     | 80 - 120  |
|         |      |                 | Dissolved Thallium (TI)   | 2021/09/11    |                       | 100      | %     | 80 - 120  |
|         |      |                 | Dissolved Thorium (Th)    | 2021/09/11    |                       | 102      | %     | 80 - 120  |
|         |      |                 | Dissolved Tin (Sn)        | 2021/09/11    |                       | 104      | %     | 80 - 120  |
|         |      |                 | Dissolved Titanium (Ti)   | 2021/09/11    |                       | 107      | %     | 80 - 120  |
|         |      |                 | Dissolved Tungsten (W)    | 2021/09/11    |                       | 100      | %     | 80 - 120  |
|         |      |                 | Dissolved Uranium (U)     | 2021/09/11    |                       | 106      | %     | 80 - 120  |
|         |      |                 | Dissolved Vanadium (V)    | 2021/09/11    |                       | 103      | %     | 80 - 120  |
|         |      |                 | Dissolved Zinc (Zn)       | 2021/09/11    |                       | 105      | %     | 80 - 120  |
|         |      |                 | Dissolved Zirconium (Zr)  | 2021/09/11    |                       | 105      | %     | 80 - 120  |
| A346416 | AA1  | Method Blank    | Dissolved Aluminum (Al)   | 2021/09/11    | <0.50                 |          | ug/L  |           |
|         |      |                 | Dissolved Antimony (Sb)   | 2021/09/11    | <0.020                |          | ug/L  |           |
|         |      |                 | Dissolved Arsenic (As)    | 2021/09/11    | <0.020                |          | ug/L  |           |
|         |      |                 | Dissolved Barium (Ba)     | 2021/09/11    | <0.020                |          | ug/L  |           |
|         |      |                 | Dissolved Beryllium (Be)  | 2021/09/11    | <0.010                |          | ug/L  |           |
|         |      |                 | Dissolved Bismuth (Bi)    | 2021/09/11    | <0.0050               |          | ug/L  |           |
|         |      |                 | Dissolved Boron (B)       | 2021/09/11    | <10                   |          | ug/L  |           |
|         |      |                 | Dissolved Cadmium (Cd)    | 2021/09/11    | <0.0050               |          | ug/L  |           |
|         |      |                 | Dissolved Chromium (Cr)   | 2021/09/11    | <0.10                 |          | ug/L  |           |
|         |      |                 | Dissolved Cobalt (Co)     | 2021/09/11    | <0.0050               |          | ug/L  |           |
|         |      |                 | Dissolved Copper (Cu)     | 2021/09/11    | < 0.050               |          | ug/L  |           |
|         |      |                 | Dissolved Iron (Fe)       | 2021/09/11    | <1.0                  |          | ug/L  |           |
|         |      |                 | Dissolved Lead (Pb)       | 2021/09/11    | <0.0050               |          | ug/L  |           |
|         |      |                 | Dissolved Lithium (Li)    | 2021/09/11    | <0.50                 |          | ug/L  |           |
|         |      |                 | Dissolved Manganese (Mn)  | 2021/09/11    | <0.050                |          | ug/L  |           |
|         |      |                 | Dissolved Molybdenum (Mo) | 2021/09/11    | <0.050                |          | ug/L  |           |
|         |      |                 | Dissolved Nickel (Ni)     | 2021/09/11    | <0.020                |          | ug/L  |           |
|         |      |                 | Dissolved Selenium (Se)   | 2021/09/11    | <0.040                |          | ug/L  |           |
|         |      |                 | Dissolved Silicon (Si)    | 2021/09/11    | <50                   |          | ug/L  |           |
|         |      |                 | Dissolved Silver (Ag)     | 2021/09/11    | <0.0050               |          | ug/L  |           |
|         |      |                 | Dissolved Strontium (Sr)  | 2021/09/11    | <0.050                |          | ug/L  |           |
|         |      |                 | Dissolved Tellurium (Te)  | 2021/09/11    | <0.020                |          | ug/L  |           |
|         |      |                 | Dissolved Thallium (TI)   | 2021/09/11    | <0.0020               |          | ug/L  |           |
|         |      |                 | Dissolved Thorium (Th)    | 2021/09/11    | <0.0050               |          | ug/L  |           |
|         |      |                 | Dissolved Tin (Sn)        | 2021/09/11    | <0.20                 |          | ug/L  |           |
|         |      |                 | Dissolved Titanium (Ti)   | 2021/09/11    | <0.50                 |          | ug/L  |           |
|         |      |                 | Dissolved Tungsten (W)    | 2021/09/11    | < 0.010               |          | ug/L  |           |
|         |      |                 | Dissolved Translum (U)    | 2021/09/11    | 0.0021,               |          | ug/L  |           |
|         |      |                 |                           | 2021/03/11    | RDL=0.0020 (2)        |          | ug/ L |           |
|         |      |                 | Dissolved Vanadium (V)    | 2021/09/11    | <0.20                 |          | ug/L  |           |
|         |      |                 | Dissolved Zinc (Zn)       | 2021/09/11    | 0.14,<br>RDL=0.10 (3) |          | ug/L  |           |
|         |      |                 | Dissolved Zirconium (Zr)  | 2021/09/11    | <0.10                 |          | ug/L  |           |
| A346416 | AA1  | RPD [AFF263-05] | Dissolved Aluminum (Al)   | 2021/09/11    | 6.3                   |          | %     | 20        |
|         |      | -               | Dissolved Antimony (Sb)   | 2021/09/11    | 0.41                  |          | %     | 20        |
|         |      |                 | Dissolved Arsenic (As)    | 2021/09/11    | 0.027                 |          | %     | 20        |
|         |      |                 | Dissolved Barium (Ba)     | 2021/09/11    | 0.81                  |          | %     | 20        |



| QA/QC   |       |                           |                                                 |                          |            |          |        |           |
|---------|-------|---------------------------|-------------------------------------------------|--------------------------|------------|----------|--------|-----------|
| Batch   | Init  | QC Type                   | Parameter                                       | Date Analyzed            | Value      | Recovery | UNITS  | QC Limits |
|         |       |                           | Dissolved Beryllium (Be)                        | 2021/09/11               | NC         |          | %      | 20        |
|         |       |                           | Dissolved Bismuth (Bi)                          | 2021/09/11               | NC         |          | %      | 20        |
|         |       |                           | Dissolved Boron (B)                             | 2021/09/11               | 0.29       |          | %      | 20        |
|         |       |                           | Dissolved Cadmium (Cd)                          | 2021/09/11               | 6.5        |          | %      | 20        |
|         |       |                           | Dissolved Chromium (Cr)                         | 2021/09/11               | NC         |          | %      | 20        |
|         |       |                           | Dissolved Cobalt (Co)                           | 2021/09/11               | 4.7        |          | %      | 20        |
|         |       |                           | Dissolved Copper (Cu)                           | 2021/09/11               | 1.8        |          | %      | 20        |
|         |       |                           | Dissolved Iron (Fe)                             | 2021/09/11               | 4.5        |          | %      | 20        |
|         |       |                           | Dissolved Lead (Pb)                             | 2021/09/11               | 5.0        |          | %      | 20        |
|         |       |                           | Dissolved Lithium (Li)                          | 2021/09/11               | 0.43       |          | %      | 20        |
|         |       |                           | Dissolved Manganese (Mn)                        | 2021/09/11               | 2.5        |          | %      | 20        |
|         |       |                           | Dissolved Molybdenum (Mo)                       | 2021/09/11               | 5.4        |          | %      | 20        |
|         |       |                           | Dissolved Nickel (Ni)                           | 2021/09/11               | 4.3        |          | %      | 20        |
|         |       |                           | Dissolved Selenium (Se)                         | 2021/09/11               | 13         |          | %      | 20        |
|         |       |                           | Dissolved Silicon (Si)                          | 2021/09/11               | 0.13       |          | %      | 20        |
|         |       |                           | Dissolved Silver (Ag)                           | 2021/09/11               | NC         |          | %      | 20        |
|         |       |                           | Dissolved Strontium (Sr)                        | 2021/09/11               | 1.7        |          | %      | 20        |
|         |       |                           | Dissolved Tellurium (Te)                        | 2021/09/11               | NC         |          | %      | 20        |
|         |       |                           | Dissolved Thallium (TI)                         | 2021/09/11               | 1.2        |          | %      | 20        |
|         |       |                           | Dissolved Thailidin (Tr) Dissolved Thorium (Th) | 2021/09/11               | NC         |          | %      | 20        |
|         |       |                           | ` ,                                             | 2021/09/11               | NC         |          |        |           |
|         |       |                           | Dissolved Tin (Sn) Dissolved Titanium (Ti)      | · ·                      |            |          | %<br>% | 20        |
|         |       |                           | Dissolved Titalium (T) Dissolved Tungsten (W)   | 2021/09/11<br>2021/09/11 | NC<br>1.2  |          |        | 20        |
|         |       |                           | Dissolved Tungsten (w) Dissolved Uranium (U)    | 2021/09/11               | 1.2        |          | %      | 20        |
|         |       |                           | , ,                                             | • •                      | 0.15<br>NG |          | %      | 20        |
|         |       |                           | Dissolved Vanadium (V)                          | 2021/09/11               | NC<br>1.F  |          | %      | 20        |
|         |       |                           | Dissolved Zinc (Zn)                             | 2021/09/11               | 1.5        |          | %      | 20        |
| 4247200 | EN 40 | Ma-tuin Cuite [AFF27F 00] | Dissolved Zirconium (Zr)                        | 2021/09/11               | NC         | 407      | %      | 20        |
| A347209 | FM0   | Matrix Spike [AFF275-08]  | Dissolved Phosphorus (P)                        | 2021/09/11               |            | 107      | %      | 80 - 120  |
| A347209 | FM0   | QC Standard               | Dissolved Phosphorus (P)                        | 2021/09/11               |            | 90       | %      | 80 - 120  |
| A347209 | FM0   | Spiked Blank              | Dissolved Phosphorus (P)                        | 2021/09/11               | 0.0040     | 113      | %      | 80 - 120  |
| A347209 | FM0   | Method Blank              | Dissolved Phosphorus (P)                        | 2021/09/11               | <0.0010    |          | mg/L   |           |
| A347209 | FM0   | RPD [AFF275-08]           | Dissolved Phosphorus (P)                        | 2021/09/11               | NC         |          | %      | 20        |
| A347213 | FM0   | Matrix Spike [AFF267-07]  | Total Phosphorus (P)                            | 2021/09/11               |            | 100      | %      | 80 - 120  |
| A347213 | FM0   | QC Standard               | Total Phosphorus (P)                            | 2021/09/11               |            | 90       | %      | 80 - 120  |
| A347213 | FM0   | Spiked Blank              | Total Phosphorus (P)                            | 2021/09/11               |            | 115      | %      | 80 - 120  |
| A347213 | FM0   | Method Blank              | Total Phosphorus (P)                            | 2021/09/11               | <0.0010    |          | mg/L   |           |
| A347213 | FM0   | RPD [AFF267-07]           | Total Phosphorus (P)                            | 2021/09/11               | NC         |          | %      | 20        |
| A347313 | CJY   | Matrix Spike              | Total Mercury (Hg)                              | 2021/09/10               |            | 87       | %      | 80 - 120  |
| A347313 | CJY   | Spiked Blank              | Total Mercury (Hg)                              | 2021/09/10               |            | 96       | %      | 80 - 120  |
| A347313 | CJY   | Method Blank              | Total Mercury (Hg)                              | 2021/09/10               | <0.0019    |          | ug/L   |           |
| A347313 | CJY   | RPD                       | Total Mercury (Hg)                              | 2021/09/10               | 3.2        |          | %      | 20        |
| A347315 | ZWU   | Matrix Spike [AFF268-08]  | Dissolved Organic Carbon (C)                    | 2021/09/10               |            | 111      | %      | 80 - 120  |
| A347315 | ZWU   | Spiked Blank              | Dissolved Organic Carbon (C)                    | 2021/09/10               |            | 111      | %      | 80 - 120  |
| A347315 | ZWU   | Method Blank              | Dissolved Organic Carbon (C)                    | 2021/09/10               | <0.20      |          | mg/L   |           |
| A347315 | ZWU   | RPD [AFF268-08]           | Dissolved Organic Carbon (C)                    | 2021/09/10               | NC         |          | %      | 20        |
| A347443 | STI   | Matrix Spike              | Dissolved Phosphorus (P)                        | 2021/09/12               |            | 76 (4)   | %      | 80 - 120  |
| A347443 | STI   | QC Standard               | Dissolved Phosphorus (P)                        | 2021/09/12               |            | 87       | %      | 80 - 120  |
| A347443 | STI   | Spiked Blank              | Dissolved Phosphorus (P)                        | 2021/09/12               |            | 111      | %      | 80 - 120  |
| A347443 | STI   | Method Blank              | Dissolved Phosphorus (P)                        | 2021/09/12               | < 0.0010   |          | mg/L   |           |
| A347443 | STI   | RPD                       | Dissolved Phosphorus (P)                        | 2021/09/12               | 1.5        |          | %      | 20        |
| A347450 | STI   | Matrix Spike              | Total Phosphorus (P)                            | 2021/09/12               |            | 92       | %      | 80 - 120  |
| A347450 | STI   | QC Standard               | Total Phosphorus (P)                            | 2021/09/12               |            | 90       | %      | 80 - 120  |
| A347450 | STI   | Spiked Blank              | Total Phosphorus (P)                            | 2021/09/12               |            | 98       | %      | 80 - 120  |
| A347450 | STI   | Method Blank              | Total Phosphorus (P)                            | 2021/09/12               | <0.0010    |          | mg/L   |           |
| A347450 | STI   | RPD                       | Total Phosphorus (P)                            | 2021/09/12               | NC         |          | %      | 20        |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

| QA/QC              | lus in      | OC Turns                    | Davamakan                                 | Data Analysed            | Value   | Dagayamı           | LINUTC     | OC Limita             |
|--------------------|-------------|-----------------------------|-------------------------------------------|--------------------------|---------|--------------------|------------|-----------------------|
| Batch<br>A347455   | Init<br>STI | QC Type<br>Matrix Spike     | Parameter Total Phosphorus (P)            | Date Analyzed 2021/09/12 | Value   | Recovery<br>69 (4) | UNITS<br>% | QC Limits<br>80 - 120 |
| A347455<br>A347455 |             | •                           |                                           | 2021/09/12               |         | 69 (4)<br>87       | %          |                       |
|                    | STI         | QC Standard<br>Spiked Blank | Total Phosphorus (P) Total Phosphorus (P) | 2021/09/12               |         | 87<br>97           |            | 80 - 120<br>80 - 120  |
| A347455            | STI         | •                           | Total Phosphorus (P)                      |                          | <0.0010 | 97                 | %<br>ma/l  | 80 - 120              |
| A347455            | STI         | Method Blank                | 1                                         | 2021/09/12               | <0.0010 |                    | mg/L       | 20                    |
| A347455            | STI         | RPD                         | Total Phosphorus (P)                      | 2021/09/12               | NC      | 00                 | %          | 20                    |
| A347548            | CJY         | Matrix Spike                | Dissolved Mercury (Hg)                    | 2021/09/10               |         | 98                 | %          | 80 - 120              |
| A347548            | CJY         | Spiked Blank                | Dissolved Mercury (Hg)                    | 2021/09/10               | .0.0040 | 98                 | %          | 80 - 120              |
| A347548            | CJY         | Method Blank                | Dissolved Mercury (Hg)                    | 2021/09/10               | <0.0019 |                    | ug/L       | 20                    |
| A347548            | CJY         | RPD                         | Dissolved Mercury (Hg)                    | 2021/09/10               | NC      | 0.2                | %          | 20                    |
| A347639            | AA1         | Matrix Spike [AFF276-04]    | Total Aluminum (Al)                       | 2021/09/11               |         | 93                 | %          | 80 - 120              |
|                    |             |                             | Total Antimony (Sb)                       | 2021/09/11               |         | 98                 | %          | 80 - 120              |
|                    |             |                             | Total Arsenic (As)                        | 2021/09/11               |         | 95                 | %          | 80 - 120              |
|                    |             |                             | Total Barium (Ba)                         | 2021/09/11               |         | 97                 | %          | 80 - 120              |
|                    |             |                             | Total Beryllium (Be)                      | 2021/09/11               |         | 91                 | %          | 80 - 120              |
|                    |             |                             | Total Bismuth (Bi)                        | 2021/09/11               |         | 96                 | %          | 80 - 120              |
|                    |             |                             | Total Boron (B)                           | 2021/09/11               |         | 89                 | %          | 80 - 120              |
|                    |             |                             | Total Cadmium (Cd)                        | 2021/09/11               |         | 96                 | %          | 80 - 120              |
|                    |             |                             | Total Chromium (Cr)                       | 2021/09/11               |         | 91                 | %          | 80 - 120              |
|                    |             |                             | Total Cobalt (Co)                         | 2021/09/11               |         | 88                 | %          | 80 - 120              |
|                    |             |                             | Total Copper (Cu)                         | 2021/09/11               |         | 87                 | %          | 80 - 120              |
|                    |             |                             | Total Iron (Fe)                           | 2021/09/11               |         | 98                 | %          | 80 - 120              |
|                    |             |                             | Total Lead (Pb)                           | 2021/09/11               |         | 98                 | %          | 80 - 120              |
|                    |             |                             | Total Lithium (Li)                        | 2021/09/11               |         | 90                 | %          | 80 - 120              |
|                    |             |                             | Total Manganese (Mn)                      | 2021/09/11               |         | 88                 | %          | 80 - 120              |
|                    |             |                             | Total Molybdenum (Mo)                     | 2021/09/11               |         | 101                | %          | 80 - 120              |
|                    |             |                             | Total Nickel (Ni)                         | 2021/09/11               |         | 89                 | %          | 80 - 120              |
|                    |             |                             | Total Selenium (Se)                       | 2021/09/11               |         | 94                 | %          | 80 - 120              |
|                    |             |                             | Total Silicon (Si)                        | 2021/09/11               |         | 104                | %          | 80 - 120              |
|                    |             |                             | Total Silver (Ag)                         | 2021/09/11               |         | 89                 | %          | 80 - 120              |
|                    |             |                             | Total Strontium (Sr)                      | 2021/09/11               |         | NC                 | %          | 80 - 120              |
|                    |             |                             | Total Tellurium (Te)                      | 2021/09/11               |         | 97                 | %          | 80 - 120              |
|                    |             |                             | Total Thallium (Tl)                       | 2021/09/11               |         | 100                | %          | 80 - 120              |
|                    |             |                             | Total Thorium (Th)                        | 2021/09/11               |         | 100                | %          | 80 - 120              |
|                    |             |                             | Total Tin (Sn)                            | 2021/09/11               |         | 100                | %          | 80 - 120              |
|                    |             |                             | Total Titanium (Ti)                       | 2021/09/11               |         | 97                 | %          | 80 - 120              |
|                    |             |                             | Total Tungsten (W)                        | 2021/09/11               |         | 95                 | %          | 80 - 120              |
|                    |             |                             | Total Uranium (U)                         | 2021/09/11               |         | 106                | %          | 80 - 120              |
|                    |             |                             | Total Vanadium (V)                        | 2021/09/11               |         | 95                 | %          | 80 - 120              |
|                    |             |                             | Total Zinc (Zn)                           | 2021/09/11               |         | 93                 | %          | 80 - 120              |
|                    |             |                             | Total Zirconium (Zr)                      | 2021/09/11               |         | 102                | %          | 80 - 120              |
| A347639            | AA1         | Spiked Blank                | Total Aluminum (Al)                       | 2021/09/11               |         | 104                | %          | 80 - 120              |
|                    |             |                             | Total Antimony (Sb)                       | 2021/09/11               |         | 105                | %          | 80 - 120              |
|                    |             |                             | Total Arsenic (As)                        | 2021/09/11               |         | 100                | %          | 80 - 120              |
|                    |             |                             | Total Barium (Ba)                         | 2021/09/11               |         | 102                | %          | 80 - 120              |
|                    |             |                             | Total Beryllium (Be)                      | 2021/09/11               |         | 101                | %          | 80 - 120              |
|                    |             |                             | Total Bismuth (Bi)                        | 2021/09/11               |         | 103                | %          | 80 - 120              |
|                    |             |                             | Total Boron (B)                           | 2021/09/11               |         | 101                | %          | 80 - 120              |
|                    |             |                             | Total Cadmium (Cd)                        | 2021/09/11               |         | 102                | %          | 80 - 120              |
|                    |             |                             | Total Chromium (Cr)                       | 2021/09/11               |         | 101                | %          | 80 - 120              |
|                    |             |                             | Total Cobalt (Co)                         | 2021/09/11               |         | 100                | %          | 80 - 120              |
|                    |             |                             | Total Copper (Cu)                         | 2021/09/11               |         | 100                | %          | 80 - 120              |
|                    |             |                             | Total Iron (Fe)                           | 2021/09/11               |         | 106                | %          | 80 - 120              |
|                    |             |                             | Total Lead (Pb)                           | 2021/09/11               |         | 102                | %          | 80 - 120              |
|                    |             |                             | Total Lithium (Li)                        | 2021/09/11               |         | 98                 | %          | 80 - 120              |
|                    |             |                             | Total Manganese (Mn)                      | 2021/09/11               |         | 103                | %          | 80 - 120              |



| QA/QC     |       |                 |                                          |               |                           |          |        |           |
|-----------|-------|-----------------|------------------------------------------|---------------|---------------------------|----------|--------|-----------|
| Batch     | Init  | QC Type         | Parameter                                | Date Analyzed | Value                     | Recovery | UNITS  | QC Limits |
|           |       | ••              | Total Molybdenum (Mo)                    | 2021/09/11    |                           | 104      | %      | 80 - 120  |
|           |       |                 | Total Nickel (Ni)                        | 2021/09/11    |                           | 101      | %      | 80 - 120  |
|           |       |                 | Total Selenium (Se)                      | 2021/09/11    |                           | 101      | %      | 80 - 120  |
|           |       |                 | Total Silicon (Si)                       | 2021/09/11    |                           | 109      | %      | 80 - 120  |
|           |       |                 | Total Silver (Ag)                        | 2021/09/11    |                           | 99       | %      | 80 - 120  |
|           |       |                 | Total Strontium (Sr)                     | 2021/09/11    |                           | 102      | %      | 80 - 120  |
|           |       |                 | Total Tellurium (Te)                     | 2021/09/11    |                           | 105      | %      | 80 - 120  |
|           |       |                 | Total Thallium (TI)                      | 2021/09/11    |                           | 102      | %      | 80 - 120  |
|           |       |                 | Total Thorium (Th)                       | 2021/09/11    |                           | 103      | %      | 80 - 120  |
|           |       |                 | Total Tin (Sn)                           | 2021/09/11    |                           | 104      | %      | 80 - 120  |
|           |       |                 | Total Titanium (Ti)                      | 2021/09/11    |                           | 106      | %      | 80 - 120  |
|           |       |                 | Total Tungsten (W)                       | 2021/09/11    |                           | 100      | %      | 80 - 120  |
|           |       |                 | Total Uranium (U)                        | 2021/09/11    |                           | 107      | %      | 80 - 120  |
|           |       |                 | Total Vanadium (V)                       | 2021/09/11    |                           | 102      | %      | 80 - 120  |
|           |       |                 | Total Variadidii (V) Total Zinc (Zn)     | 2021/09/11    |                           | 102      | %      | 80 - 120  |
|           |       |                 |                                          |               |                           | 103      | %<br>% |           |
| A 2 47C20 | A A 1 | Mathad Dlaul    | Total Aluminum (Zr)                      | 2021/09/11    | 40 FO                     | 102      |        | 80 - 120  |
| A347639   | AA1   | Method Blank    | Total Auminum (AI)                       | 2021/09/11    | <0.50                     |          | ug/L   |           |
|           |       |                 | Total Antimony (Sb)                      | 2021/09/11    | <0.020                    |          | ug/L   |           |
|           |       |                 | Total Arsenic (As)                       | 2021/09/11    | <0.020                    |          | ug/L   |           |
|           |       |                 | Total Barium (Ba)                        | 2021/09/11    | <0.020                    |          | ug/L   |           |
|           |       |                 | Total Beryllium (Be)                     | 2021/09/11    | <0.010                    |          | ug/L   |           |
|           |       |                 | Total Bismuth (Bi)                       | 2021/09/11    | <0.0050                   |          | ug/L   |           |
|           |       |                 | Total Boron (B)                          | 2021/09/11    | <10                       |          | ug/L   |           |
|           |       |                 | Total Cadmium (Cd)                       | 2021/09/11    | <0.0050                   |          | ug/L   |           |
|           |       |                 | Total Chromium (Cr)                      | 2021/09/11    | <0.10                     |          | ug/L   |           |
|           |       |                 | Total Cobalt (Co)                        | 2021/09/11    | <0.0050                   |          | ug/L   |           |
|           |       |                 | Total Copper (Cu)                        | 2021/09/11    | <0.050                    |          | ug/L   |           |
|           |       |                 | Total Iron (Fe)                          | 2021/09/11    | <1.0                      |          | ug/L   |           |
|           |       |                 | Total Lead (Pb)                          | 2021/09/11    | <0.0050                   |          | ug/L   |           |
|           |       |                 | Total Lithium (Li)                       | 2021/09/11    | <0.50                     |          | ug/L   |           |
|           |       |                 | Total Manganese (Mn)                     | 2021/09/11    | < 0.050                   |          | ug/L   |           |
|           |       |                 | Total Molybdenum (Mo)                    | 2021/09/11    | < 0.050                   |          | ug/L   |           |
|           |       |                 | Total Nickel (Ni)                        | 2021/09/11    | <0.020                    |          | ug/L   |           |
|           |       |                 | Total Selenium (Se)                      | 2021/09/11    | < 0.040                   |          | ug/L   |           |
|           |       |                 | Total Silicon (Si)                       | 2021/09/11    | <50                       |          | ug/L   |           |
|           |       |                 | Total Silver (Ag)                        | 2021/09/11    | <0.0050                   |          | ug/L   |           |
|           |       |                 | Total Strontium (Sr)                     | 2021/09/11    | <0.050                    |          | ug/L   |           |
|           |       |                 | Total Tellurium (Te)                     | 2021/09/11    | <0.020                    |          | ug/L   |           |
|           |       |                 | Total Thallium (TI)                      | 2021/09/11    | <0.0020                   |          | ug/L   |           |
|           |       |                 | Total Thorium (Th)                       | 2021/09/11    | <0.0050                   |          | ug/L   |           |
|           |       |                 | Total Tin (Sn)                           | 2021/09/11    | <0.20                     |          | ug/L   |           |
|           |       |                 | Total Titanium (Ti)                      | 2021/09/11    | <0.50                     |          | ug/L   |           |
|           |       |                 | Total Triallium (Tr)  Total Tungsten (W) | 2021/09/11    | <0.010                    |          | ug/L   |           |
|           |       |                 |                                          |               |                           |          |        |           |
|           |       |                 | Total Uranium (U)                        | 2021/09/11    | 0.0027,<br>RDL=0.0020 (2) |          | ug/L   |           |
|           |       |                 | Total Vanadium (V)                       | 2021/09/11    | <0.20                     |          | ug/L   |           |
|           |       |                 | Total Zinc (Zn)                          | 2021/09/11    | <0.10                     |          | ug/L   |           |
|           |       |                 | Total Zirconium (Zr)                     | 2021/09/11    | <0.10                     |          | ug/L   |           |
| A347639   | AA1   | RPD [AFF276-04] | Total Aluminum (Al)                      | 2021/09/11    | 3.8                       |          | %      | 20        |
|           |       |                 | Total Antimony (Sb)                      | 2021/09/11    | 11                        |          | %      | 20        |
|           |       |                 | Total Arsenic (As)                       | 2021/09/11    | 2.4                       |          | %      | 20        |
|           |       |                 | Total Barium (Ba)                        | 2021/09/11    | 0.13                      |          | %      | 20        |
|           |       |                 | Total Beryllium (Be)                     | 2021/09/11    | NC                        |          | %      | 20        |
|           |       |                 | Total Bismuth (Bi)                       | 2021/09/11    | NC                        |          | %      | 20        |
|           |       |                 | Total Boron (B)                          | 2021/09/11    | NC                        |          | %      | 20        |

|                    |      |                          | QUALITY ASSURANCE                   |               |                   |          |              |                      |
|--------------------|------|--------------------------|-------------------------------------|---------------|-------------------|----------|--------------|----------------------|
| QA/QC<br>Batch     | Init | QC Type                  | Parameter                           | Date Analyzed | Value             | Recovery | UNITS        | QC Limits            |
|                    |      |                          | Total Cadmium (Cd)                  | 2021/09/11    | 4.5               |          | %            | 20                   |
|                    |      |                          | Total Chromium (Cr)                 | 2021/09/11    | NC                |          | %            | 20                   |
|                    |      |                          | Total Cobalt (Co)                   | 2021/09/11    | 1.6               |          | %            | 20                   |
|                    |      |                          | Total Copper (Cu)                   | 2021/09/11    | 4.7               |          | %            | 20                   |
|                    |      |                          | Total Iron (Fe)                     | 2021/09/11    | 1.0               |          | %            | 20                   |
|                    |      |                          | Total Lead (Pb)                     | 2021/09/11    | 2.6               |          | %            | 20                   |
|                    |      |                          | Total Lithium (Li)                  | 2021/09/11    | 2.3               |          | %            | 20                   |
|                    |      |                          | Total Manganese (Mn)                | 2021/09/11    | 1.1               |          | %            | 20                   |
|                    |      |                          | Total Molybdenum (Mo)               | 2021/09/11    | 11                |          | %            | 20                   |
|                    |      |                          | Total Nickel (Ni)                   | 2021/09/11    | 2.9               |          | %            | 20                   |
|                    |      |                          | Total Selenium (Se)                 | 2021/09/11    | 13                |          | %            | 20                   |
|                    |      |                          | Total Silicon (Si)                  | 2021/09/11    | 0.60              |          | %            | 20                   |
|                    |      |                          | Total Silver (Ag)                   | 2021/09/11    | NC                |          | %            | 20                   |
|                    |      |                          | Total Strontium (Sr)                | 2021/09/11    | 1.4               |          | %            | 20                   |
|                    |      |                          | Total Tellurium (Te)                | 2021/09/11    | NC                |          | %            | 20                   |
|                    |      |                          | Total Thallium (TI)                 | 2021/09/11    | 4.7               |          | %            | 20                   |
|                    |      |                          | Total Thorium (Th)                  | 2021/09/11    | 4.0               |          | %            | 20                   |
|                    |      |                          | Total Tin (Sn)                      | 2021/09/11    | NC                |          | %            | 20                   |
|                    |      |                          | Total Titanium (Ti)                 | 2021/09/11    | NC                |          | %            | 20                   |
|                    |      |                          | Total Tungsten (W)                  | 2021/09/11    | 11                |          | %            | 20                   |
|                    |      |                          | Total Uranium (U)                   | 2021/09/11    | 0.35              |          | %            | 20                   |
|                    |      |                          | Total Vanadium (V)                  | 2021/09/11    | NC                |          | %            | 20                   |
|                    |      |                          | Total Zinc (Zn)                     | 2021/09/11    | 3.4               |          | %            | 20                   |
|                    |      |                          | Total Zirconium (Zr)                | 2021/09/11    | NC                |          | %            | 20                   |
| A347643            | MO5  | Matrix Spike             | Fluoride (F)                        | 2021/09/10    | 110               | 100      | %            | 80 - 120             |
| A347643            | MO5  | Spiked Blank             | Fluoride (F)                        | 2021/09/10    |                   | 100      | %            | 80 - 120             |
| A347643            | MO5  | Method Blank             | Fluoride (F)                        | 2021/09/10    | <0.020            | 100      | mg/L         | 00 - 120             |
| A347643            | MO5  | RPD                      | Fluoride (F)                        | 2021/09/10    | 0.020             |          | 111g/ L<br>% | 20                   |
| A347043            |      |                          | ` '                                 | 2021/09/10    | U                 | 104      | %<br>%       | 80 - 120             |
| A347795            | CJY  | Matrix Spike [AFF274-04] | Total Mercury (Hg)                  |               |                   | 104      |              |                      |
|                    | CJY  | Spiked Blank             | Total Mercury (Hg)                  | 2021/09/10    | -0.0010           | 106      | %<br>/I      | 80 - 120             |
| A347795            | CJY  | Method Blank             | Total Mercury (Hg)                  | 2021/09/10    | <0.0019           |          | ug/L         | 20                   |
| A347795            | CJY  | RPD [AFF273-04]          | Total Mercury (Hg)                  | 2021/09/10    | NC                | 400      | %            | 20                   |
| A348087            | MO5  | Matrix Spike             | Dissolved Chloride (Cl)             | 2021/09/10    |                   | 100      | %            | 80 - 120             |
|                    |      |                          | Dissolved Sulphate (SO4)            | 2021/09/10    |                   | NC       | %            | 80 - 120             |
| A348087            | MO5  | Spiked Blank             | Dissolved Chloride (CI)             | 2021/09/10    |                   | 103      | %            | 80 - 120             |
|                    |      |                          | Dissolved Sulphate (SO4)            | 2021/09/10    |                   | 99       | %            | 80 - 120             |
| A348087            | MO5  | Method Blank             | Dissolved Chloride (CI)             | 2021/09/10    | <0.50             |          | mg/L         |                      |
|                    |      |                          | Dissolved Sulphate (SO4)            | 2021/09/10    | <0.50             |          | mg/L         |                      |
| A348087            | MO5  | RPD                      | Dissolved Chloride (Cl)             | 2021/09/10    | NC                |          | %            | 20                   |
|                    |      |                          | Dissolved Sulphate (SO4)            | 2021/09/10    | 2.5               |          | %            | 20                   |
| A348160            | MO5  | Matrix Spike             | Dissolved Chloride (CI)             | 2021/09/10    |                   | 84       | %            | 80 - 120             |
|                    |      |                          | Dissolved Sulphate (SO4)            | 2021/09/10    |                   | NC       | %            | 80 - 120             |
| A348160            | MO5  | Spiked Blank             | Dissolved Chloride (CI)             | 2021/09/10    |                   | 103      | %            | 80 - 120             |
|                    |      |                          | Dissolved Sulphate (SO4)            | 2021/09/10    |                   | 101      | %            | 80 - 120             |
| A348160            | MO5  | Method Blank             | Dissolved Chloride (CI)             | 2021/09/10    | <0.50             |          | mg/L         |                      |
|                    |      |                          | Dissolved Sulphate (SO4)            | 2021/09/10    | 0.98,<br>RDL=0.50 |          | mg/L         |                      |
| A348160            | MO5  | RPD                      | Dissolved Chloride (CI)             | 2021/09/10    | 5.1               |          | %            | 20                   |
| . 13 13100         | 05   | 5                        | Dissolved Sulphate (SO4)            | 2021/09/10    | 1.6               |          | %            | 20                   |
| A348552            | JFH  | Matrix Spike             | Total Ammonia (N)                   | 2021/09/11    | 1.0               | 96       | %            | 80 - 120             |
| A348552            | JFH  | Spiked Blank             | Total Ammonia (N)                   | 2021/09/11    |                   | 96       | %<br>%       | 80 - 120<br>80 - 120 |
| A348552<br>A348552 | JFH  | Method Blank             | Total Ammonia (N) Total Ammonia (N) | 2021/09/11    | <0.0050           | 30       | %<br>mg/L    | 00 - 120             |
|                    |      |                          |                                     |               |                   |          |              | 20                   |
| A348552            | JFH  | RPD                      | Total Ammonia (N)                   | 2021/09/11    | 1.3               | 101      | %            | 20                   |
| A348557            | JFH  | Matrix Spike [AFF275-09] | Total Ammonia (N)                   | 2021/09/11    |                   | 101      | %            | 80 - 120             |
| A348557            | JFH  | Spiked Blank             | Total Ammonia (N)                   | 2021/09/11    |                   | 97       | %            | 80 - 120             |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

| QA/QC    |      |                          |                                                 |                          |         |            |        |                      |
|----------|------|--------------------------|-------------------------------------------------|--------------------------|---------|------------|--------|----------------------|
| Batch    | Init | QC Type                  | Parameter                                       | Date Analyzed            | Value   | Recovery   | UNITS  | QC Limits            |
| A348557  | JFH  | Method Blank             | Total Ammonia (N)                               | 2021/09/11               | <0.0050 |            | mg/L   |                      |
| A348557  | JFH  | RPD [AFF275-09]          | Total Ammonia (N)                               | 2021/09/11               | NC      |            | %      | 20                   |
| A348719  | ZWU  | Matrix Spike [AFF277-08] | Dissolved Organic Carbon (C)                    | 2021/09/13               |         | 112        | %      | 80 - 120             |
| A348719  | ZWU  | Spiked Blank             | Dissolved Organic Carbon (C)                    | 2021/09/11               |         | 115        | %      | 80 - 120             |
| A348719  | ZWU  | Method Blank             | Dissolved Organic Carbon (C)                    | 2021/09/11               | <0.20   |            | mg/L   |                      |
| A348719  | ZWU  | RPD [AFF277-08]          | Dissolved Organic Carbon (C)                    | 2021/09/13               | NC      |            | %      | 20                   |
| A348726  | TL9  | Matrix Spike [AFF272-02] | Fluoride (F)                                    | 2021/09/11               |         | 104        | %      | 80 - 120             |
| A348726  | TL9  | Spiked Blank             | Fluoride (F)                                    | 2021/09/11               |         | 106        | %      | 80 - 120             |
| A348726  | TL9  | Method Blank             | Fluoride (F)                                    | 2021/09/11               | <0.020  |            | mg/L   |                      |
| A348726  | TL9  | RPD [AFF272-02]          | Fluoride (F)                                    | 2021/09/11               | 5.1     | 400        | %      | 20                   |
| A349611  | AA1  | Matrix Spike             | Total Zinc (Zn)                                 | 2021/09/14               |         | 102        | %      | 80 - 120             |
| A349611  | AA1  | Spiked Blank             | Total Zinc (Zn)                                 | 2021/09/14               | .0.40   | 102        | %      | 80 - 120             |
| A349611  | AA1  | Method Blank             | Total Zinc (Zn)                                 | 2021/09/14               | <0.10   |            | ug/L   | 20                   |
| A349611  | AA1  | RPD                      | Total Zinc (Zn)                                 | 2021/09/14               | 1.9     | F7 (4)     | %      | 20                   |
| A351252  | AA1  | Matrix Spike             | Dissolved Auminum (Al)                          | 2021/09/14               |         | 57 (4)     | %      | 80 - 120             |
|          |      |                          | Dissolved Arcania (As)                          | 2021/09/14<br>2021/09/14 |         | 105<br>101 | %<br>% | 80 - 120<br>80 - 120 |
|          |      |                          | Dissolved Arsenic (As) Dissolved Barium (Ba)    | 2021/09/14               |         | 97         | %<br>% | 80 - 120<br>80 - 120 |
|          |      |                          | Dissolved Baridin (Ba) Dissolved Beryllium (Be) | 2021/09/14               |         | 92         | %      | 80 - 120             |
|          |      |                          | Dissolved Berymann (Be) Dissolved Bismuth (Bi)  | 2021/09/14               |         | 93         | %      | 80 - 120             |
|          |      |                          | Dissolved Bismath (B)                           | 2021/09/14               |         | 91         | %      | 80 - 120             |
|          |      |                          | Dissolved Cadmium (Cd)                          | 2021/09/14               |         | 103        | %      | 80 - 120             |
|          |      |                          | Dissolved Chromium (Cr)                         | 2021/09/14               |         | 91         | %      | 80 - 120             |
|          |      |                          | Dissolved Cobalt (Co)                           | 2021/09/14               |         | 95         | %      | 80 - 120             |
|          |      |                          | Dissolved Copper (Cu)                           | 2021/09/14               |         | 87         | %      | 80 - 120             |
|          |      |                          | Dissolved Iron (Fe)                             | 2021/09/14               |         | 45 (4)     | %      | 80 - 120             |
|          |      |                          | Dissolved Lead (Pb)                             | 2021/09/14               |         | 96         | %      | 80 - 120             |
|          |      |                          | Dissolved Lithium (Li)                          | 2021/09/14               |         | 83         | %      | 80 - 120             |
|          |      |                          | Dissolved Manganese (Mn)                        | 2021/09/14               |         | NC         | %      | 80 - 120             |
|          |      |                          | Dissolved Molybdenum (Mo)                       | 2021/09/14               |         | 107        | %      | 80 - 120             |
|          |      |                          | Dissolved Nickel (Ni)                           | 2021/09/14               |         | 94         | %      | 80 - 120             |
|          |      |                          | Dissolved Selenium (Se)                         | 2021/09/14               |         | 101        | %      | 80 - 120             |
|          |      |                          | Dissolved Silicon (Si)                          | 2021/09/14               |         | NC         | %      | 80 - 120             |
|          |      |                          | Dissolved Silver (Ag)                           | 2021/09/14               |         | 100        | %      | 80 - 120             |
|          |      |                          | Dissolved Strontium (Sr)                        | 2021/09/14               |         | NC         | %      | 80 - 120             |
|          |      |                          | Dissolved Tellurium (Te)                        | 2021/09/14               |         | 103        | %      | 80 - 120             |
|          |      |                          | Dissolved Thallium (TI)                         | 2021/09/14               |         | 95         | %      | 80 - 120             |
|          |      |                          | Dissolved Thorium (Th)                          | 2021/09/14               |         | 99         | %      | 80 - 120             |
|          |      |                          | Dissolved Tin (Sn)                              | 2021/09/14               |         | 101        | %      | 80 - 120             |
|          |      |                          | Dissolved Titanium (Ti)                         | 2021/09/14               |         | 87         | %      | 80 - 120             |
|          |      |                          | Dissolved Tungsten (W)                          | 2021/09/14               |         | 99         | %      | 80 - 120             |
|          |      |                          | Dissolved Uranium (U)                           | 2021/09/14               |         | 99         | %      | 80 - 120             |
|          |      |                          | Dissolved Vanadium (V)                          | 2021/09/14               |         | 92         | %      | 80 - 120             |
|          |      |                          | Dissolved Zinc (Zn)                             | 2021/09/14               |         | 101        | %      | 80 - 120             |
|          |      |                          | Dissolved Zirconium (Zr)                        | 2021/09/14               |         | 107        | %      | 80 - 120             |
| A351252  | AA1  | Spiked Blank             | Dissolved Aluminum (AI)                         | 2021/09/14               |         | 98         | %      | 80 - 120             |
|          |      |                          | Dissolved Antimony (Sb)                         | 2021/09/14               |         | 104        | %      | 80 - 120             |
|          |      |                          | Dissolved Arsenic (As)                          | 2021/09/14               |         | 101        | %      | 80 - 120             |
|          |      |                          | Dissolved Barium (Ba)                           | 2021/09/14               |         | 102        | %      | 80 - 120             |
|          |      |                          | Dissolved Beryllium (Be)                        | 2021/09/14               |         | 102        | %      | 80 - 120             |
|          |      |                          | Dissolved Bismuth (Bi)                          | 2021/09/14               |         | 99         | %      | 80 - 120             |
|          |      |                          | Dissolved Boron (B)                             | 2021/09/14               |         | 101        | %      | 80 - 120             |
|          |      |                          | Dissolved Cadmium (Cd)                          | 2021/09/14               |         | 102        | %      | 80 - 120             |
|          |      |                          | Dissolved Chromium (Cr)                         | 2021/09/14               |         | 93         | %      | 80 - 120             |
| <u> </u> |      |                          | Dissolved Cobalt (Co)                           | 2021/09/14               |         | 96         | %      | 80 - 120             |

| 04/06          |      |              | QUALITY ASSURANCE         |               |          |          |       |           |
|----------------|------|--------------|---------------------------|---------------|----------|----------|-------|-----------|
| QA/QC<br>Batch | Init | QC Type      | Parameter                 | Date Analyzed | Value    | Recovery | UNITS | QC Limits |
|                |      |              | Dissolved Copper (Cu)     | 2021/09/14    |          | 92       | %     | 80 - 120  |
|                |      |              | Dissolved Iron (Fe)       | 2021/09/14    |          | 103      | %     | 80 - 120  |
|                |      |              | Dissolved Lead (Pb)       | 2021/09/14    |          | 99       | %     | 80 - 120  |
|                |      |              | Dissolved Lithium (Li)    | 2021/09/14    |          | 99       | %     | 80 - 120  |
|                |      |              | Dissolved Manganese (Mn)  | 2021/09/14    |          | 93       | %     | 80 - 120  |
|                |      |              | Dissolved Molybdenum (Mo) | 2021/09/14    |          | 103      | %     | 80 - 120  |
|                |      |              | Dissolved Nickel (Ni)     | 2021/09/14    |          | 98       | %     | 80 - 120  |
|                |      |              | Dissolved Selenium (Se)   | 2021/09/14    |          | 99       | %     | 80 - 120  |
|                |      |              | Dissolved Silicon (Si)    | 2021/09/14    |          | 103      | %     | 80 - 120  |
|                |      |              | Dissolved Silver (Ag)     | 2021/09/14    |          | 100      | %     | 80 - 120  |
|                |      |              | Dissolved Strontium (Sr)  | 2021/09/14    |          | 96       | %     | 80 - 120  |
|                |      |              | Dissolved Tellurium (Te)  | 2021/09/14    |          | 104      | %     | 80 - 120  |
|                |      |              | Dissolved Thallium (TI)   | 2021/09/14    |          | 99       | %     | 80 - 120  |
|                |      |              | Dissolved Thorium (Th)    | 2021/09/14    |          | 101      | %     | 80 - 120  |
|                |      |              | Dissolved Tin (Sn)        | 2021/09/14    |          | 103      | %     | 80 - 120  |
|                |      |              | Dissolved Titanium (Ti)   | 2021/09/14    |          | 103      | %     | 80 - 120  |
|                |      |              | Dissolved Tungsten (W)    | 2021/09/14    |          | 98       | %     | 80 - 120  |
|                |      |              | Dissolved Uranium (U)     | 2021/09/14    |          | 100      | %     | 80 - 120  |
|                |      |              | Dissolved Vanadium (V)    | 2021/09/14    |          | 92       | %     | 80 - 120  |
|                |      |              | Dissolved Zinc (Zn)       | 2021/09/14    |          | 101      | %     | 80 - 120  |
|                |      |              | Dissolved Zirconium (Zr)  | 2021/09/14    |          | 103      | %     | 80 - 120  |
| A351252        | AA1  | Method Blank | Dissolved Aluminum (AI)   | 2021/09/14    | <0.50    |          | ug/L  |           |
|                |      |              | Dissolved Antimony (Sb)   | 2021/09/14    | <0.020   |          | ug/L  |           |
|                |      |              | Dissolved Arsenic (As)    | 2021/09/14    | <0.020   |          | ug/L  |           |
|                |      |              | Dissolved Barium (Ba)     | 2021/09/14    | <0.020   |          | ug/L  |           |
|                |      |              | Dissolved Beryllium (Be)  | 2021/09/14    | <0.010   |          | ug/L  |           |
|                |      |              | Dissolved Bismuth (Bi)    | 2021/09/14    | <0.0050  |          | ug/L  |           |
|                |      |              | Dissolved Boron (B)       | 2021/09/14    | <10      |          | ug/L  |           |
|                |      |              | Dissolved Cadmium (Cd)    | 2021/09/14    | < 0.0050 |          | ug/L  |           |
|                |      |              | Dissolved Chromium (Cr)   | 2021/09/14    | <0.10    |          | ug/L  |           |
|                |      |              | Dissolved Cobalt (Co)     | 2021/09/14    | <0.0050  |          | ug/L  |           |
|                |      |              | Dissolved Copper (Cu)     | 2021/09/14    | <0.050   |          | ug/L  |           |
|                |      |              | Dissolved Iron (Fe)       | 2021/09/14    | <1.0     |          | ug/L  |           |
|                |      |              | Dissolved Lead (Pb)       | 2021/09/14    | <0.0050  |          | ug/L  |           |
|                |      |              | Dissolved Lithium (Li)    | 2021/09/14    | <0.50    |          | ug/L  |           |
|                |      |              | Dissolved Manganese (Mn)  | 2021/09/14    | <0.050   |          | ug/L  |           |
|                |      |              | Dissolved Molybdenum (Mo) | 2021/09/14    | <0.050   |          | ug/L  |           |
|                |      |              | Dissolved Nickel (Ni)     | 2021/09/14    | <0.020   |          | ug/L  |           |
|                |      |              | Dissolved Selenium (Se)   | 2021/09/14    | <0.040   |          | ug/L  |           |
|                |      |              | Dissolved Silicon (Si)    | 2021/09/14    | <50      |          | ug/L  |           |
|                |      |              | Dissolved Silver (Ag)     | 2021/09/14    | < 0.0050 |          | ug/L  |           |
|                |      |              | Dissolved Strontium (Sr)  | 2021/09/14    | <0.050   |          | ug/L  |           |
|                |      |              | Dissolved Tellurium (Te)  | 2021/09/14    | <0.020   |          | ug/L  |           |
|                |      |              | Dissolved Thallium (TI)   | 2021/09/14    | <0.0020  |          | ug/L  |           |
|                |      |              | Dissolved Thorium (Th)    | 2021/09/14    | <0.0050  |          | ug/L  |           |
|                |      |              | Dissolved Tin (Sn)        | 2021/09/14    | <0.20    |          | ug/L  |           |
|                |      |              | Dissolved Titanium (Ti)   | 2021/09/14    | <0.50    |          | ug/L  |           |
|                |      |              | Dissolved Tungsten (W)    | 2021/09/14    | <0.010   |          | ug/L  |           |
|                |      |              | Dissolved Uranium (U)     | 2021/09/14    | <0.0020  |          | ug/L  |           |
|                |      |              | Dissolved Vanadium (V)    | 2021/09/14    | <0.20    |          | ug/L  |           |
|                |      |              | Dissolved Zinc (Zn)       | 2021/09/14    | <0.10    |          | ug/L  |           |
|                |      |              | Dissolved Zirconium (Zr)  | 2021/09/14    | <0.10    |          | ug/L  |           |
| A351252        | AA1  | RPD          | Dissolved Antimony (Sb)   | 2021/09/14    | 3.6      |          | %     | 20        |
|                |      |              | Dissolved Arsenic (As)    | 2021/09/14    | 3.0      |          | %     | 20        |
|                |      |              | Dissolved Barium (Ba)     | 2021/09/14    | 1.4      |          | %     | 20        |



Government of Yukon – Dept of ENV Client Project #: 2021-Ketza

#### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   | 1    | 00 T:                    | Paramatan.                | Data Analis I | Malica | D        | LINUTC | 001::     |
|---------|------|--------------------------|---------------------------|---------------|--------|----------|--------|-----------|
| Batch   | Init | QC Type                  | Parameter                 | Date Analyzed | Value  | Recovery | UNITS  | QC Limits |
|         |      |                          | Dissolved Beryllium (Be)  | 2021/09/14    | NC     |          | %      | 20        |
|         |      |                          | Dissolved Bismuth (Bi)    | 2021/09/14    | NC     |          | %      | 20        |
|         |      |                          | Dissolved Boron (B)       | 2021/09/14    | 0.17   |          | %      | 20        |
|         |      |                          | Dissolved Cadmium (Cd)    | 2021/09/14    | 4.6    |          | %      | 20        |
|         |      |                          | Dissolved Chromium (Cr)   | 2021/09/14    | 1.5    |          | %      | 20        |
|         |      |                          | Dissolved Lithium (Li)    | 2021/09/14    | 1.1    |          | %      | 20        |
|         |      |                          | Dissolved Molybdenum (Mo) | 2021/09/14    | 0.21   |          | %      | 20        |
|         |      |                          | Dissolved Nickel (Ni)     | 2021/09/14    | 1.2    |          | %      | 20        |
|         |      |                          | Dissolved Selenium (Se)   | 2021/09/14    | 10     |          | %      | 20        |
|         |      |                          | Dissolved Silicon (Si)    | 2021/09/14    | 1.9    |          | %      | 20        |
|         |      |                          | Dissolved Silver (Ag)     | 2021/09/14    | NC     |          | %      | 20        |
|         |      |                          | Dissolved Strontium (Sr)  | 2021/09/14    | 0.34   |          | %      | 20        |
|         |      |                          | Dissolved Thallium (TI)   | 2021/09/14    | NC     |          | %      | 20        |
|         |      |                          | Dissolved Tin (Sn)        | 2021/09/14    | NC     |          | %      | 20        |
|         |      |                          | Dissolved Uranium (U)     | 2021/09/14    | 1.3    |          | %      | 20        |
|         |      |                          | Dissolved Vanadium (V)    | 2021/09/14    | 2.4    |          | %      | 20        |
|         |      |                          | Dissolved Zinc (Zn)       | 2021/09/14    | 4.1    |          | %      | 20        |
|         |      |                          | Dissolved Zirconium (Zr)  | 2021/09/14    | NC     |          | %      | 20        |
| A351779 | MO5  | Matrix Spike [AFF268-02] | Dissolved Chloride (CI)   | 2021/09/14    |        | 100      | %      | 80 - 120  |
|         |      |                          | Dissolved Sulphate (SO4)  | 2021/09/14    |        | 102      | %      | 80 - 120  |
| A351779 | MO5  | Spiked Blank             | Dissolved Chloride (CI)   | 2021/09/14    |        | 103      | %      | 80 - 120  |
|         |      |                          | Dissolved Sulphate (SO4)  | 2021/09/14    |        | 99       | %      | 80 - 120  |
| A351779 | MO5  | Method Blank             | Dissolved Chloride (CI)   | 2021/09/14    | <0.50  |          | mg/L   |           |
|         |      |                          | Dissolved Sulphate (SO4)  | 2021/09/14    | <0.50  |          | mg/L   |           |
| A351779 | MO5  | RPD [AFF268-02]          | Dissolved Chloride (CI)   | 2021/09/14    | NC     |          | %      | 20        |
|         |      |                          | Dissolved Sulphate (SO4)  | 2021/09/14    | NC     |          | %      | 20        |
| A357208 | AP1  | Matrix Spike             | Total Dissolved Solids    | 2021/09/18    |        | 82       | %      | 80 - 120  |
| A357208 | AP1  | Spiked Blank             | Total Dissolved Solids    | 2021/09/18    |        | 96       | %      | 80 - 120  |
| A357208 | AP1  | Method Blank             | Total Dissolved Solids    | 2021/09/18    | <1.0   |          | mg/L   |           |
| A357208 | AP1  | RPD                      | Total Dissolved Solids    | 2021/09/18    | 0.29   |          | %      | 20        |
| A362419 | HE1  | Spiked Blank             | Total Dissolved Solids    | 2021/09/22    |        | 92       | %      | 80 - 120  |
| A362419 | HE1  | Method Blank             | Total Dissolved Solids    | 2021/09/22    | <1.0   |          | mg/L   |           |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Method blank exceeds acceptance limits for Srl- 2X RDL acceptable for low level metals determination.
- (2) Method blank exceeds acceptance limits for U- 2X RDL acceptable for low level metals determination.
- (3) Method blank exceeds acceptance limits for Zn- 2X RDL acceptable for low level metals determination.
- (4) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Sandy Yuan, M.Sc., QP, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| EXCDA1                    |                    | INVOICE TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                            |              | Report Inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | french | -             |                                              | _                       |                                                   | -                                    | _               |                  | Project l          | nformatio                       |                         | -       |                                                                       | 590000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nly                       |
|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|----------------------------------------------|-------------------------|---------------------------------------------------|--------------------------------------|-----------------|------------------|--------------------|---------------------------------|-------------------------|---------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| -                         | #4977 Goues        | mment of Yukon - Dept of ENV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                 |                            | #44311 Go    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _      | -             | - Deo                                        | t of EN                 | v                                                 |                                      |                 |                  | C10319             |                                 |                         | -       | C165                                                                  | 509 COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bottle Order #:           |
| ripany Name<br>riaci Name | Stephanie Lyc      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ompany Name<br>ontact Name | Stephanie L  | AND RESIDENCE TO SHARE S |        | -             | - Dep                                        |                         | -                                                 | P.0                                  | ration#         |                  |                    |                                 |                         | _       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000000                 |
| Pass                      | Water Resour       | ces Branch (V-310) Box 2703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 50'ess                     | Box 2703     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |                                              |                         |                                                   |                                      | ed#             |                  | 2021-Ke            | tza                             |                         |         | -                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 644610                    |
|                           | Whitehorse Y       | AND DESCRIPTION OF THE PERSON  |                   |                            | Whitehorse   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C6     |               |                                              |                         |                                                   | Pro                                  | ect.Name        |                  |                    |                                 |                         |         |                                                                       | Chain Of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project Manager           |
| ne                        | (867) 689-876      | CONTRACTOR OF THE PARTY OF THE  |                   | none                       | (867) 689-8  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | _Fax          | _                                            |                         |                                                   | SM                                   |                 |                  |                    | _                               | _                       | _       | -                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Customer Solutions        |
| ei .                      | Stephanie lyo      | ns@yukon.ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                 | nai                        | stephanie.ly | onsgyu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ton.ca | _             |                                              |                         | _                                                 | far                                  | Analysis        | Was alte         | _                  | _                               | _                       |         | _                                                                     | C#644610-04-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| Regulatory Crit           | eria               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Specials                   | netructions  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ê      | 1             |                                              |                         |                                                   |                                      | Armyss          | I                | Ta                 |                                 |                         |         |                                                                       | Turnaround Time (TAT) Re<br>Please provide advance notice for r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           | Note: For regulate | of drinking water samples - phease use the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Orinking Wate     | r Chain of Cu              | stody Form   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3      | Spered 2 (Y7) | EC. F, pH & LL.Cl. SO4,<br>7, NO3 (Group 01) | TSS & LL-TDS (Group 02) | LL DOC & Dissolved Total<br>Phosphorus (Group 03) | , TKN & LL Total<br>ionus (Group 04) | nia-N Low Level | SAD & WAD (Group | ed CR3 & CR5 (Grou | u LL Dissolved Metals<br>up 05) | LL Total Metals (Group  |         | (will be a<br>Standar<br>Flease a<br>Geys - 0<br>Job Spec<br>Date Rec | r (Standard) TAT a not specified) of TAT is not specified) of TAT is 5.7 Working days for most tests: none: Standard TAT for certain fests such as 8 contact your Project Manager for details; othe Standard TAT of applies to entire submissions) otherwise than TAT (if applies to entire submissions) of the Standard Tatle of the Stan | 00 and Downs/Furant are 1 |
|                           | Samples            | must be kept cool ( < 10°C ) from time of same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pling until deliv | ery to BV Lab              | me in        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8      | tans Fi       | AR, EC<br>NO2, N                             | *6<br>52                | 8 6                                               | Total N.<br>Phosph                   | 9.3             | anide            | 8                  | Ketza L<br>(Group               | Ketza L<br>06)          |         | 711000                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | goal no for #)            |
| Sample                    | Bartode Label      | Sangle (Location) Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Sa           | ngled Ti                   | ine Sangled  | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Re     | 2             | 25                                           | 20                      | 35                                                | 26                                   | Amm             | 99               | 8 8                | 30                              | 28                      | -       | # of Butte                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
|                           |                    | 3031725-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0150              | 1510                       | 0915         | SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N      | Y             | Х                                            | X                       | X                                                 | *                                    | X               | Х                | χ                  | X                               | X                       | _       | 13                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2021T25 -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 |                            |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 1             | 1                                            | 1                       | 1                                                 | 1                                    | 1               | 1                | 11                 | 1                               | 1                       |         | 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2021T35-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                            | 1045         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш      |               |                                              | 1                       | Ц                                                 | Ш                                    | Ш               | Ц                | 11                 |                                 |                         |         | Ш                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 3021725 -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                            | 1115         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш      | 1             |                                              | $\perp$                 | Ш                                                 | Ш                                    | Ш               | Ц                | 11                 |                                 | Ц                       |         | 11                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2021 T 25 -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                            | 1200         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш      | 1             | Ш                                            | $\perp$                 | Ш                                                 | Ш                                    | Ш               | Ш                | 11                 |                                 | Ш                       | _       | 11                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2621T25-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                            | 1145         | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ш      | Ш             | $\perp$                                      |                         | Ш                                                 | Ш                                    | Ш               | Ш                |                    | Ш                               | Ш                       |         | 11                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2021725-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                            | 1230         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш      | 1             |                                              |                         |                                                   |                                      |                 | Ш                |                    |                                 |                         |         | 1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2021T25-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                            | 13 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11     |               |                                              |                         |                                                   |                                      |                 | Ш                |                    |                                 |                         |         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2021Ta5 - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                            | 14:15        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ш      | Ш             |                                              | 1                       |                                                   |                                      |                 | Ш                |                    |                                 |                         |         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           |                    | 2021T 25 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                 |                            | 15:30        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4      | 4             | *                                            | 4                       | 4                                                 | 4                                    | +               | 4                | 4                  | 4                               | 4                       |         | 4                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                           | USHED BY: (Slove   | The second secon | CALWWIDGE         | Time                       | 1. 12        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -      | -             | nature/Pri                                   | M)                      |                                                   |                                      | ete: (YYAM      |                  | Time               | # jar                           | s used and<br>submitted | Time Se | -                                                                     | Lab Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ty Seal Intect on Coder?  |
| de place                  | rechouse           | o Styrms 121/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2018              | COFL                       | 1 Ven        | are l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | any    | 13V           | -                                            |                         | _                                                 | 10                                   | 10310           | 5                | 15:17              | -                               |                         | [       | 1 /                                                                   | 6,6/4,4,4/2,7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at annua                  |

Bureau Veritas Canada (2019) Inc.

|                 |                    | Bureau Wintes Laboratories<br>4000 19st N.E. Calgary, Alberta (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conside T2E 6P6 T    | wi (403) 291-  | 3077 Toll-free 800-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 563-6266 Fax             | (403) 2                | 191-0          | HOS www                        | bvistes oc    | pm                               |              |                  |              |                  |                        |                         |         |                                                                      |                                                                                                                                                                                                                                                                                                                     | People 2                      |
|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------|--------------------------------|---------------|----------------------------------|--------------|------------------|--------------|------------------|------------------------|-------------------------|---------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                 |                    | INVOICE TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Raport in                | formati                | on.            |                                |               |                                  |              |                  |              | Project          | nformatio              | in.                     |         | mill #- 7-2                                                          | FOR ANY AND MANAGEMENT OF THE                                                                                                                                                                                                                                                                                       | nly                           |
| mpany Name      | #4977 Gover        | nment of Yukon - Dept of EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N .                  | Company No     | me #44311 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sovernmen                | t of Y                 | uko            | n – Dep                        | at of EN      | N.                               | Que          | tation#          |              | C10319           |                        |                         |         | C16556                                                               | 09_COC                                                                                                                                                                                                                                                                                                              | Bottle Order #:               |
| ntact Name      | Stephanie Lyo      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Contact Nan    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lyons                    |                        |                |                                |               |                                  | P.0          |                  |              | -                |                        |                         |         |                                                                      |                                                                                                                                                                                                                                                                                                                     | THE RESIDENCE                 |
| 0111            |                    | ces Branch (V-310) Box 2703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Address        | Box 2703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                        |                |                                |               |                                  | Pro          | ect#             |              | 2021-Ke          | tza                    |                         |         | -                                                                    |                                                                                                                                                                                                                                                                                                                     | 644610                        |
| - 3             | Whitehorse Y       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                | Whitehors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | C6                     | _              | _                              |               |                                  | Proj         | ect Name         |              |                  |                        | _                       |         | -                                                                    | Chain Of Custody Record                                                                                                                                                                                                                                                                                             | Project Manager               |
| one .           | (867) 689-876      | Chicago Paris Control of the Control | -                    | Phone          | (867) 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the party of the last |                        | "Fa            | K                              | _             | _                                | She          |                  |              | _                | _                      |                         |         | _                                                                    |                                                                                                                                                                                                                                                                                                                     | Customer Solutions            |
| al              | Stephanie.lyor     | nsgyuxon.ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Enail          | No. of Concession, Name of Street, or other Persons, Name of Street, Name of S | lyons@yu                 | con.ca                 | _              | _                              | _             |                                  | Sar          | Analysis I       |              | _                | _                      |                         |         |                                                                      | C#644\$10-05-01                                                                                                                                                                                                                                                                                                     |                               |
| Regulatory Crit |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)                  |                | al Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | nking Water 7 (Y / N.) | Stered ? (Y/N) | pH & LL-Ct, SO4,<br>(Group 01) | DS (Group 02) | Dissolved Total<br>is (Group 03) | (Group 04)   | nia-N Low Level  | & WAD (Group | CR3 & CR6 (Group | Dissolved Metals<br>5) | Total Metals (Group     |         | (will be ap<br>Standard I<br>Please not<br>days - con<br>Jee Specifi | Turnaround Time (TAT) Req<br>Passes provide Britana exists for re<br>Standard) YAT<br>plind if Rish TAT is not specified)<br>YAT = 5-7 Working days for most tests is<br>the "Standard TAT for certain tests such as 80<br>foot your Project Manager for Outsile."<br>In Rush TAT (if applies to entire submission) | o and Dissins Furance are > 1 |
| - 3             | Note: For regulate | d drinking water samples - please us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | se the Orinking Wa   | ter Chain of   | Custody Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 100                    | eld F          | C. F.                          | LL-TDS        | 45 €                             | TKN<br>Norus | Ned)             | e SAD        | 8                | 40                     | 11.70                   |         | Date Requir<br>Rush Cordin                                           | nation Number                                                                                                                                                                                                                                                                                                       |                               |
| 3000            | Samples            | must be kept cool ( < 10°C ) from time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of sampling until de | livery to BV I | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 8                      | 8              |                                | +6            | DOC                              | N dd         | Ammon<br>(Presen | nide         | 1.6              | 12 9                   | 122                     |         | Carrier II                                                           | Control of the second                                                                                                                                                                                                                                                                                               | set no tyriti                 |
| Samole          | Baroode Label      | Sample (Location) Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n Date 1             | Sampled        | Time Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix                   | 18                     | N Sc           | AK. E                          | 155           | 3.6                              | Phos         | A Se             | Oya<br>Cya   | 86               | Ketza<br>(Group        | Ketza<br>06)            |         | For Duties                                                           | Conments                                                                                                                                                                                                                                                                                                            |                               |
|                 |                    | SOTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | eprá           | 15 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SW                       | N                      | Y              | Х                              | Х             | Χ                                | Х            | X                | X            | X                | X                      | X                       |         | 13                                                                   |                                                                                                                                                                                                                                                                                                                     |                               |
|                 |                    | 2021725-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 035                  | וב' דקפ        | 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 1                      | 1              | 1                              | 1             |                                  | 1            | 1                | 1            | 1                | 1                      | 1                       |         | 1                                                                    |                                                                                                                                                                                                                                                                                                                     |                               |
|                 |                    | 2021725-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 1                  |                | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ш                        | 11                     | 4              |                                | 1             | Ш                                |              |                  | Ц            | 11               | Ш                      | Ш                       |         | 4                                                                    | and and to be still a                                                                                                                                                                                                                                                                                               |                               |
|                 |                    | 2021725 -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | _              | 1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                        | +                      | 4              | +                              |               | $\perp$                          |              |                  |              | $\perp$          |                        |                         |         | 4                                                                    | han on of posses                                                                                                                                                                                                                                                                                                    |                               |
|                 |                    | 2021725 - 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                    | -              | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                        | +                      | 4              | ÷                              | +             | 4                                | +            | +                | +            | 4                | 4                      | 1                       |         | 13                                                                   | -this blank                                                                                                                                                                                                                                                                                                         |                               |
|                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Ш                      |                |                                |               |                                  |              |                  |              |                  |                        |                         |         |                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                            |                               |
|                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                        |                |                                |               |                                  |              |                  |              |                  |                        |                         |         |                                                                      |                                                                                                                                                                                                                                                                                                                     |                               |
|                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                        |                |                                |               |                                  |              |                  |              |                  |                        |                         |         |                                                                      |                                                                                                                                                                                                                                                                                                                     |                               |
|                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                        |                |                                |               |                                  |              |                  |              |                  |                        |                         |         |                                                                      |                                                                                                                                                                                                                                                                                                                     |                               |
| 0               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | П                      |                |                                |               |                                  |              |                  |              |                  |                        |                         |         |                                                                      |                                                                                                                                                                                                                                                                                                                     |                               |
| * RELING        | CISHED BY ISIGNAL  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: (YYMM50)       | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | VEDBY                  | 1.(5)          | produceith                     | (MQ           |                                  | -            | de: (YYAM        | _            | Time             | # jar                  | s used and<br>submitted | -       |                                                                      | Lab Use Only                                                                                                                                                                                                                                                                                                        |                               |
| repran          | ierym              | o Sums is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E011011E             | 170            | O XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | regre 6                  | m                      | -              |                                |               |                                  | 10           | 1/04/07          | 3            | 15:17            | -                      | -                       | Timedan | 700                                                                  | specialize (,**) on selected                                                                                                                                                                                                                                                                                        | Seel Intact on Cooler?        |

Bureau Veritax Canada (2019) Inc.

Project: 2021 Ketza Mine Audit (Contract # C00061500)

|    |            |            | l      | <b>-18</b>        | Result | Donast | <b>-</b> 211     |         |         |        |       |         | 1 F      |
|----|------------|------------|--------|-------------------|--------|--------|------------------|---------|---------|--------|-------|---------|----------|
| #  | Sample     | Date       | Lab#   | δ <sup>18</sup> Ο |        | Repeat | $\delta^2 H$     | Result  | Repeat  |        | pН    | EC      | AZD      |
|    |            |            |        | H <sub>2</sub> O  | VSMOV  |        | H <sub>2</sub> O | VSMOW   |         |        | _     | uS/cm   | <b>!</b> |
| 1  | 2021T24-01 | 2021-08-04 | 461319 | Х                 | -22.00 | -22.02 | Х                | -167.88 | -168.06 |        | 7.59  | 597.0   | . L      |
| 2  | 2021T24-02 | 2021-08-03 | 461320 | Х                 | -20.75 |        | Х                | -161.82 |         | 1x30mL | 7.30  | 686.0   | <b>!</b> |
| 3  | 2021T24-03 | 2021-08-03 | 461321 | Х                 | -21.91 |        | Х                | -168.43 |         | 1x30mL | 7.70  | 493.0   | <b>!</b> |
| 4  | 2021T24-04 | 2021-08-03 | 461322 | Х                 | -21.37 |        | Х                | -164.72 |         | 1x30mL | 7.49  | 444.0   | . L      |
| 5  | 2021T24-05 | 2021-08-05 | 461323 | Х                 | -21.40 | -21.42 | Х                | -163.71 | -163.54 |        | 7.72  | 300.0   | . L      |
| 6  | 2021T24-06 | 2021-08-04 | 461324 | X                 | -21.53 |        | Х                | -163.04 |         | 1x30mL | 7.47  | 826.0   | <b>!</b> |
| 7  | 2021T24-07 | 2021-08-05 | 461325 | Х                 | -21.07 |        | Х                | -161.81 |         | 1x30mL | 12.19 | 1,999.0 | . L      |
| 8  | 2021T24-08 | 2021-08-05 | 461326 | Х                 | -21.50 |        | Х                | -163.56 |         | 1x30mL | 7.21  | 610.0   | . L      |
| 9  | 2021T24-09 | 2021-08-05 | 461327 | Х                 | -20.98 | 24.00  | Х                | -160.71 | 100.10  | 1x30mL | 7.17  | 529.0   | <b>!</b> |
| 10 | 2021T24-10 | 2021-08-04 | 461328 | Х                 | -21.35 | -21.30 | Х                | -162.40 | -162.43 |        | 7.03  | 333.0   | . L      |
| 11 | 2021T24-11 | 2021-08-04 | 461329 | Х                 | -21.22 |        | Х                | -161.90 |         | 1x30mL | 7.36  | 694.0   | . L      |
| 12 | 2021T24-12 | 2021-08-05 | 461330 | Х                 | -21.68 |        | Х                | -164.85 |         | 1x30mL | 7.36  | 1,125.0 | . L      |
| 13 | 2021T24-13 | 2021-08-03 | 461331 | Х                 | -21.01 |        | Х                | -159.58 |         | 1x30mL | 6.02  | 670.0   | . L      |
| 14 | 2021T24-14 | 2021-08-04 | 461332 | Х                 | -22.47 |        | Х                | -170.20 |         | 1x30mL | 5.09  | 465.0   | <b>!</b> |
| 15 | 2021T24-15 | 2021-08-04 | 461333 | Х                 | -21.50 | -21.48 | Х                | -162.90 | -162.80 |        | 2.68  | 1,012.0 | . L      |
| 16 | 2021T24-16 | 2021-08-05 | 461334 | Х                 | -21.90 |        | Х                | -166.74 |         | 1x30mL | 3.74  | 491.0   | ↓        |
| 17 | 2021T24-17 | 2021-08-05 | 461335 | X                 | -20.86 |        | X                | -159.53 |         | 1x30mL | 6.82  | 554.0   | ↓        |
| 18 | 2021T24-18 | 2021-08-04 | 461336 | Х                 | -21.38 |        | Х                | -164.68 |         | 1x30mL | 7.26  | 814.0   | . L      |
| 19 | 2021T24-19 | 2021-08-05 | 461337 | Х                 | -21.28 |        | Х                | -162.94 |         | 1x30mL | 7.46  | 469.1   | . L      |
| 20 | 2021T24-20 | 2021-08-03 | 461338 | Х                 | -21.49 | -21.60 | Х                | -164.58 | -164.55 | 1x30mL | 7.64  | 208.0   | <b>!</b> |
| 21 | 2021T24-21 | 2021-08-03 | 461339 | Х                 | -18.79 |        | Х                | -146.14 |         | 1x30mL | 7.49  | 509.0   | <b>!</b> |
| 22 | 2021T24-22 | 2021-08-03 | 461340 | Х                 | -22.04 |        | Х                | -167.14 |         | 1x30mL | 7.48  | 514.0   | <b>!</b> |
| 23 | 2021T24-23 | 2021-08-03 | 461341 | Χ                 | -21.72 |        | Х                | -165.44 |         | 1x30mL | 7.59  | 563.0   | <b>!</b> |
| 24 | 2021T24-24 | -          |        |                   |        |        |                  |         |         |        |       |         | <b>!</b> |
| 25 | 2021T24-25 | 2021-08-06 | 461342 | Χ                 | -21.41 |        | Х                | -161.52 |         | 1x30mL | 8.29  | 304.6   | <b>!</b> |
| 26 | 2021T24-26 | 2021-08-05 | 461343 | Х                 | -21.59 | -21.57 | Х                | -165.11 | -165.24 | 1x30mL | 7.69  | 709.0   | <b>!</b> |
| 27 | 2021T24-27 | 2021-08-05 | 461344 | Х                 | -21.44 |        | Х                | -164.98 |         | 1x30mL | 8.01  | 650.0   | <b>!</b> |
| 28 | 2021T24-28 | 2021-08-05 | 461345 | Х                 | -19.99 |        | Х                | -157.47 |         | 1x30mL | 7.96  | 424.2   | <b>!</b> |
| 29 | 2021T24-29 | 2021-08-05 | 461346 | Х                 | -21.25 |        | Х                | -162.64 |         | 1x30mL | 7.90  | 438.7   | <b>!</b> |
| 30 | 2021T24-30 | 2021-08-06 | 461347 | Х                 | -21.06 | -21.00 | Х                | -161.41 | -161.33 |        | 8.37  | 436.0   | <b>!</b> |
| 31 | 2021T24-31 | 2021-08-06 | 461348 | Χ                 | -19.86 | -19.99 | Χ                | -157.61 | -158.29 |        | 8.23  | 643.0   | <b>!</b> |
| 32 | 2021T24-32 | 2021-08-06 | 461349 | Х                 | -20.06 |        | Х                | -158.82 |         | 1x30mL | 7.84  | 639.0   | <b>!</b> |
| 33 | 2021T24-33 | 2021-08-06 | 461350 | Χ                 | -21.39 |        | Х                | -162.76 |         | 1x30mL | 8.40  | 517.0   | <b>!</b> |
| 34 | 2021T24-34 | 2021-08-06 | 461351 | Х                 | -21.12 |        | Х                | -161.51 |         | 1x30mL | 8.38  | 451.7   | <b>!</b> |
| 35 | 2021T24-35 | 2021-08-06 | 461352 | Χ                 | -21.31 |        | Х                | -162.86 |         | 1x30mL | 8.30  | 489.1   | <b>!</b> |
| 36 | 2021T24-36 | 2021-08-05 | 461353 | Х                 | -21.74 | -21.71 | Х                | -164.87 |         | 1x30mL | 8.40  | 418.4   | <b>!</b> |
| 37 | 2021T24-37 | 2021-08-06 | 461354 | Χ                 | -21.28 | -21.22 | Χ                | -162.33 | -161.79 | 1x30mL | 8.40  | 536.0   | <b>!</b> |
| 38 | 2021T24-38 | 2021-08-05 | 461355 | Х                 | -21.93 |        | Х                | -166.81 |         | 1x30mL | 7.70  | 660.0   | <b>!</b> |
| 39 | 2021T24-39 | 2021-08-05 | 461356 | Χ                 | -21.57 |        | Χ                | -162.33 |         | 1x30mL | 8.36  | 497.0   | <b>!</b> |
| 40 | 2021T24-40 | 2021-08-06 | 461357 | Х                 | -21.76 |        | Х                | -166.60 |         | 1x30mL | 8.38  | 759.0   | <b>!</b> |
| 41 | 2021T24-41 | 2021-08-06 | 461358 | Х                 | -20.99 |        | Х                | -161.22 |         | 1x30mL | 8.27  | 413.3   | ↓        |
| 42 | 2021T24-42 | 2021-08-03 | 461359 | Х                 | -21.52 | -21.55 | Х                |         | -165.49 |        | 7.59  | 563.0   | ↓        |
| 43 | 2021T24-43 | 2021-08-03 | 461360 | Χ                 | -21.63 | -21.79 | Х                |         | -168.68 |        | 7.70  | 493.0   | ı ∟      |
| 44 | 2021T24-44 | 2021-08-06 | 461361 | Х                 | -19.68 |        | Х                | -156.74 |         | 1x30mL | 8.23  | 643.0   | ↓        |
| 45 | 2021T24-45 | 2021-08-31 | 461362 | Х                 | -21.25 |        | Х                | -160.90 |         | 1x30mL | 8.08  | 587.0   | ↓        |
| 46 | 2021T24-46 | 2021-08-31 | 461363 | Х                 | -21.11 |        | Х                | -160.76 |         | 1x30mL | 8.18  | 528.0   | ↓        |
| 47 | 2021T24-47 | 2021-08-31 | 461364 | Х                 | -21.46 | -21.49 | Х                | -164.77 | -165.00 |        | 7.71  | 715.0   | ↓        |
| 48 | 2021T24-48 | 2021-08-31 | 461365 | Х                 | -21.62 |        | Х                | -164.53 |         | 1x30mL | 7.73  | 579.0   | ↓        |
| 49 | 2021T24-49 | 2021-08-31 | 461366 | Χ                 | -21.65 |        | Х                | -164.29 |         | 1x30mL | 7.71  | 609.0   | ↓        |
| 50 | 2021T24-50 | 2021-08-31 | 461367 | Х                 | -21.64 |        | Χ                | -164.39 |         | 1x30mL | 7.35  | 500.0   | ↓        |
| 51 | 2021T24-51 | 2021-08-31 | 461368 | Х                 | -21.76 |        | Х                | -164.97 |         | 1x30mL | 7.40  | 505.0   | ↓        |
| 52 | 2021T24-52 | 2021-08-31 | 461369 | Х                 | -21.75 | -21.82 | Х                | -165.36 | -165.87 | 1x30mL | 7.53  | 569.0   | ↓        |
| 53 | 2021T24-53 | 2021-08-31 | 461370 | Х                 | -21.88 |        | Х                | -165.55 |         | 1x30mL | 7.53  | 569.0   | ↓        |
| 54 | 2021T24-54 | 2021-08-31 | 461371 | Χ                 | -21.48 |        | Χ                | -163.65 |         | 1x30mL | 7.44  | 796.0   | J        |



ISO# 2021422 Location: 5-A 67 for 18O, 2H Environmental Isotope Lab 2021-09-23 2 of 2

Project: 2021 Ketza Mine Audit (Contract # C00061500)

| _  |            |            |        |                  |        |          | _                |         |         | •      |
|----|------------|------------|--------|------------------|--------|----------|------------------|---------|---------|--------|
| #  | Sample     | Date       | Lab#   | $\delta^{18} O$  | Result | Repeat   | $\delta^2 H$     | Result  | Repeat  |        |
|    |            |            |        | H <sub>2</sub> O | VSMOV  | V ± 0.2‰ | H <sub>2</sub> O | VSMOW   | ± 0.8‰  |        |
| 55 | 2021T24-55 | 2021-09-01 | 461372 | Х                | -21.27 |          | Χ                | -163.83 |         | 1x30mL |
| 56 | 2021T24-56 | 2021-09-01 | 461373 | Х                | -21.43 |          | Χ                | -163.52 |         | 1x30mL |
| 57 | 2021T24-57 | 2021-09-01 | 461374 | Х                | -21.47 | -21.33   | Χ                | -165.70 | -165.31 | 1x30mL |
| 58 | 2021T24-58 | 2021-09-01 | 461375 | Х                | -21.70 |          | Χ                | -165.72 |         | 1x30mL |
| 59 | 2021T24-59 | 2021-09-01 | 461376 | Х                | -21.52 |          | Χ                | -163.45 |         | 1x30mL |
| 60 | 2021T24-60 | 2021-09-01 | 461377 | Х                | -13.53 | -13.49   | Χ                | -95.90  | -95.34  | 1x30mL |
| 61 | 2021T24-61 | 2021-09-01 | 461378 | Х                | -21.40 |          | Χ                | -163.67 |         | 1x30mL |
| 62 | 2021T24-62 | 2021-09-01 | 461379 | Х                | -21.54 | -21.64   | Χ                | -164.84 | -164.29 | 1x30mL |
| 63 | 2021T24-63 | 2021-09-01 | 461380 | Х                | -21.82 |          | Х                | -164.67 |         | 1x30mL |
| 64 | 2021T24-64 | 2021-09-01 | 461381 | Х                | -21.58 |          | Χ                | -160.74 |         | 1x30mL |
| 65 | 2021T24-65 | 2021-09-01 | 461382 | Х                | -21.79 |          | Χ                | -166.74 |         | 1x30mL |
| 66 | 2021T24-66 | 2021-09-02 | 461383 | Х                | -21.10 |          | Χ                | -160.62 |         | 1x30mL |
| 67 | 2021T24-67 | 2021-09-02 | 461384 | Х                | -21.00 | -21.02   | Χ                | -159.11 | -159.37 | 1x30mL |
| 68 | 2021T24-68 | 2021-09-02 | 461385 | Х                | -20.93 |          | Χ                | -159.37 |         | 1x30mL |

| рН   | EC      |  |
|------|---------|--|
|      | uS/cm   |  |
| 7.93 | 759.0   |  |
| 8.29 | 623.0   |  |
| 8.36 | 1,044.0 |  |
| 8.34 | 1,767.0 |  |
| 8.23 | 597.0   |  |
| 5.86 | 2.6     |  |
| 8.25 | 574.0   |  |
| 8.50 | 586.0   |  |
| 8.22 | 634.0   |  |
| 7.74 | 685.0   |  |
| 7.87 | 1,145.0 |  |
| 8.29 | 450.3   |  |
| 8.00 | 274.4   |  |
| 8.00 | 274.4   |  |

#### **NOTES**

No sample #24



Appendix E – 2021 Audit Field Notes – Hemmera and Water Resources Branch

|                    |             | 10 mg             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 1                    |
|--------------------|-------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|
| Station ID:        |             | Date: 31 Sup      | الله (الله على الله | er: Sunned y | no breeze; 3.3:      |
| Sample ID:         | 2021T25-1   | Coordinates:      | N101543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37 W 130.    | 23592                |
| Sample Class:      | SW          | Site Description: | D/S Peel 4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coche Costi  | 00012                |
|                    | · •         | - 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Car 17 W     | ence                 |
| Time:              | 0905        | Field Crew (circ  | cle sampler):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDCE         |                      |
| Air Temp (°C):     | 3.3         |                   | Meter Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Y 234 bal  | 0/                   |
| H2O Temp (°C):     | 3,7/3.6     |                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51 422568    | 10. TTO SIGNATURE 1  |
| DO (mg/L):         | 11.59/11.85 | QA/QC Sample ID   | <u></u> )s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 122368    |                      |
| DO (%):            | - /89.5     | Duplicate:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time:        |                      |
| Cond (µs/cm):      | 57352.2     | Trip Blank:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time:        |                      |
| SPC (µs/cm):       | 587/597     | Field Blank:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time:        |                      |
| pH:                | 8.08/7.35   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                      |
| ORP (mV):          | - / -93.6   | Picture #s:       | Feld Notes /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45/55/54b/   | 1001,0               |
| Furbidity (NTU): _ | 2.06/1.22   | Comments:         | Brown precipit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ate Fo ?     | DDILO                |
|                    |             | Troster V         | = 20 U1 =<br>2 > 20 U2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 12504<br>AL Endpoint |
| 368.0M             | 0           | 0                 | 1. 10 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Rete in the Run.     |

|                  |             |                   | 100              | breeze; 3.6°C   |
|------------------|-------------|-------------------|------------------|-----------------|
| Station ID:      | KR-08-1     |                   |                  | sunny, nocloud, |
| Sample ID:       | 2021T25-02  | Coordinates: _    | N 61.54294°1     | N132. 03607"    |
| Sample Class:    |             | Site Description: | Cache Ck. UK Per | el Creek        |
|                  | 09:50       | Field Crew (circl | e sampler): SI   | /CF             |
| Air Temp (°C):   |             | Ticle I           |                  | 29.2689         |
| H2O Temp (°C):   | 4.2/4.1     |                   |                  | 3 3001          |
| DO (mg/L):       | 11.45/11.72 | QA/QC Sample IDs  |                  |                 |
| DO (%):          | -/89.9      | Duplicate:        |                  | Time:           |
|                  | -/322.8     | Trip Blank:       |                  | Time:           |
| SPC (µs/cm):     | 528/537     | Field Blank:      | <i></i>          | Time: _/        |
| pH:              | 8.18/7.72   |                   |                  |                 |
|                  | F.(F)-      | Picture #s:       | US/DS/suk        | O/RB/LB         |
| Turbidity (NTU): | 0.50/-0.65  |                   | I black bear w   |                 |
|                  |             | Titrasti          | on VIT = 20      |                 |
|                  |             |                   | V2/2= 20         | 4, = 333        |

| *               |             |                                                   |
|-----------------|-------------|---------------------------------------------------|
| Station ID:     | KR-15-1     | Date: 31 Aug 2021 Weather: Sunny, Siclauds; Ight  |
| Sample ID:      | 2021725-03  | Coordinates: U/S culvert on Poel creek and came   |
| Sample Class:   | SW          | Site Description: NOI. 54209 W 132. 24698 Food    |
| Time:           | 11:30       | Field Crew (circle sampler): (SL)(CF              |
| Air Temp (°C):  | 12.7        | Field Meter Used: 1234626/1225689                 |
| H2O Temp (°C):  | 34/3.3      | -31000/                                           |
| DO (mg/L):      | 11.60/11.93 | QA/QC Sample IDs                                  |
| DO (%):         | -/89.4      | Duplicate: Time:                                  |
| Cond (µs/cm):   |             | Trip Blank: Time:                                 |
| SPC (µs/cm):    | 715/726     | Field Blank: Time:                                |
| pH:             | 7.71/7.13   |                                                   |
|                 | -122.0      | Picture #s: U/S/DS/SMb/Rb/Lb                      |
| urbidity (NTU): | 2.98/2.34   | Comments: iron exide precipitate on substrate and |
|                 |             | vegetation in stream bed.                         |
|                 |             | Tetration: U-20 U. = 18B                          |

368.0N

|         | JL | DAR   | LING    | LLC    |        |
|---------|----|-------|---------|--------|--------|
| Tacoma, | WA | , USA | • Ritei | ntheRa | in.com |

v. light breeze.

|       | Station ID:  | PS3-D5_                            | Date: 31 Aug à    | Weather        | er: <u>sonny</u> ~5% | o cloud |
|-------|--------------|------------------------------------|-------------------|----------------|----------------------|---------|
|       | Sample ID:   | RODIT25-04                         | Coordinates:      | N61.54270      | 0°W 132.268          | 110     |
| Sa    | mple Class:  |                                    | Site Description: | Reel Cr D/S    | Seep 3               |         |
|       |              |                                    |                   |                |                      |         |
|       | Time:        | 1345                               | Field Crew (circ  | de sampler): 🤇 | SL)/CF               |         |
| Ai    | r Temp (°C): | 12.5                               | Field             | Meter Used: 🛶  | 234626/ 4225         | 689     |
| H20   | Temp (°C):   | 3.7/3.5                            |                   | 3              |                      |         |
|       |              | 11.28/15.64                        | QA/QC Sample ID   | <u>)s</u>      |                      |         |
| - 9.  | DO (%):      | - /87.F                            | Duplicate:        |                | Time:                |         |
| C     | ond (µs/cm): | - /345.8                           | Trip Blank:       |                | Time:                |         |
|       | SPC (µs/cm): | 579 /588                           | Field Blank:      | /              | Time:                | /Site   |
|       | pH:          | 773/7.28                           |                   |                |                      | and a   |
|       | ORP (mV):    | - /1870                            | Picture #s:       | US/DS/S        | ub/RB/LB             |         |
| Turl  |              | 2.44/0.90                          |                   | Iron oxide or  | ecip coveriu 41      | eam     |
| V1=20 | U1=336       | O.KN Hasoy                         | Su                | betrove 100%   |                      |         |
| Va=20 | U2=234       | Grad. Cyl. measure<br>LP end point | ement             |                |                      |         |
|       | 210          | LP end point                       | ٢                 |                |                      |         |

|                                            | 1. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                                          |                                       |                    |       |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|---------------------------------------|--------------------|-------|
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                          |                                       |                    |       |
| Station ID:<br>Sample ID:<br>Sample Class: | 2021T25-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date: 31 Aug c<br>Coordinates:<br>Site Description: | 9021 Weather:<br>(61:54280<br>Peck Ck D/ | Sunny; 5% o<br>  132 2690<br>  Seep 2 | cloud; v light be  | 18024 |
| Time:<br>Air Temp (°C):<br>H2O Temp (°C):  | 1415<br>14.3<br>4.2/4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field Crew (circl<br>Field N                        | e sampler): (<br>leter Used: Yas         | SL)/CF<br>34626/422                   | <u>568</u> 9       |       |
| DO (mg/L):                                 | What control are the same and t | QA/QC Sample IDs                                    |                                          |                                       | -                  |       |
| DO (%):                                    | CALLS TO STANDARD BY THE STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Duplicate:                                          |                                          | Time:                                 |                    |       |
| Cond (µs/cm):                              | - /372.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 子 Trip Blank:                                       | STEELING TO STEEL                        | Time:                                 |                    |       |
| SPC (µs/cm):                               | 609/619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field Blank:                                        | 100                                      | Time:                                 |                    |       |
| pH:                                        | 7.71/7.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                          |                                       |                    |       |
| ORP (mV):                                  | -1'99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Picture #s:                                         | US/DS/sub                                | 188118                                |                    |       |
| Furbidity (NTU):                           | 1.48 /0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                          | s precip on sta                       |                    |       |
| * 4                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V1:20 V.                                            | :930 016                                 | N HASOU                               | TW SOBHORE         |       |
| 366.0M                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                          | endpoint                              | Kitte in the Kain. |       |

|                  | PCS3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | light breeze             |
|------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Station ID: (    | (Seep 3)     | Date: 31 Aug 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weather: Sonry 10% cloud |
|                  | 2021T25-06   | Coordinates: NG1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54087 W132. 26822°       |
| Sample Class:    |              | Site Description: Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | & Slaylighting           |
|                  |              | The state of the s |                          |
| Time:            | 14:30        | Field Crew (circle sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| Air Temp (°C):   | 17.7/        | Field Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Used:                    |
| H2O Temp (°C):   | 1,4/1.3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                 |
| DO (mg/L):       | 11.20/ 12.01 | QA/QC Sample IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| DO (%):          | - /85.3      | Duplicate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time:                    |
| Cond (µs/cm):    | - /279.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:                    |
| SPC (µs/cm):     | 500 / 513    | Field Blank:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time:                    |
| pH:              | 7.35/7.09    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| ORP (mV):        | - /81,6      | Picture #s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15/15/ substrate         |
| Turbidity (NTU): | 9.62/ 10.45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eops (Imain 3 2 side)    |
| V: 20            | Ui:251       | DUIGH HOUTH NO 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n precipan substrate.    |
| N7: 90           | 17: 949      | -P endpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
|                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |

|                                           | 200         | 1 9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 5                                 |                        |          |                    |        |           |
|-------------------------------------------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|----------|--------------------|--------|-----------|
| Station ID:<br>Sample ID:                 | 2021        | 2)    | The state of the s | 31 Aug a                            | <u>3021</u> 1          | Weather: | v. light<br>Sunncy | 15%clo |           |
| Sample Class:                             | SW          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        | Z day    | ighting.           |        | as PCS 3? |
| Time:<br>Air Temp (°C):<br>H2O Temp (°C): | 13          | 1.3   | Field (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | le sample<br>Meter Use |          | F, AB              |        | A.        |
| DO (mg/L):<br>DO (%):                     | 1092        | W.74  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ample IDs                           | 5                      |          | The second second  | •      |           |
| Cond (µs/cm):                             |             | 280.5 | F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iplicate: _<br>o Blank: _           | 1.7                    |          | Time:              |        |           |
| SPC (µs/cm):                              | 505<br>7.40 | 513   | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d Blank: _                          |                        |          | Time:              | 1000   |           |
| ORP (mV):                                 |             | 130.9 | Pic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ture #s: _                          | US/1                   | 5/508    | OIRB/              | LB     |           |
| urbidity (NTU):                           | 0-15        | -139  | Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nments:                             |                        | C VV     | 11 00              |        |           |
| 0                                         | (           | )     | A7:90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .:.О<br>: Вісеіпіредзії<br>гіме ггс | SU, AW, amos           | D.16N    |                    | 0      |           |

| seed daylights @NOI. 54328 W 132 | FG.1 | 46 | Ŧ |
|----------------------------------|------|----|---|
|----------------------------------|------|----|---|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sin, few clouds, ice                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Station ID: KR17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date: Aug 31/2021 Weather: Sun, few clouds, 150                            |
| Sample ID: 2021 T25 -08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/09 Coordinates: N 61.54302 W 132. 07417                                  |
| Sample Class: 5w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site Description: Kel7, daylighting 50m upstream                           |
| Time: 16:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Crew (circle sampler): (SLICF / AB                                   |
| Air Temp (°C):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field Meter Used: YS1 PRO Y225689                                          |
| H20 Temp (°C): 4.8 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1234626                                                                    |
| DO (mg/L): 10.05 10.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QA/QC Sample IDs                                                           |
| DO (%): 80.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicate: <u>2021735-09</u> Time: 17:115                                  |
| Cond (µs/cm): 336.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trip Blank:                                                                |
| SPC (µs/cm): 5/39 5 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field Blank: Time:                                                         |
| pH: 7.53 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
| ORP (mV): 161.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Picture #s: US/SS/SUB/ RB/LB                                               |
| Turbidity (NTU): -0.13 -1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments: no staining on rocks/substrate.                                  |
| The state of the s | Comments: no staining on rocks/substrate.  Ji: 248 -seep daylights ~50m 45 |
| V2: 20 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ja: 245                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |

|                   | KRI7 DS     | N 61: 36                                          | 1.563 WH                | 32°16,266'         |                    |
|-------------------|-------------|---------------------------------------------------|-------------------------|--------------------|--------------------|
| Station ID:       | Seep-1      | Date: 31 Aug 2                                    |                         | er: Sunny a59      | aland Ent          |
| Sample ID:        | 2021 T25-10 | TO A STREET THE THE PASSES OF LABOUR AND A SECOND | 161. 54328°             | W138.8746          | breeze             |
| Sample Class:     | SW          |                                                   |                         | nt from Bight Bonk | ~2m D/S + ~10m D/S |
| <b>T</b>          | 10.00       |                                                   | noticable on            | stream substre     | de                 |
| Time:             | 1800        | Field Crew (circl                                 |                         | 9/CF/AB            |                    |
| Air Temp (°C):    | 10.1        | Field N                                           | Neter Used:             |                    |                    |
| H2O Temp (°C):    | 3.6/3.5     |                                                   |                         |                    |                    |
| DO (mg/L):        | 11.28/11.57 | QA/QC Sample IDs                                  |                         | 900                |                    |
| DO (%):           | - 187.4     | Duplicate:                                        | Log 9744                | Time:              | <b>&gt;</b> \      |
| Cond (µs/cm):     | - /485.2    | Trip Blank:                                       |                         | Time:              |                    |
| SPC (µs/cm):      | 708\0PF     | Field Blank:                                      | 41                      | Time:              |                    |
| pH: _             | 7.44/7.00   |                                                   |                         |                    |                    |
| ORP (mV):         | - 1-2.0     | Picture #s:                                       | USIDS SOL               | O   RB   LB   SPE  | 22 V/S             |
| urbidity (NTU): _ | 6.32/-0.83  | Comments:                                         | àw seen de              | glighting from 1   | 201+ 1- 10         |
| POSEN NOILO       | N::90       | U:18)                                             | dictorbed 80            | Time alone         | signi donk         |
| LP endpoint       | N7:90       |                                                   | exposed                 |                    |                    |
| 0                 | 0           | Moo.nisheRain.com                                 | RAG JL  Tacoma, AW, USA |                    | 0                  |

|                  |             |                   |             | V. light       | presse      |
|------------------|-------------|-------------------|-------------|----------------|-------------|
| Station ID:      | KR-23       | Date: 01 Sept &   | 000) We     |                |             |
| Sample ID:       | 2021725-11  | Coordinates: N    | 61.5576     | 25° W 132, 15' | 392.        |
| Sample Class:    |             | Site Description: | ischarge    | DIS of old a   | dit         |
|                  |             |                   | 0           | . <u>(D</u>    |             |
| Time:            | 0915        | Field Crew (circl | e sampler): | (SO KCF)       | SL          |
| Air Temp (°C):   | 10.2        | Field M           | leter Used: | 1234626/       | 1225629     |
| H2O Temp (°C):   | 4.1/40      |                   |             |                |             |
| DO (mg/L):       | 11.31 11.65 | QA/QC Sample IDs  | ž           |                | _           |
| DO (%):          | -/89.1      | Duplicate: _      |             | Time           |             |
| Cond (µs/cm):    | -/461.8     | Trip Blank:       |             | Time: _        | -275        |
| SPC (µs/cm):     | 759/771     | Field Blank:      |             | * Time:        | 41 (3)      |
| pH:              | 7 93/6 73   |                   |             |                | adi         |
| ORP (mV):        | -/ 255 P    | Picture #s:       | USIN        | 5/8Ub/18B      | JLB/disch-  |
| Turbidity (NTU): | 0.00/-0.82  | Comments:         | . DS ditch  | along road/o   | anchioning. |
|                  |             |                   | - 11        | On             | occers uppy |
|                  |             |                   |             |                |             |

| Station ID:      | COTI 1 6    |                               | 15 restance of a constant | - 1 All 22            |                          |
|------------------|-------------|-------------------------------|---------------------------|-----------------------|--------------------------|
|                  |             | Date: 01 Sept                 | 2021 Weather              | Sunny <5%             | cloud, light             |
| Sample ID:       | 2021725-12  | Coordinates:                  | 161.55725                 | W132.1708             | 8° breeze                |
| Sample Class:    | SW          | Site Description:             | Tributary to              | Carlo Crook 1         | 15 of mad                |
|                  | - F()       | r / 1817                      | The state of the          | agree acce, c         | 2088H2.                  |
| Time:            | 1005        | Field Crew (cir               | cle sampler):             | SUCE                  | · · ·                    |
| Air Temp (°C):   | 8.3         | Field                         | Meter Used: 723           | 4626 / 12256          | 89                       |
| H2O Temp (°C):   | 24/23       | 4 3                           | y in design of the first  |                       |                          |
| DO (mg/L):       | 12.23/12.54 | QA/QC Sample II               | <u></u>                   |                       |                          |
| DO (%):          | -/91.6      | Duplicate:                    |                           | Time:                 | 1                        |
| Cond (µs/cm):    | -/358.7     | Trip Blank:                   |                           | Time:                 |                          |
| SPC (µs/cm):     | 623 633     | Field Blank:                  |                           | Time:                 |                          |
| pH:              | 8,29/7.45   |                               |                           |                       |                          |
| ORP (mV):        | -/225,7     | Picture #s:                   | US/108/501                | /RB/LB                | :                        |
| Turbidity (NTU): | 0.44/-6.31  | Comments:                     | no abnormal col           | lour on solostmate.   | long state sheep         |
|                  |             | and the second second         | wass during en w          | uks ; lg- sm cobble : | periphyton<br>substrate. |
| .0               | 0           | CONTROL TO A SERVICE CASE AND | Tacoma, WA, USA           | 0                     | 0                        |

Rite in the Rain.

| Station ID:      | CCITÀ       | Date: 1- Sept-   | -dod Weather: Since breeze,   |
|------------------|-------------|------------------|-------------------------------|
| Sample ID: 2     | 4021T25-13  | Coordinates: N   | N61.55496, W132, 17478        |
| Sample Class:    | SW          |                  | Tributory to coche (t. US of  |
|                  | 142         | Ō                | road culvert                  |
| Time:            | 10:45       |                  | cle sampler): CF, GD          |
| Air Temp (°C):   | 12.2        | Field N          | Meter Used: Y274626 / Y225689 |
| H2O Temp (°C):   | 3.5/3.4     |                  |                               |
| DO (mg/L):       | 11.78/12.12 | QA/QC Sample ID: | <u>)s</u>                     |
| DO (%):          | = /91.3     | Duplicate:       | Time:                         |
| Cond (µs/cm):    | - /6aH      | Trip Blank:      | Fime:                         |
| SPC (µs/cm):     | 1044/1062   | Field Blank:     | Time:                         |
| pH:              | 8.36/7.53   |                  |                               |
| ORP (mV):        | - /195.6    | Picture #s:      | US DS SUB RB LB               |
| Turbidity (NTU): |             |                  | brownish green sediment no    |
|                  |             | c                | odour, 5m-ly cobbles          |
|                  |             |                  |                               |

| Station ID:     | CCT3        | Date: 1-Sept 2021 Weather: Sunny 45% Clouds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Sample ID:      | 2021T25-14  | Coordinates: N61.55 149 W [32, 19676]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e lide |
| Sample Class:   | _ SW        | Site Description: Tributary to cache of us of ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | but    |
|                 |             | Chreck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| Time:           |             | Field Crew (circle sampler):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| Air Temp (°C):  | 4.9/4.8     | Field Meter Used: Y324636 / Y335689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| H2O Temp (°C):  | 12.3        | of the state of th |        |
|                 | 11.34/11.59 | QA/QC Sample IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| DO (%):         | -/90.8      | Duplicate: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |
| Cond (µs/cm):   | 767/1700    | Trip Blank: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| SPC (µs/cm):    | 1767/1794   | Field Blank: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.    |
| pH:             | 8.34/7.54   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                 | -/209.5     | Picture #s: US DS SUB, RB, LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| urbidity (NTU): | 0.33/0.38   | Comments: brownish green sadiment, no odow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                 |             | 5m-med cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 0               | 0           | Tacoma, WA, USA • RiteintheRain.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      |

Rite in the Rain.

| Station ID:      | KR-28             |                        | Weather: Sunny 2011 Clouds |
|------------------|-------------------|------------------------|----------------------------|
| Sample ID:       | 2021792-12        | Coordinates: NSI       | 1,54962 W132,20453         |
| Sample Class:    | 5W                | Site Description:      | ch Creek                   |
|                  |                   |                        |                            |
| Time:            | 12:00             | Field Crew (circle sam |                            |
| Air Temp (°C):   | 13.4              | Field Meter            | Used: Y234626/Y225689      |
| H2O Temp (°C):   | 7.2/7.1           |                        |                            |
| DO (mg/L):       | 10.70/10.89       | QA/QC Sample IDs       |                            |
| DO (%):          | -/90.1            | Duplicate:             | Time:                      |
| Cond (µs/cm):    | -/399.0           | Trip Blank:            | Time:                      |
|                  | 517/606           | Field Blank: 2021      | T25-16 Time: 11:45         |
| pH:              | 8.23/7.51         |                        |                            |
| ORP (mV):        | -/197.6           | Picture #s: <u> </u>   | , DS SUB RB, LB            |
| Turbidity (NTU): | 1.83/0.07         | Comments: Large        | e-med cobbles              |
|                  | The second second |                        |                            |

|                 | KR-27<br>2021745-17<br>SW | Pate: 1 SEPT- 2021 Coordinates: N 61. S Site Description: Cache | Weather: Clear 51 chouds 4959 W 182.22078 Ck DS of bridge |
|-----------------|---------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|
| Time:           | 12:30                     | Field Crew (circle sample<br>Field Meter Use                    | er): CEKD                                                 |
| Air Temp (°C):  | 14.4                      | Field Meter Use                                                 | ed: YA346A6/Y225689                                       |
| H2O Temp (°C):  | 7.0/6.9                   |                                                                 | 100007 120007                                             |
| DO (mg/L):      | 10.72/10.94               | QA/QC Sample IDs                                                |                                                           |
| DO (%):         | - 190.1                   | _ Duplicate:                                                    | Time:                                                     |
| Cond (µs/cm):   | - /382.2                  | Trip Blank:                                                     | Time:                                                     |
| SPC (µs/cm):    | 574/583                   | Field Blank:                                                    | Time:                                                     |
| pH:             | 8.25/7.54                 |                                                                 |                                                           |
| ORP (mV):       | - /176.4                  | Picture #s: \) \> \                                             | s Sub RB, LB                                              |
| urbidity (NTU): | 1.41/-0.14                | Comments: Jonge -                                               | ned Colles some hown                                      |
|                 |                           | and lea                                                         | red colles some hown                                      |
|                 |                           |                                                                 |                                                           |

JL DARLING LLC
Tacoma, WA, USA • RiteintheRain.com

Rite in the Rain.

| Station ID: KR-26            | Date:  -SEPT-202  Weather: Sunny, 10% Clouds |
|------------------------------|----------------------------------------------|
| Sample ID: 2021725-18        | Coordinates: 61.54755 W132.22208             |
| Sample Class: 5W             | Site Description: Erib. Cache Creek, US of   |
|                              | Fjord                                        |
| Time: \3:15                  | Field Crew (circle sampler):                 |
| Air Temp (°C): 6.4           | Field Meter Used: 4234 626/ 4222 5689        |
| H2O Temp (°C): 4.4/4.3       |                                              |
| DO (mg/L): (1).18/10.33      | QA/QC Sample IDs                             |
| DO (%): - /90.2              | Duplicate: Time:                             |
| Cond (µs/cm): - /417.4       | Trip Blank:Time:                             |
| SPC (µs/cm): 586/596         | Field Blank: Time:                           |
| pH: 8.50/7.91                |                                              |
| ORP (mV): - /179,5           | Picture #s: US, DS SUB RBLB                  |
| Turbidity (NTU): [.16 /-0.17 | Comments: clear no odour, med. Gobbles       |
|                              | /                                            |

| Station ID:      | KR-22       | Date: 1-500t                    | - 2021 Wes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ather: Clear    | me, X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|-------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID:       | 2021TAS-19  | Coordinates:                    | N64.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154 W 132       | 21600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample Class:    | _SW         | Site Description:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | US of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time:            | 14:15       | Field Crew (cir                 | Confluence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 656             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Air Temp (°C):   |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-109          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H2O Temp (°C):   |             | riela                           | Meter Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (yz4896V)       | 7772889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DO (mg/L):       | 10.45/10.70 | QA/Q€ Sample I                  | <u>-</u><br><u>)s</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | The state of the s |
| DO (%):          | - 190.1     | Duplicate:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:           | 77.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cond (µs/cm):    |             | Trip Blank:                     | AT PERSON OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time:           | -9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SPC (µs/cm):     | 634/645     | Field Blank:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pH:              | 8,22/7.64   |                                 | A STATE OF THE STA |                 | * /·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ORP (mV):        | - / 185.1   | Picture #s:                     | USASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | il ek 18        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Turbidity (NTU): | 272/0.93    |                                 | white pec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i pitute, sligh | Ely Milky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |             | име сес<br>Вітеіптіре Ваіп. соп |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Rite in the Rain.

| Station ID: KR-al           | Date:   - Sept-2021 Weather: hight Clouds |
|-----------------------------|-------------------------------------------|
| Sample ID: 2021745-20       | Coordinates: N 61.5573 W 132, 28545       |
|                             | Site Description: Misery Creek US of      |
| Sample Class:               | tions.                                    |
| Time: 15-30                 | Field Crew (circle sampler):              |
| Air Temp (°C): 13.7         | Field Meter Used: 4234626/42225689        |
| H20 Temp (°C): 3,9/3,7      |                                           |
| DO (mg/L): 10.77/11.40      | QA/QC Sample IDs                          |
| DO (%): - / 86.5            | Duplicate: Time:                          |
| Cond (µs/cm): -/4 2.4       | Trip Blank: Time:                         |
| SPC (µs/cm): 685/696        | Field Blank: Time:                        |
| pH: 7.74 / 7.28             |                                           |
| ORP (mV): -/ 189.3          | Picture #s: VS DS SUB RB LB               |
| Turbidity (NTU): 0.86/-0.14 | Comments: clear No Odour. Some by         |
|                             | racks on road, not occessible             |
|                             | by truck                                  |

| Station ID:          | MCSI  | Date: 01 Sec            | H 2021 Weather:         | v 1, ght breeze                        |                           |
|----------------------|-------|-------------------------|-------------------------|----------------------------------------|---------------------------|
| Sample ID:           | - n/s | Coordinates             | NO1.557389°             | sunny overce                           | est; 90% crouds           |
| Sample Class:        | SW    | Site Description        | seep; milky             | white precip                           | ~300 m up                 |
| Time: Air Temp (°C): | 16:05 | Field Crew (ci<br>Field |                         | Present Present                        | access road<br>from RR-21 |
| H2O Temp (°C): _     | V     |                         |                         |                                        |                           |
| DO (mg/L): _         |       | QA/QC Sample II         | <u>Ds</u>               |                                        |                           |
| DO (%):              |       | Duplicate:              |                         | Time:                                  |                           |
| Cond (µs/cm): _      | . He  | Trip Blank:             | PARTITION OF A STATE OF | Time:                                  |                           |
| SPC (µs/cm):         |       | Field Blank:            |                         | Time:                                  |                           |
| pH:                  |       | 71                      |                         | Time.                                  |                           |
| ORP (mV):            |       | Picture #s:             |                         | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SKT SILVE                 |
| Turbidity (NTU):     |       | Comments:               | Looks undestoned        | ched on Uph                            | Il sole of                |
|                      |       |                         |                         |                                        | DIED.                     |

395.oV

JL DARLING LLC
Tacoma, WA, USA • RiteintheRain.com

| Date: Stpt-2021 Weather: TS/CIDUS                                                   |
|-------------------------------------------------------------------------------------|
| Coordinates: 61.55502 132.24800                                                     |
| Site Description: Cache Crek trib US of                                             |
| Field Crew (circle sampler): Field Meter Used: \(\frac{1}{234626}\) \(\frac{1}{2}\) |
| QA/QC Sample IDs                                                                    |
| Duplicate: Time:                                                                    |
| Trip Blank:                                                                         |
| Field Blank: Time:                                                                  |
| Picture #s: US DS JUB RB LB DDS  Comments: Some bown staining                       |
|                                                                                     |

|                    |               | lower portal C                        | site 10 confirmed by | site man    |
|--------------------|---------------|---------------------------------------|----------------------|-------------|
|                    | 1430          | Portal Pipe                           | outcland             |             |
| Station ID:        | PS +5+0-82    | Date:  -SEPT-3031                     | Weather: Sunny Citt  | strature    |
| Sample ID:         | not sampled   | Coordinates:                          | - Johny Citt         | 3 )04(03)   |
| Sample Class:      | SW            | Site Description: Pipe                | Coming Know wine     | portal      |
| Time:              | 17:15         | Field Crew (circle sam                | pler): C5 10 (3)     |             |
| Air Temp (°C):     | 16.8          | Field Meter I                         | Jsed: V) Subjections | c()d        |
| H2O Temp (°C):     | 2.9/2.5       | 1 - 1                                 | 10,7000/1000         | DEAT        |
| DO (mg/L):         | [1.35 / la.d] | QA/QC Sample IDs                      | No.                  |             |
|                    | - / 98.6      | Duplicate:                            | Time:                | 1.5         |
| Cond (µs/cm):      |               | Trip Blank:                           | Time:                | 1.4         |
| SPC (µs/cm):       | 1165/1160     | Field Blank:                          | Time:                |             |
| pH:                | 7.68 /5.84    | · · · · · · · · · · · · · · · · · · · |                      |             |
| ORP (mV):          | - /286.3      | Picture #s: pipe                      |                      | Transfer of |
| Turbidity (NTU): 2 | 1.11 / 1.48   | Comments:                             | A POP                |             |

|                            | DARLING LLC A, USA • RiteintheRain.com       |
|----------------------------|----------------------------------------------|
| before PS 1430 OWR         | - bolgal                                     |
| Station ID: PS15 10        | Date: 1-SEP-2021 Weather: Sunny, Some Clouds |
| Sample ID: 2021TAS-21      | Coordinates: 61.53587 132.26451              |
| Sample Class: 5W           | Site Description: water flowing out of       |
|                            | boleal                                       |
| Time: 15:30                | Field Crew (circle sampler): CF(SL)          |
| Air Temp (°C): 18.8        | Field Meter Used: Y2346x6/Y2225629           |
| H2O Temp (°C): 1,8 / 1,7   |                                              |
| DO (mg/L): 11.61 / 12.07   | QA/QC Sample IDs                             |
| DO (%): - /86.9            | Duplicate: Time:                             |
| Cond (µs/cm): - / 646      | Trip Blank:                                  |
| SPC (µs/cm): 1145/1163     | Field Blank: Time:                           |
| pH: 7.87 / 6.56            |                                              |
| ORP (mV): - /233.2         | Picture #s: Portal Outflow                   |
| Turbidity (NTU): 1.76/0.23 | Comments:                                    |
| VIII 2                     |                                              |

|                  |             |                    | 10 mm 20 mm     | Op at                                       |                   |         |
|------------------|-------------|--------------------|-----------------|---------------------------------------------|-------------------|---------|
|                  |             | 10                 | FICUS SHIW      | ened 10's                                   |                   |         |
| Uf               | oper portel | confirmed site now | tono show       | ened 10's                                   | opposta           |         |
| Station ID:      | PS 1430 %   | Date: 01 Sopt      | نان Wear        | ther: < \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | مالم ماده الأملان |         |
| Sample ID:       |             |                    | N 61,537        |                                             | ~40% clouds       | s (wisp |
| Sample Class:    | N/S         | Site Description:  | upper por       | tel tan                                     | I no wower        |         |
| Time:            |             | Field Crew (circ   | cle sampler):   | discharge x                                 | or at end         | 9       |
| Air Temp (°C):   |             |                    | Meter Used:     |                                             |                   |         |
| H20 Temp (°C): _ |             | · 45               | A PROPERTY.     |                                             |                   |         |
| DO (mg/L):       |             | QA/QC Sample ID    | —<br>) <u>s</u> |                                             |                   |         |
| DO (%):          |             | Duplicate:         | 14000           | Time:                                       | ran district      |         |
| Cond (µs/cm):    |             | Trip Blank:        |                 | Time:                                       |                   |         |
| SPC (µs/cm):     |             | Field Blank:       | /               | Time:                                       |                   |         |
| pH:              |             |                    |                 | 1000                                        |                   |         |
| ORP (mV): /      | (F)         | Picture #s:        | David e         | who were                                    | d 4 3 3 6 6 1     |         |
| Furbidity (NTU). |             | Comments:          | Princi          | many en                                     | a or pipe.        |         |
|                  |             |                    |                 |                                             |                   |         |
|                  |             |                    |                 |                                             |                   |         |

368.0N

| Station ID: R-0              | Date: 2-SEPT-202) Weather: Over (456    |
|------------------------------|-----------------------------------------|
| Sample ID: 2021725-22        | Coordinates: 61.53978 132.27/24         |
| Sample Class: 5 W            | Site Description: Upper Cache Ck, VS of |
| Sumple class.                | diversion                               |
| Time: 10:15                  | Field Crew (circle sampler):            |
| Air Temp (°C):               | Field Meter Used: 734636 7325629        |
| H2O Temp (°C): 5.4 /5.3      |                                         |
| DO (mg/L): [0.69/11,08       | QA/QC Sample IDs                        |
| DO (%): - 187.4              | Duplicate: Time:                        |
| Cond (µs/cm): -/284.3        | Trip Blank:Time:                        |
| SPC (µs/cm): 450,3/456,5     | Field Blank: Time:                      |
| pH: 829/7.27                 |                                         |
| ORP (mV): - / [3]. [5]       | Picture #s: US DS SUB RB LB             |
| Turbidity (NTU): -0.02/-1.30 | Comments: (lear no adout sm-la cabbles  |
|                              |                                         |

| Station ID:<br>Sample ID:<br>Sample Class: | 2011 AS-23  | Date: 2-SEPT-2021 Weather: Overcost winly Coordinates: 61.52730 132.29988  Site Description: Torn Leke outflow |
|--------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|
| Time:                                      | 11:00       | Field Crew (circle sampler): CF.GD                                                                             |
| Air Temp (°C):                             | 6.5         | Field Meter Used:                                                                                              |
| H20 Temp (°C):                             | 6.2/6.1     | 12 11 12 Tag 4000/ 1200 1607                                                                                   |
|                                            | 10.53/10.78 | QA/QC Sample IDs                                                                                               |
| DO (%):                                    | - 186.8     | Duplicate: 202(725-24 Time: 11:15                                                                              |
| Cond (µs/cm):                              |             | Trip Blank: Time:                                                                                              |
| SPC (µs/cm):                               | 274.4/278.2 | Field Blank: Time:                                                                                             |
| pH:                                        | 8.00/7.09   |                                                                                                                |
|                                            | -/185.1     | Ficture #s: US D5 50b, RB, LB                                                                                  |
| urbidity (NTU):                            | 1.31/-0.24  | Comments: clar brown organics on sub                                                                           |
|                                            |             | No odove                                                                                                       |

365.0N

lite in the Rain.

JL DARLING LLC
Tacoma, WA, USA • RiteintheRain.com

| Station ID: Tora Lyke                     | Date: d-SEP7- 2021 Weather: Cloudy      |
|-------------------------------------------|-----------------------------------------|
| Sample ID:                                | Coordinates: 61.52732 132.30333         |
| Sample Class:                             | Site Description: Tarn Late-white pecip |
| _                                         | 0.00                                    |
| Time: 11-15                               | Field Crew (circle sampler): CF, SL     |
| Air Temp (°C): 6.5                        | Field Meter Used:                       |
| H2O Temp (°C): 6 · \(\lambda / 6 \cdot \) |                                         |
| DO (mg/L): 10.35/10.64                    | QA/QC Sample IDs                        |
| DO (%): -/85.8                            | Duplicate: Time:                        |
| Cond (µs/cm): - /80 2                     | Trip Blank:Time:                        |
| SPC (µs/cm): 276.8/2825                   | Field Blank: Time:                      |
| pH: 8.02/7.15                             |                                         |
| ORP (mV):/1728                            | Picture #s: Pecip aco                   |
| Turbidity (NTU): 1.78/0.64                | Comments:                               |
|                                           |                                         |

| Station ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Torn Loke   | Date: 2-SEP-2021 Weather: Chudy                |                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Coordinates: 61.52728 132.30353                |                                                                                                                |
| Sample Class:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | Site Description: Fin Lake brown pricip area   |                                                                                                                |
| Time:<br>Air Temp (°C):<br>H2O Temp (°C):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Field Crew (circle sampler): Field Meter Used: | La de la companya de |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.41/ 10.99 | QA/QC Sample IDs                               |                                                                                                                |
| DO (%):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.4/84.4   | _ Duplicate: Time:                             |                                                                                                                |
| The state of the s | - /179.9    | Trip Blank:                                    |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 295.4/398.2 | Field Blank: Time:                             |                                                                                                                |
| pH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.42/6.25   |                                                |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -/199.5     | Picture #s: Precip area                        |                                                                                                                |
| urbidity (NTU):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.44/3.88   | Comments:                                      | ***                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                |                                                                                                                |

JL DARLING LLC
Tacoma, WA, USA • RiteintheRain.com

| Station ID: Trip Blan Sample ID: 303/1725-2 Sample Class: |                                                                              |
|-----------------------------------------------------------|------------------------------------------------------------------------------|
| Time: 1200 Air Temp (°C):                                 | Field Crew (circle sampler):  Field Meter Used:                              |
| DO (mg/L):  DO (%):  Cond (µs/cm):  SPC (µs/cm):  pH:     | OA/OC Sample IDs  Duplicate: Time: Time: Same  Field Blank: Time: Time: Same |
| ORP (mV):                                                 | Picture #s:Comments:                                                         |

| Sample Time (24 hr)  Sample Method  Field Filtered & Preserved  OAQC Sample Collected  OAQC | Vell Name     | wine?          | LlyD-9  | 201 A     |               | Project Number  |               |               | 4822                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------|-----------|---------------|-----------------|---------------|---------------|-------------------------|
| Veather 17i, overcest statelogger Details flownload info, etc.)  Monitoring Well Details  Well casing height (magl)  D.20  Peth to Water (m)  9.860  Well casing height (magl)  D.20  Purge Well casing height (magl)  Field Readings  Field Readings  Time Purge Water Level (m)  Temp (°C) DO (mg/L)  Conductivity (us/cm)  PH Redox (mV)  Appearan Caseur, etc.  DASS  2L  G.O. 3.58  Colo. 7.21  H/6.0  24.  Sample Time (24 hr)  Sample Method  Field Filtered & Preserved  QAQC Sample Collected  Pur is deficitual leaving an open hole open Austh  Mant. M. Cours. Organics in Well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ate           |                | Aug S   |           |               | Client          |               | YG            | EMR                     |
| NAME A SAMPLE TIME (24 hr)  Sample Time (24 hr)  Sample Method  Sample Time (24 hr)  Sample Time (24 hr)  Sample Method  | Sampler       |                | JIYA    |           |               | Project Name    |               | Ke            | etza                    |
| Monitoring Well Details  Pepth to Water (m)  9.860  Well casing height (magl)  Details  Pepth to Bottom (m)  SULL  Estimated Water Volume (L)  Purge Method  Field Readings  Time Purge Water Level (m)  DO (mg/L)  Conductivity (us/cm)  PH Redox (mV)  Appearan Odeur, 61  CA35  2L  Sample Time (24 hr)  Sample Method  Field Filtered & Preserved  QAQC Sample Collected  OPUO  General Notes, Calculations:  Well broken off:  Ca3ing laying an grown and phs  Purge I solve to the laying an open hole open hush  Manh-Put. Mo cours. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Veather       |                | 172     | , overca  | 52            |                 |               |               |                         |
| Depth to Water (m)  9.860  Well casing height (magl)  SU.(e)  Tubing Depth (m)  Field Readings  Time Purge Water Level (m)  Field Readings  Time Volume (m)  Appearan Octor, et (m)  Sample Time (24 hr)  Sample Method  Field Filtered & Preserved  OAQC Sample Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                | Í       | J/A       |               |                 |               |               |                         |
| Depth to Bottom (m)  SY. (e)  Tubing Depth (m)  SY. (e)  Tubing Depth (m)  Estimated Water Volume (L)  Field Readings  Time Purge Water Level (m)  Temp (°C) DO (mg/L) Conductivity pH Redox (mV) Appearan odear, etc.  CASS 2L  CO. 3.58 (010 7.21 //6.0 7.4)  Sample Time (24 hr) Sample Method Field Filtered & Preserved QAQC Sample Collected  OPYO  Field Filtered & Pre |               |                |         |           | Monitoring We | ell Details     |               |               |                         |
| Field Readings  Time Purge Water Level (m) Temp (°C) DO (mg/L) Conductivity (µs/cm) pH Redox (mV) Appearan Oderur, et (µs/cm) pH Redox (mV) Oderur, et (µs/cm) pH Red | epth to Wate  | er (m)         |         |           |               | Well casing hei | ight (magl)   | 0.20          |                         |
| Estimated Water Volume (L)  Field Readings  Time Purge Volume (m) Temp (°C) DO (mg/L) Conductivity (µs/cm) pH Redox (mV) Appearance of the | epth to Botto | om (m)         | 54.     | 61        | 1             | Tubing Depth (  | m)            |               |                         |
| Field Readings  Time Purge Volume (m) Temp (°C) DO (mg/L) Conductivity (µs/cm) pH Redox (mV) Appearan odeur, 81  A35 2L 6.0 3.58 (010 7.21 //6.0 24.)  Sample Time (24 hr) Sample Method Field Filtered & Preserved QAQC Sample Collected  OQUO (see Name:  Lell Goker off: Ca Jing (quing on grown) and phs  Pur is detached leaving an open hole lopen hosh  Mant. Pur. No cours. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                | 11.1.   |           |               | Estimated Wate  | er Volume (L) |               |                         |
| Sample Time (24 hr)  Sample Method  Field Filtered & Preserved  OAQC Sample Collected  OGUO  Seneral Notes, Calculations:  Well broken off.  Ca 3: ng laying on grand and plas  Puc is detached leaving an open hole lopen hosh  Mant. Puc. No cover. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                | 13400   | osleve    | Field Read    | dings           |               | W - 167       |                         |
| Sample Time (24 hr)  Sample Method  Field Filtered & Preserved  OAQC Sample Collected  Oaquarity  Oaquarit | Time          |                |         | Temp (°C) | DO (mg/L)     |                 | pH            | Redox (mV)    | Appearance, odeur, etc. |
| O940 Seneral Notes, Calculations:  Well broken off. Casing laying on grown and plus for love is defacted leaving an open hole lopen Rush marnt. pre. No cover. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0935          | ZL             |         | 5.0       | 3.58          | (010            | 7.21          | 116.0         | ٦4.7 <u>5</u>           |
| Jayour (es) No Yes Name:  Well broken off. Casing laying on grown and phos  Our is defacted leaving an open hole open Rush  Mount. Pr. No cover. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                |         |           |               |                 | > 11          |               |                         |
| Well broken off. Casing laying on grown and plus for leaving an open hole lopen Rush mant. pre. No cover. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Tir    | me (24 hr)     | Sample  | Method    | Field Filtere | ed & Preserved  | Q             | AQC Sample Co | llected                 |
| Well broken off. Casing laying on grown and phis for is detached leaving an open hole lopen Rush mant.pv. No cover. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 094           | 0              | Ludwick | eve       | es            | ) No            | Yes _A        | lame:         |                         |
| mant. pvc. No cover. Organies in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3eneral Notes | s, Calculation | a       |           | Casi          | ing layin       | y on c        | grand or      | of plastic              |
| mount. pvc. No cover. Organics in well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Puc            | is deta | chiel     | leaving       | an ope          | in hole       | open 1        | WS4                     |
| Color of the color of the color of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | mant.          | ov. //  | 1/2 0000  | . Dra-        | e de la circa   | 44 ll.        | FEL           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0              | 70      | i cover   | · · ·         | rien in         |               |               |                         |
| full pulc casing ce-aboached after sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | full puc       | casing  | ce-atora  | ched at       | for sam         | ple           |               |                         |

| Well Name                    |                 | MW 10-0            | 1 /MWIO.                                            | -07                                   | Project Number 104822 |              |                | 1822                    |  |  |  |
|------------------------------|-----------------|--------------------|-----------------------------------------------------|---------------------------------------|-----------------------|--------------|----------------|-------------------------|--|--|--|
| Date                         |                 | Aug 3/             |                                                     | ş-i                                   | Client YG EN          |              | EMR            |                         |  |  |  |
| Sampler                      |                 | JE /               | 4_                                                  |                                       | Project Name          |              | Ke             | etza                    |  |  |  |
| Weather                      |                 | 172, Su            | 2                                                   |                                       |                       |              | -              |                         |  |  |  |
| Datalogger D<br>(download in |                 | N/                 | 4 M                                                 | IJIO-0Z<br>Monitoring We              | Nad logge             | C. No        | 1 downlos      | del.                    |  |  |  |
| Depth to Wa                  | ter (m)         | MW10-01:           | 2 /mw10-                                            | nz: 3.395                             | Well casing heig      | ght (magl)   |                |                         |  |  |  |
| Depth to Bott                | tom (m)         |                    |                                                     |                                       | Tubing Depth (n       |              | ,              |                         |  |  |  |
| Well Diamete                 | er              | 2"                 | 11.                                                 | , , , , , , , , , , , , , , , , , , , |                       |              |                |                         |  |  |  |
| Purge Metho                  | d               | -                  | -                                                   |                                       | Estimated Wate        | r Volume (L) |                |                         |  |  |  |
|                              |                 |                    | PIEN PER                                            | Field Read                            | lings                 |              |                |                         |  |  |  |
| Time                         | Purge<br>Volume | Water Level<br>(m) | Temp (°C)                                           | DO (mg/L)                             | Conductivity (µs/cm)  | рН           | Redox (mV)     | Appearance, odour, etc. |  |  |  |
|                              |                 |                    |                                                     |                                       |                       |              |                |                         |  |  |  |
|                              |                 |                    |                                                     |                                       |                       |              |                |                         |  |  |  |
|                              |                 |                    |                                                     |                                       |                       |              |                |                         |  |  |  |
|                              |                 |                    |                                                     |                                       | >                     |              |                |                         |  |  |  |
|                              |                 |                    |                                                     |                                       |                       |              | A.             |                         |  |  |  |
|                              |                 |                    |                                                     |                                       |                       |              |                |                         |  |  |  |
|                              |                 |                    |                                                     |                                       |                       |              |                |                         |  |  |  |
| Sample T                     | ime (24 hr)     | Sample             | Method                                              | Field Filtere                         | d & Preserved         | Q            | AQC Sample Col | lected                  |  |  |  |
| 1700                         |                 | -                  |                                                     | Yes                                   | No                    | Yes N        | ame:           |                         |  |  |  |
| General Note                 | s, Calculation  |                    | Not in                                              | Scope                                 | . No                  | Samp         | eler.          |                         |  |  |  |
|                              |                 | MW10-C             | 1 19                                                | arte                                  | (in                   |              |                |                         |  |  |  |
|                              |                 | MW10-0             | MW10-02 Solmist Carologger at well. Not downloaded. |                                       |                       |              |                |                         |  |  |  |
| )                            |                 | L609               | ed belo                                             | w fally                               | pand                  | loat.        |                |                         |  |  |  |



| Well Name                       | 1 441           | P90-01             | 4 /B         |               | Project Number       |              | 104           | <b>1</b> 822            |
|---------------------------------|-----------------|--------------------|--------------|---------------|----------------------|--------------|---------------|-------------------------|
| Date                            |                 | Ava 3/             | 21           |               | Client               |              | YG EMR        |                         |
| Sampler                         |                 | TI /A              | <del>-</del> |               | Project Name         |              | Ke            | etza                    |
| Weather                         |                 | 12%                | Sundy        |               |                      |              |               |                         |
| Datalogger De<br>(download info |                 |                    | NIA          |               |                      |              |               |                         |
|                                 |                 |                    |              | Monitoring We | II Details           |              |               | The surface             |
| Depth to Wate                   | r (m)           | A:6.76             | 5 B:         | 15.845        | Well casing heig     | jht (magl)   | Flush         |                         |
| Depth to Botto                  | m (m)           | A: 9.996           | B:           | 28.239        | Tubing Depth (m      | 1)           |               |                         |
| Well Diameter Purge Method      |                 | 2"                 |              |               | Estimated Water      | r Volume (L) |               |                         |
| Turge Method                    |                 |                    |              | Field Read    | tings                |              |               | North State             |
| Time                            | Purge<br>Volume | Water Level<br>(m) | Temp (°C)    | DO (mg/L)     | Conductivity (µs/cm) | рН           | Redox (mV)    | Appearance, odour, etc. |
|                                 |                 |                    |              |               |                      |              |               |                         |
|                                 | _               |                    |              |               |                      |              |               |                         |
|                                 |                 |                    |              |               |                      |              |               |                         |
|                                 |                 |                    |              |               |                      |              |               |                         |
|                                 | =               |                    |              |               |                      |              |               |                         |
| ٠,                              |                 | 1                  |              |               |                      |              |               |                         |
|                                 |                 |                    |              |               |                      |              |               |                         |
| Sample Tin                      | ne (24 hr)      | Sample             | Method       | Field Filtere | d & Preserved        | Q            | AQC Sample Co | llected                 |
| 16:45                           | ,               | -                  |              | Yes           | No                   | Yes N        | lame:         |                         |
| General Notes                   |                 | s: \               | 1.1 :0       | 5,000         |                      | ما م         | Lilia         | Oard                    |
|                                 |                 | . 4                | 105 14       | scope         | · LQ(4+              | en or        | tailing       | 6 461                   |
|                                 |                 | Qm6.               | nkment       | (000,         |                      |              |               |                         |
|                                 |                 |                    |              |               |                      |              |               |                         |
|                                 |                 |                    |              |               |                      |              |               |                         |
|                                 |                 |                    |              |               |                      |              |               |                         |
| )                               |                 |                    |              |               |                      |              |               |                         |

| Well Name                     | X 1-74          | P90-               | . cj      |               | Project Number       |              | 104              | 1822                    |
|-------------------------------|-----------------|--------------------|-----------|---------------|----------------------|--------------|------------------|-------------------------|
| Date                          |                 | Aug 3/21           |           |               | Client               |              | YG               | EMR                     |
| Sampler                       |                 | A                  | - /-      | FT.           | Project Name         |              | Ke               | etza                    |
| Weather                       | 8, 5 (2)        | 19                 | 1/Sun     | 1.1           |                      |              |                  |                         |
| Datalogger D<br>(download int |                 |                    | ŇΑ        | Monitoring We | ell Details          | This was     | District Control |                         |
| Depth to Wat                  | er (m)          | -                  |           |               | Well casing heig     | ht (magl)    | _                | _                       |
| Depth to Bott                 | om (m)          |                    |           |               | Tubing Depth (m      | 1)           |                  |                         |
| Well Diamete                  | er              |                    | Z"        |               | F-10-1-120/-1-1      |              |                  |                         |
| Purge Metho                   | d               | _                  |           |               | Estimated Water      | r Volume (L) | _                |                         |
|                               |                 | 1 1 1              |           | Field Read    | dings                |              |                  | Bee                     |
| Time                          | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm) | pН           | Redox (mV)       | Appearance, odour, etc. |
|                               |                 |                    |           | 55            |                      |              |                  |                         |
|                               |                 |                    |           |               |                      |              |                  |                         |
| 1                             |                 |                    |           | ē             |                      |              |                  |                         |
|                               |                 |                    |           |               |                      |              |                  |                         |
| -                             |                 |                    |           |               |                      |              |                  |                         |
|                               |                 |                    |           |               |                      |              |                  |                         |
|                               |                 |                    |           |               |                      |              |                  |                         |
| Sample T                      | ime (24 hr)     | Sample             | Method    | Field Filtere | d & Preserved        | C            | AQC Sample Co    | llected                 |
|                               | -               |                    |           | Yes           | No                   | Yes          | Name:            |                         |
| General Note                  | s, Calculation  | s:                 |           |               |                      | _            |                  |                         |
|                               |                 | 1                  |           |               |                      |              |                  |                         |
|                               |                 | 1 4 1              | Lin       | ~ (           | ).40m                | down         |                  |                         |
|                               |                 | P                  | SKO.      |               |                      | G. C.        | •                |                         |
|                               |                 | À /                | ,         |               |                      |              |                  |                         |
|                               | 2),             | No                 | 1 10      | Sign          | 2                    | 3            | ,                |                         |
|                               |                 | /                  | (1        | 1.1           | pul                  | D.           |                  |                         |
| Ĵ                             |                 | LOCE               | th on     | 40-11-9       | Park                 | Koul         | (                |                         |



| Well Name                    | 10 mm 10 m      | P89-               | .(                            |               | Project Number 104822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                |                         |
|------------------------------|-----------------|--------------------|-------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-------------------------|
| Date                         |                 | Aug 3/21           |                               |               | Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | YG             | EMR                     |
| Sampler                      |                 | JI /               | JE A                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Ke             | etza                    |
| Weather                      |                 | 17 8               | Sunul                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 70             |                         |
| Datalogger D<br>(download in |                 | ρÌ                 | 14                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
|                              |                 |                    |                               | Monitoring We | ell Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | والالتالية     | 1 7 7 7 1               |
| Depth to Wa                  | ter (m)         | Day                |                               |               | Well casing hei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ght (magl)    | 0 /A           | ush                     |
| Depth to Bot                 | tom (m)         | 1.8-               | tu.                           |               | Tubing Depth (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n)            |                |                         |
| Well Diamete                 | er              | 1" -               |                               |               | Estimated Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er Volume (L  |                |                         |
| Purge Metho                  | od              | NIA                | ł                             |               | Estimated vvate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , voidine (2, |                |                         |
|                              |                 |                    | J J== ' u                     | Field Read    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4000          |                | V MATE TO SE            |
| Time                         | Purge<br>Volume | Water Level<br>(m) | Temp (°C)                     | DO (mg/L)     | Conductivity (µs/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pН            | Redox (mV)     | Appearance, odour, etc. |
| 0                            |                 |                    |                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41            |                |                         |
|                              |                 |                    |                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
| <i>j</i>                     |                 |                    |                               |               | and the state of t |               |                |                         |
|                              | = = ±1          |                    | Section Section 18 Section 18 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
|                              |                 |                    |                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | 194                     |
|                              |                 |                    |                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
|                              | Ī               |                    |                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
| Sample T                     | ime (24 hr)     | Sample             | Method                        | Field Filtere | ed & Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | QAQC Sample Co | llected                 |
| 1641                         |                 |                    |                               | Yes           | es No Yes Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
| General Note                 | es, Calculatior | ns:                | 10.11                         | 007           | in C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •             |                |                         |
|                              |                 | `                  | N/E/II                        | 110           | in Scol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OR            |                |                         |
| D)                           |                 | 1 1011             | (                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
| 2 = 4                        |                 | Med                | dref                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                         |
|                              |                 | /                  |                               | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                |                         |
|                              |                 | 60                 | ded a                         | fs:11-        | s paul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.1           |                |                         |
| )                            |                 | LOC                |                               |               | , for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tory          |                |                         |



| Vell Name                                |                 | Pga-               | 3         |                    | Project Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 104           | 1822                    |  |  |
|------------------------------------------|-----------------|--------------------|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------------------|--|--|
| Date                                     |                 | Aug 3              | 121       |                    | Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | YG            | EMR                     |  |  |
| Sampler                                  |                 | T                  | /A-       |                    | Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Ke            | etza                    |  |  |
| Weather                                  |                 | 172                | Sugar     | K                  | gin last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 244          | /             |                         |  |  |
| Datalogger D<br>(download in             |                 | 3 2 7              | N         | A<br>Monitoring We |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NS 2000      |               | No. (Property)          |  |  |
| Depth to Wat                             | ter (m)         | P                  | RY        |                    | Client YG EMR  Project Name Ketza  Retza  Re |              |               |                         |  |  |
| Depth to Bott                            | tom (m)         | 3.4                | 195       |                    | Tubing Depth (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n)           |               |                         |  |  |
| Well Diamete                             | er              | 116                |           |                    | Fatimated Moto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s Valuma (L) | 7)21          | /                       |  |  |
| Purge Metho                              | d               |                    | *         |                    | Estimated vvate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r volume (L) |               |                         |  |  |
|                                          |                 |                    |           | Field Read         | Readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |               |                         |  |  |
| Time                                     | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pH           | Redox (mV)    | Appearance, odour, etc. |  |  |
|                                          |                 | OR .               |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                         |  |  |
|                                          |                 |                    | -         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                         |  |  |
| )                                        |                 |                    |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               | -                       |  |  |
|                                          |                 |                    |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                         |  |  |
|                                          |                 | :                  |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               | -                       |  |  |
|                                          |                 |                    |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                         |  |  |
|                                          | 8               |                    |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                         |  |  |
| Sample T                                 | ime (24 hr)     | Sample             | Method    | Field Filtere      | d & Preserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.           | AQC Sample Co | lected                  |  |  |
| 145                                      | 7               |                    |           | Yes                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes N        | ame:          |                         |  |  |
| General Note                             | s, Calculation  | S:                 |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | E D           | 1 1                     |  |  |
|                                          |                 | No                 | Sample    | ,                  | Dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Well 1       | broken        | off                     |  |  |
|                                          |                 | at a16             | ound le   | vet. Ca            | e placed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100/14       | ou tob        | 0,                      |  |  |
| Well.  Not in Scope - located as to Road |                 |                    |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                         |  |  |



| Well Name                     | 1,000           | Palo-1             | 24        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Number       |              | 104           | 1822                    |
|-------------------------------|-----------------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------------|-------------------------|
| Date                          |                 | AIX S              | h         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client               |              | YG            | EMR                     |
| Sampler                       |                 | TI                 | AS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Name         |              | Ke            | etza                    |
| Weather                       | 4               | 17:                | , Sam     | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rain lost            | 246          |               |                         |
| Datalogger D<br>(download inf |                 | N                  | 1/A       | Monitoring We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |              |               |                         |
| Depth to Wat                  | ter (m)         | DR                 | 4         | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well casing heig     | ht (magl)    | 1.641         |                         |
| Depth to Bott                 | tom (m)         | 9,158              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tubing Depth (m      | 1)           |               |                         |
| Well Diamete                  |                 | 2"                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estimated Water      | r Volume (L) | DAV           |                         |
| Purge Metho                   | d               | 12 Tab             | 82 T Tu   | Field Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dings                |              | 1/1           |                         |
| Time                          | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conductivity (µs/cm) | рН           | Redox (mV)    | Appearance, odour, etc. |
|                               |                 |                    | Į.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |               |                         |
| )——                           |                 |                    |           | ><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |              |               |                         |
|                               |                 |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | _            |               |                         |
|                               |                 |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |               |                         |
|                               |                 |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |               |                         |
|                               |                 |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |               |                         |
| Sample T                      | ime (24 hr)     | Sample             | Method    | Field Filtere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed & Preserved       | C            | AQC Sample Co | llected                 |
| 154                           |                 |                    |           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                   | Yes I        | Name:         |                         |
| General Note                  | es, Calculation | ns:                | . (       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |              |               |                         |
|                               |                 | Ity                | Wel       | The state of the s |                      |              |               |                         |
|                               |                 | Puc o              | :08 5     | Julai a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | about                | metal        | Cosing        |                         |
|                               |                 | 1 6                |           | 7+1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16000                | 1.0          | 3             |                         |
|                               |                 |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |               |                         |
| 5                             |                 |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |               |                         |



| Well Name                    |                 | Pau-               | 114       | _                     | Project Number       |                 | 104           | 1822               |  |  |  |
|------------------------------|-----------------|--------------------|-----------|-----------------------|----------------------|-----------------|---------------|--------------------|--|--|--|
| Date                         |                 | Ava 3              | 121       |                       | Client               |                 | YG            | EMR                |  |  |  |
| Sampler                      | THE STATE       | AT/                | TI        |                       | Project Name         |                 | Ke            | etza               |  |  |  |
| Weather                      | 31,450          | 14°                | 1006GS    | . R                   | in (65) .            | 24h             |               |                    |  |  |  |
| Datalogger D<br>(download in |                 | 1                  |           | nge/<br>Monitoring We |                      | - 277           | 200           | C Sample Collected |  |  |  |
| Depth to Wa                  | ter (m)         | Dry                |           |                       | Well casing hei      | ght (magl)      | 0.953         | M                  |  |  |  |
| Depth to Bot                 | tom (m)         | 3.114              |           |                       | Tubing Depth (r      | n)              |               |                    |  |  |  |
| Well Diamete                 | er_             | 2"                 |           |                       | Estimated Wate       | vr. Volumo (L.) |               |                    |  |  |  |
| Purge Metho                  | d               | N/A                |           |                       | Estillated vvale     | i volume (L)    | · Dry         |                    |  |  |  |
|                              |                 |                    | 1 1       | Field Read            |                      | W.A             | Sun ANDE      |                    |  |  |  |
| Time                         | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)             | Conductivity (µs/cm) | рН              | Redox (mV)    |                    |  |  |  |
|                              |                 |                    |           |                       |                      |                 |               |                    |  |  |  |
| 7                            |                 |                    |           |                       |                      |                 |               |                    |  |  |  |
|                              |                 |                    | 1:        |                       |                      |                 |               |                    |  |  |  |
|                              |                 |                    |           |                       |                      |                 |               |                    |  |  |  |
|                              |                 |                    |           |                       | 1                    |                 |               |                    |  |  |  |
|                              |                 |                    | 4         |                       |                      |                 |               |                    |  |  |  |
|                              |                 |                    | <u>-</u>  |                       |                      |                 |               |                    |  |  |  |
| Sample T                     | ime (24 hr)     | Sample             | Method    | Field Filtere         | ed & Preserved       | Q               | AQC Sample Co | llected            |  |  |  |
| 0837                         | -               | N/A                | 7         | Yes                   | No                   | Yes_N           | ame:          |                    |  |  |  |
|                              | es, Calculation | ns:                |           |                       |                      |                 | K             | 5 8                |  |  |  |
|                              |                 | No                 | Sample    | Wel                   | 11 day               | <u>.</u>        |               |                    |  |  |  |
|                              |                 | Wel                | lin       | good                  | condit               | ion. N          | s materia     | e                  |  |  |  |
|                              |                 | neede              | ġ.        | •                     |                      |                 |               |                    |  |  |  |
|                              |                 |                    |           |                       |                      |                 |               |                    |  |  |  |
|                              |                 | 9                  |           |                       |                      |                 |               |                    |  |  |  |
| 1                            |                 |                    |           |                       | 11                   | N               |               |                    |  |  |  |



| Well Name                    | 35 151          | P9(0-11         | <u>B</u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Number             |            | 104           | 1822                    |
|------------------------------|-----------------|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|---------------|-------------------------|
| Date                         |                 | Aun 3/2         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client                     |            | YG            | EMR                     |
| Sampler                      |                 | A 1:            | jī        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Name               |            | Ke            | etza                    |
| Weather                      |                 | 142             | , Outras  | t. <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rain lest                  | 24 hou     | l'            |                         |
| Datalogger D<br>(download in |                 | 11/0            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
| (download ii)                | 10, 516.)       | MIT             |           | Monitoring We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ell Details                | 113        |               |                         |
| Depth to Wa                  | ter (m)         | Dey             | 19        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well casing heiตุ          | ght (magl) | 1.313         |                         |
| Depth to Bott                | tom (m)         | 4.227           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tubing Depth (r            | n)         |               | _                       |
| Well Diamete                 |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
| Purge Metho                  | od              |                 |           | - 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estimated Water Volume (L) |            |               |                         |
|                              |                 |                 |           | Field Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dings                      |            |               |                         |
| Time                         | Purge<br>Volume | Water Level (m) | Temp (°C) | DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conductivity (µs/cm)       | рН         | Redox (mV)    | Appearance, odour, etc. |
|                              |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
|                              |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
|                              |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
|                              |                 |                 |           | The state of the s |                            |            |               |                         |
|                              |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
|                              |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
| -                            | y = 8.8         |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
| Sample T                     | ime (24 hr)     | Sample          | Mathad    | Field Filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed & Preserved             |            | AQC Sample Co | llected                 |
|                              | ine (24 m)      | Sample          | Metriou   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               | ilected                 |
| General Note                 | es, Calculation | e.              |           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                         | Yes N      | allie.        |                         |
| General Note                 |                 |                 | ig Stie   | King up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | above me                   | tal casi   | -d            |                         |
| *                            | . (             |                 | J         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
|                              | Well &          | ary. No         | Sample    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
|                              |                 | ,               | v         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
|                              |                 |                 |           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |            |               |                         |
|                              |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |
| (                            |                 |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |               |                         |



| Well Name                    |                   | P96 -              | 110       |               | Project Number             |            | 104           | 4822                    |  |
|------------------------------|-------------------|--------------------|-----------|---------------|----------------------------|------------|---------------|-------------------------|--|
| Date                         |                   | P96 -<br>Aug 3/2   | 21        |               | Client                     |            | YG            | EMR                     |  |
| Sampler                      | - 11              | JT /A              | _         | 8             | Project Name               |            | Ke            | etza                    |  |
| Weather                      |                   | 14'6.              | (Nelcas)  | 30            |                            |            |               |                         |  |
| Datalogger D<br>(download in | etails<br>fo etc) | A 30               | gger      | Monitoring We | ell Details                | "5 11      |               |                         |  |
| Depth to Wa                  | ter (m)           | 17.88              |           | J             | Well casing heig           | ght (magl) | 1,311 00      |                         |  |
| Depth to Bot                 | om (m)            | 17.90              |           |               | Tubing Depth (n            | n)         |               |                         |  |
| Well Diamete                 | er                | 2"                 |           |               | Estimated Water Volume (L) |            |               | 1 m                     |  |
| Purge Metho                  | d                 | NA                 |           |               |                            |            |               |                         |  |
|                              |                   |                    |           | Field Read    |                            |            |               |                         |  |
| Time                         | Purge<br>Volume   | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm)       | рН         | Redox (mV)    | Appearance, odour, etc. |  |
|                              |                   |                    |           |               |                            |            |               | _                       |  |
|                              |                   |                    |           | * 17          |                            |            |               |                         |  |
|                              |                   |                    |           |               |                            |            |               |                         |  |
|                              |                   |                    |           | -             |                            |            | n             |                         |  |
|                              |                   |                    |           |               |                            | /          |               |                         |  |
|                              |                   |                    |           |               |                            |            |               |                         |  |
|                              |                   |                    |           |               |                            |            |               |                         |  |
| Sample 1                     | ime (24 hr)       | Sample             | Method    | Field Filtere | ed & Preserved             | Q          | AQC Sample Co | llected                 |  |
| 0849                         |                   | _                  |           | Yes           | No                         | Yes1       | lame:         | -                       |  |
| General Note                 | es, Calculation   | is: Well           | ovc. Sti  | cks up        | allowe w                   | ell metal  | casivel       |                         |  |
|                              |                   | losuf              | ficient   | Volum         | 2. No.                     | Sample     | or parame     | ters.                   |  |
|                              |                   | 111241             |           |               |                            |            |               |                         |  |
|                              |                   |                    |           |               | lę.                        |            |               |                         |  |
|                              |                   |                    |           |               |                            |            |               |                         |  |
|                              |                   |                    |           |               |                            |            |               |                         |  |



| Well Name                                   | 10 2 1                                    | P90.7F          | <b>\</b>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project Number       | 104822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                        |  |  |
|---------------------------------------------|-------------------------------------------|-----------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|--|--|
| Date                                        |                                           | Ava 3/          | 2.1       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Client               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YG            | EMR                                    |  |  |
| Sampler                                     |                                           | 51/1            | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project Name         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ke            | tza                                    |  |  |
| Weather                                     | Stranding                                 | 14°.            | DUMAd     | Ra:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Isst               | 24h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                        |  |  |
| Datalogger Datalogger Datalogger Datalogger |                                           |                 | /A        | Monitoring We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | m 755W 75 H                            |  |  |
| Depth to Wat                                | er (m)                                    | DRY             |           | volitioning vvo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well casing heig     | ght (magl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.064         | YG EMR  Ketza  Appearance, odour, etc. |  |  |
| Depth to Botte                              | om (m)                                    | 8.210           | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tubing Depth (n      | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | -                                      |  |  |
| Well Diamete                                |                                           | 2"              | A         | Estimated Water Volume (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
| Purge Method                                | d<br>———————————————————————————————————— | NI              | A         | Field Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dings                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
| Time                                        | Purge<br>Volume                           | Water Level (m) | Temp (°C) | DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conductivity (µs/cm) | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox (mV)    |                                        |  |  |
|                                             | and the same                              |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
|                                             |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
| ĺ                                           |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | No. of the last of | 4132          |                                        |  |  |
|                                             |                                           |                 | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
|                                             | -                                         |                 |           | and definition of the state of |                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                        |  |  |
|                                             |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
|                                             |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
| Sample T                                    | ime (24 hr)                               | Sample          | Method    | Field Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed & Preserved       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AQC Sample Co | llected                                |  |  |
| 090                                         | 5                                         |                 |           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . No                 | Yes N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lame:         |                                        |  |  |
| General Note                                | es, Calculation                           | is:             | :)        | da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Puc co               | ising ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s no me       | tel                                    |  |  |
|                                             | Cali                                      |                 | Jo Fem    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
|                                             | Carli                                     |                 | 10 1 cm   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
|                                             |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
|                                             |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
| $I_{\chi}$                                  |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |
| 7                                           |                                           |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |  |  |



| Well Name                     |                 | 090-7              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | Project Number       |                        | 10-                                 | 4822                    |  |  |
|-------------------------------|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|------------------------|-------------------------------------|-------------------------|--|--|
| Date                          |                 | Ava 3              | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Client               |                        | YG                                  | EMR                     |  |  |
| Sampler                       |                 | 2E //              | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Project Name         |                        | Ke                                  | etza                    |  |  |
| Weather                       |                 | 142,               | Turni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.            | n lock               | 246                    |                                     |                         |  |  |
| Datalogger D<br>(download in: |                 | 1                  | NIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A             |                      | 3                      |                                     |                         |  |  |
| Depth to Wat                  | ter (m)         | 0.2-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring We | Well casing hei      | ght (magl)             | 0,046                               |                         |  |  |
| Depth to Bott                 | tom (m)         | 9.20               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Tubing Depth (r      | m)                     |                                     |                         |  |  |
| Well Diamete                  | ər              | 2"                 | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                      | EN PLES                | 0.005 m                             |                         |  |  |
| Purge Metho                   | d               |                    | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | Estimated VVate      | nated Water Volume (L) |                                     |                         |  |  |
|                               |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Read    | dings                |                        | 10 S 10 T 10 T 10                   | 10 20 -                 |  |  |
| Time                          | Purge<br>Volume | Water Level<br>(m) | Temp (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DO (mg/L)     | Conductivity (µs/cm) | pН                     | Redox (mV)                          | Appearance, odour, etc. |  |  |
|                               | 4               |                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                      |                        |                                     |                         |  |  |
|                               | -               |                    | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i e           |                      |                        | and the second second second second |                         |  |  |
|                               |                 |                    | The state of the s |               |                      |                        |                                     |                         |  |  |
|                               |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                      | _                      |                                     |                         |  |  |
|                               |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                      |                        |                                     |                         |  |  |
|                               |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                      |                        |                                     |                         |  |  |
|                               |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                      |                        |                                     |                         |  |  |
| Sample T                      | ime (24 hr)     | Sample             | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field Filtere | d & Preserved        | Q,                     | AQC Sample Co                       | llected                 |  |  |
| 09                            | 34              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes           | No                   | Yes N                  | lame:                               |                         |  |  |
| General Note                  | es, Calculation | s:<br>(N           | sufficien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt wet        | er for               | parameter              | "S or Sq                            | mph.                    |  |  |
|                               | 2               |                    | ^ ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                      | e:<br>(%)              |                                     |                         |  |  |
|                               |                 |                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                      |                        |                                     |                         |  |  |
| )                             | - 12            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                      |                        |                                     |                         |  |  |



| Well Name                                                                                            |                              | 76          | 8-04A     |               | Project Number                 | ect Number 104822          |               |             |  |  |
|------------------------------------------------------------------------------------------------------|------------------------------|-------------|-----------|---------------|--------------------------------|----------------------------|---------------|-------------|--|--|
| Date                                                                                                 |                              | Aug (       | + /21     | α.            | Client                         |                            | YG            | EMR         |  |  |
| Sampler                                                                                              | 1 1 1                        | 37          | 14        |               | Project Name                   |                            | . Ke          | Ketza       |  |  |
| Weather                                                                                              |                              | 152         | Ducca     | s t           |                                |                            |               |             |  |  |
| Datalogger D<br>(download int                                                                        |                              | N           | A         |               |                                |                            |               | 1           |  |  |
| Depth to Wat                                                                                         | er (m)                       | 23.0        |           | Monitoring We | ell Details<br>Well casing hei | ght (magl)                 | 1.32          | 7           |  |  |
| Depth to Bott                                                                                        | om (m)                       |             | 462       |               | Tubing Depth (r                | n)                         | -             |             |  |  |
| Well Diamete                                                                                         | r                            | 2'          | 1         |               |                                |                            | 195.          | <br>J 94    |  |  |
| Purge Metho                                                                                          |                              | Hydro       | 1:81      |               | 4.5                            | Estimated Water Volume (L) |               |             |  |  |
|                                                                                                      | Purge                        | Water Level |           | Field Read    | dings<br>Conductivity          |                            |               | Appearance, |  |  |
| Time                                                                                                 | Volume                       | (m)         | Temp (°C) | DO (mg/L)     | (µs/cm)                        | рН                         | Redox (mV)    | odour, etc. |  |  |
| 12:56                                                                                                | 10                           |             | 3.9       | 5.96          | 694                            | 9.11                       | 347.2         | 71.5        |  |  |
| 1>:28                                                                                                | 26                           |             | 3.9       | 5,65          | 694                            | 7.25                       | 323.5         | 76.0        |  |  |
| 1:01                                                                                                 | 30                           |             | 3.9       | 5.96          | 693                            | 7.28                       | 307           | 120         |  |  |
| 1:03                                                                                                 | 40                           |             | 4.0       | 5.44          | 694                            | 7.32                       | 293           | 130         |  |  |
| 1:06                                                                                                 | 50                           |             | 4./       | 5.35          | 694                            | 7.36                       | 283           | 133         |  |  |
|                                                                                                      |                              |             |           |               |                                |                            |               |             |  |  |
| Sample Ti                                                                                            | me (24 hr)                   | Sample      | Method    | Field Filtere | d & Preserved                  | Q                          | AQC Sample Co | llected     |  |  |
| (3:1                                                                                                 |                              | 1-goro      | ift       | es            | No                             | Yes                        | lame:         |             |  |  |
| General Note                                                                                         | s, Calculation               | s: \        |           |               |                                | 1                          |               |             |  |  |
|                                                                                                      | 77                           | xged c      | nay 6     | arameter.     | s Stoler                       | 1.Zex.                     |               |             |  |  |
|                                                                                                      | 1 1)01                       | ni 7:1      | good      | condi         | fice.                          |                            |               |             |  |  |
| . tlan                                                                                               | 1.11                         | ( 4 .       |           | 1140-09       | 8-044.                         | -> D7                      | B:53          | 65~         |  |  |
| Well: s in good condition.  Unidentiful Well immediately beside HYD-08-044 -> DTB: 5.365 -  dry well |                              |             |           |               |                                |                            |               |             |  |  |
|                                                                                                      | driller's sludge in the well |             |           |               |                                |                            |               |             |  |  |



| Well Name                      |            | Core sho    | ick well    |               | Project Number   | w Table       | 104            | 4822        |
|--------------------------------|------------|-------------|-------------|---------------|------------------|---------------|----------------|-------------|
| Date                           |            | Core sho    | - 21        |               | Client           |               | YG             | EMR         |
| Sampler                        |            | AT , J.     | I           |               | Project Name     |               | . Ke           | etza        |
| Weather                        |            | 16°C,       | overca      | st            | Ta .             |               | 8              |             |
| Datalogger De<br>(download inf |            | NIA         |             |               |                  |               |                |             |
|                                |            |             |             | Monitoring We | No.              | - 2           |                | arest 250   |
| Depth to Wate                  | er (m)     | 16.640      | 2           |               | Well casing hei  | ght (magl)    | 0              |             |
| Depth to Botto                 | om (m)     | 34.870      | >           |               | Tubing Depth (m) |               |                |             |
| Well Diamete                   |            | 4"          |             |               | Estimated Wate   | er Volume (L) |                |             |
| Purge Method                   |            | bailer      |             |               |                  |               |                |             |
|                                | Purge      | Water Level | - 0-        | Field Read    | Conductivity     |               |                | Appearance, |
| Time                           | Volume     | (m)         | Temp (°C)   | DO (mg/L)     | (µs/cm)          | pH            | Redox (mV)     | odour, etc. |
| 0846                           |            |             | 8.7         | 9.37          | 300              | 7.72          | 100.2          | 0           |
|                                |            |             |             |               |                  |               |                |             |
|                                |            |             |             |               |                  |               |                |             |
|                                |            |             |             |               | 9                |               |                |             |
|                                | 4          |             |             |               |                  |               |                |             |
|                                |            |             |             | å             |                  |               |                |             |
|                                |            |             | 8 Ft 2      |               |                  |               | ч              |             |
| Sample Ti                      | me (24 hr) | Sample      | Method      | Field Filtere | d & Preserved    | Q             | AQC Sample Col | lected      |
| 0845                           | _          | Bailes      |             | <u></u>       | No               | Yes -N        | lame:          |             |
| General Notes                  |            |             | Sec. of six |               |                  |               |                |             |
|                                |            |             | Well        | in            | Careshaols       | hut.          | has own        |             |
|                                | (non-      | operation   | -9/         |               | 1                |               | has pum        | r           |
|                                | N.         | 6           |             | 171           | † ·              |               |                |             |
|                                |            |             |             |               |                  |               |                |             |
| *                              |            |             |             |               |                  |               |                |             |
| )                              |            |             |             |               |                  |               |                |             |



|              | - Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                  |                                                                                                             | Project Number 1                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/21                                               |                                                                                                             | Client                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EMR                                                                                                                                                                                                                                                                                                                                                         |  |
|              | JI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT                                                 | -                                                                                                           | Project Name                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | etza                                                                                                                                                                                                                                                                                                                                                        |  |
| 44.8         | 19:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ougst                                              |                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |  |
| 5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NI                                                 | 2                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
|              | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | Monitoring We                                                                                               | II Details                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | North Arthur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | وني باش                                                                                                                                                                                                                                                                                                                                                     |  |
| )            | 5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                                                 |                                                                                                             | Well casing hei                                                   | ght (magl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |  |
| n)           | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 77                                               | 53                                                                                                          | Tubing Depth (r                                                   | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
|              | 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | Estimated Water Volume (L)                                                                                  |                                                                   | 27.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
|              | ( Jath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cre/AMio                                           | Field Read                                                                                                  | dings                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
|              | and the second s | Temp (°C)                                          | DO (mg/L)                                                                                                   | Conductivity (µs/cm)                                              | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Redox (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Appearance,<br>odour, etc.                                                                                                                                                                                                                                                                                                                                  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4                                                | 2.95                                                                                                        |                                                                   | 7.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 349.53                                                                                                                                                                                                                                                                                                                                                      |  |
| 54+          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                                                | 3.38                                                                                                        | .1179                                                             | 7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 231.8                                                                                                                                                                                                                                                                                                                                                       |  |
| 521          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                  | 3.69                                                                                                        | 1125                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -9,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 189,7                                                                                                                                                                                                                                                                                                                                                       |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | χ.                                                 |                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                                                             | ,                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
| 24 hr)       | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method                                             | Field Filtere                                                                                               | d & Preserved                                                     | Q <i>F</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AQC Sample Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | llected                                                                                                                                                                                                                                                                                                                                                     |  |
|              | Late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | Yes                                                                                                         | No                                                                | Yes N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ame:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |  |
| ılculations: | VIA 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                                                                                             |                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VA 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |  |
| - 2          | 6,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y2                                                 |                                                                                                             | hel h                                                             | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cardilon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le <sub>w</sub> .                                                                                                                                                                                                                                                                                                                                           |  |
|              | 20.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                                                                                                             |                                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |  |
| _            | 13,7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78                                                 | x 2                                                                                                         | - Z7.                                                             | 456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · 7 2 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 3-                                                                                                                                                                                                                                                                                                                                                        |  |
|              | Purge olume  2 7 L  3 2 L  24 hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Purge Water Level (m)  24 hr) Sample Includations: | 20. 77  20. 77  24  24 hr) Sample Method  10/16  24 hr) Sample Method  10/16  27. 3.4  24 hr) Sample Method | Monitoring We  5, 54Z  70, 77  70  70  70  70  70  70  70  70  70 | Monitoring Well Details  Well casing heir  Tubing Depth (r  Tubing Depth (r  Estimated Water  Field Readings  Purge olume (m)  Temp (°C)  Tomp (°C)  Temp | Monitoring Well Details  Well casing height (magl)  Zo. ZZ Tubing Depth (m)  Zu Estimated Water Volume (L)  Field Readings  Purge olume (m)  3.4 2.9 1256 7.18  3.4 3.8 1179 7.30  3.4 3.6 1125 7.36  3.4 3.6 1125 7.36  Well casing height (magl)  Field Readings  Purge olume (L)  Field Readings  A | Monitoring Well Details  6, 547  Well casing height (magl)  70, 77  Tubing Depth (m)  Estimated Water Volume (L)  Field Readings  Orge  Olume  Water Level Temp (°C)  OO (mg/L)  Conductivity (µs/cm)  Purge  Olume  3,4  2,97  1256  7,18  19,5  3,4  3,48  1179  7,30  2,6  3,14  3,64  1175  7,36  20,6  Purge  No  Yes  Name:  OAQC Sample Conductions: |  |



| Well Name                                                    |                                       | P90-               | 7B        |                                       | Project Numbe        | GITHILL.   | 10            | )4822                                                                           | 1  |  |
|--------------------------------------------------------------|---------------------------------------|--------------------|-----------|---------------------------------------|----------------------|------------|---------------|---------------------------------------------------------------------------------|----|--|
| Date                                                         |                                       | Ava 3/             | 21        |                                       | Client               | N 11 T     | YG            | Appearance, odour, etc.  1.5 56.97  3.8 63.8  Sample Collected  Meedec fo purge |    |  |
| Sampler                                                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TT /               |           |                                       | Project Name         |            | K             | etza                                                                            |    |  |
| Weather                                                      |                                       | 14°                | Suppl     | Ryin                                  | 1951                 | 246        |               | V The                                                                           | -  |  |
| Datalogger E<br>(download in                                 |                                       |                    | ,         | V/A                                   | 1931                 |            |               | 142                                                                             | 4  |  |
|                                                              |                                       | North Con-         |           | Monitoring We                         |                      |            | 1119 2011     |                                                                                 |    |  |
| Depth to Wa                                                  |                                       | 6.26               | 8         |                                       | Well casing hei      | ght (magl) | O.            |                                                                                 |    |  |
| Depth to Bot                                                 | tom (m)                               | 17.00              | 3         |                                       | Tubing Depth (i      | m)         | 040           |                                                                                 |    |  |
| Purge Method  Valkea 1 Hydroliff  Estimated Water Volume (L) |                                       |                    |           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                      |            |               |                                                                                 |    |  |
| r drye Metrio                                                |                                       | Wate               | sa 3 Hyo  | Field Readings                        |                      |            |               |                                                                                 |    |  |
| Time                                                         | Purge<br>Volume                       | Water Level<br>(m) | Temp (°C) | DO (mg/L)                             | Conductivity (µs/cm) | рН         | Redox (mV)    |                                                                                 | NT |  |
| 0946                                                         | 15 L                                  | 13.004             | 15.5      | 8.13                                  | 214                  | 7.92       | 31.5          |                                                                                 |    |  |
| 1440                                                         | 24L                                   | *                  | 9,8       | 5.90                                  | 208                  | 7.04       | 133.8         | activities.                                                                     |    |  |
| Ì                                                            |                                       |                    |           |                                       | 1                    |            | 4             | 100                                                                             | 1  |  |
|                                                              |                                       |                    |           |                                       | 240                  | E 1        |               |                                                                                 | 1  |  |
|                                                              | - I 9                                 |                    | C114.     |                                       |                      |            |               |                                                                                 | 1  |  |
|                                                              |                                       | , *·               |           | ſ                                     |                      | -          |               |                                                                                 | 1  |  |
|                                                              |                                       |                    |           |                                       |                      |            |               |                                                                                 |    |  |
| Sample Ti                                                    | ime (24 hr)                           | Sample             | Method    | Field Filtere                         | d & Preserved        | QA         | AQC Sample Co | llected                                                                         |    |  |
| 144                                                          | 0                                     | Watters            |           | Yes                                   | No                   | Yes N      | ame:          |                                                                                 |    |  |
| General Note                                                 | s, Calculations                       |                    | 01.       | 7 7                                   | h concr              | ple        |               |                                                                                 |    |  |
|                                                              | le                                    |                    | 13 +11    | 0) L W1                               | V. (())(011          |            |               |                                                                                 |    |  |
| 17.003<br>10.735 X2 Z1.470 X 3 64.41 L needed to purge       |                                       |                    |           |                                       |                      |            |               |                                                                                 |    |  |
|                                                              |                                       |                    |           |                                       |                      |            |               |                                                                                 |    |  |
|                                                              | M                                     | rged dr            | y after   | 22L.                                  | direct s             | ample af   | ter ZZL       |                                                                                 |    |  |
| _ Deb                                                        |                                       |                    |           |                                       | purging -            |            | 2             |                                                                                 |    |  |
|                                                              | -                                     | - 01               |           | J                                     | , 0                  |            |               |                                                                                 |    |  |



| Well Name                      |                 | HYD-0              | 8-02      |               | Project Numbe        |               | 10            | 104822                  |  |
|--------------------------------|-----------------|--------------------|-----------|---------------|----------------------|---------------|---------------|-------------------------|--|
| Date                           |                 | Aug 4,             | /21       |               | Client               |               | YG            | EMR                     |  |
| Sampler                        |                 |                    | 4 T       |               | Project Name         |               | K             | etza                    |  |
| Weather                        |                 | 16.0               | over      | cxt           |                      |               |               |                         |  |
| Datalogger Do<br>(download inf |                 | NIA                | ł.        |               |                      |               |               |                         |  |
|                                |                 | The state          | 1 10g n   | Monitoring We | ell Details          |               |               |                         |  |
| Depth to Wate                  | er (m)          | 137.899            |           |               | Well casing hei      | ght (magl)    |               |                         |  |
| Depth to Botto                 | om (m)          | 164.35             |           |               | Tubing Depth (i      | m)            |               |                         |  |
| Well Diameter                  |                 | 2"                 |           |               |                      |               | umo (I.)      |                         |  |
| Purge Method                   |                 | 1-140/0            | Slover    |               | Estimated Wate       | er Volume (L) |               |                         |  |
|                                |                 |                    | W 4 - 5 - | Field Read    | dings                |               |               |                         |  |
| Time                           | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm) | рН            | Redox (mV)    | Appearance, odour, etc. |  |
| 1745                           | 21              |                    | 6.7       | 6.83          | 333                  | 7.03          | 148.1         | 56.65                   |  |
| 1, ,                           |                 |                    |           |               |                      | 7.0           |               |                         |  |
|                                |                 |                    |           |               |                      |               |               |                         |  |
|                                |                 |                    |           |               |                      | 5.0           |               |                         |  |
|                                |                 |                    |           |               | -                    |               |               |                         |  |
|                                |                 |                    |           |               |                      |               |               |                         |  |
|                                |                 |                    |           |               |                      |               |               |                         |  |
|                                |                 |                    |           |               |                      |               |               |                         |  |
| Sample Tir                     | me (24 hr)      | Sample             | Method    | Field Filtere | d & Preserved        |               | AQC Sample Co | llected                 |  |
| 17:5                           |                 | Hurbos             | leve      | (fes          | ) No                 | Yes N         | ame:          |                         |  |
| General Notes                  | s, Calculation  | s: \ ()            |           |               | 1 (                  | 1             | 1 .           |                         |  |
|                                |                 |                    | 6         | VC )          | hielting g           | ibae 1        | utal cas      | im.                     |  |
|                                |                 |                    | Well .    | A COL         | od Shepa             |               |               | / =                     |  |
|                                |                 |                    |           | The good      | - orapi              | •             |               |                         |  |
|                                |                 |                    |           |               |                      |               |               |                         |  |
| ¥1                             |                 |                    |           |               |                      |               |               |                         |  |
| )                              |                 |                    |           |               |                      |               |               |                         |  |



| Well Name                     | 184                         | GT-                | 10-01     |               | Project Number                                                                                                      |            | 104            | 4822                    |  |
|-------------------------------|-----------------------------|--------------------|-----------|---------------|---------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------------------|--|
| Date                          |                             | Aug d              | ,         |               | Client                                                                                                              |            | YG             | EMR                     |  |
| Sampler                       |                             | 五                  | /A        | -             | Project Name                                                                                                        |            | Ke             | etza                    |  |
| Weather                       |                             | 15                 |           | enast         |                                                                                                                     | 8          |                |                         |  |
| Datalogger D<br>(download int |                             |                    | - ,       | NA            |                                                                                                                     |            |                | 8                       |  |
|                               | 30.70                       |                    |           | Monitoring We | Tubing Depth (m)  Estimated Water Volume (L)  eld Readings  (mg/L)  Conductivity (µs/cm)  PH  Redox (mV)  Appeadodu |            |                |                         |  |
| Depth to Wat                  | er (m)                      | 45                 | 15/       | 727           | Well casing hei                                                                                                     | ght (magl) | 1.200          |                         |  |
| Depth to Bott                 | Bottom (m) Tubing Depth (m) |                    |           |               |                                                                                                                     |            |                |                         |  |
| Well Diamete                  | er                          | 2                  |           |               |                                                                                                                     |            |                |                         |  |
| Purge Metho                   | d                           | Hydro              | Seene     |               | 45 17 17 18 18 18 18 18                                                                                             |            |                |                         |  |
|                               |                             |                    | Stirley,  | Field Read    |                                                                                                                     | JE LA HILL |                |                         |  |
| Time                          | Purge<br>Volume             | Water Level<br>(m) | Temp (°C) | DO (mg/L)     |                                                                                                                     | pН         | Redox (mV)     | Appearance, odour, etc. |  |
| 16:00                         | 2                           |                    | 7.1       | 1.95          | 826                                                                                                                 | 7.47       | 24.9           | 17.28                   |  |
|                               |                             |                    |           |               |                                                                                                                     |            |                |                         |  |
|                               |                             |                    |           |               |                                                                                                                     |            | 10             | -                       |  |
|                               |                             |                    |           |               |                                                                                                                     |            |                |                         |  |
|                               | 8                           |                    |           | 4             |                                                                                                                     |            |                | /4                      |  |
|                               |                             |                    |           |               |                                                                                                                     |            |                |                         |  |
|                               |                             |                    | -         |               | -                                                                                                                   |            |                |                         |  |
| Sample T                      | ime (24 hr)                 | Sample             | Method    | Field Filtere | d & Preserved                                                                                                       | Q/         | AQC Sample Col | lected                  |  |
| 15:38                         | 9                           | 144/10             | sleeve    | (es           | ) No                                                                                                                | Yes N      | ame:           |                         |  |
|                               | s, Calculation              | s: "               |           |               | - (                                                                                                                 |            |                |                         |  |
|                               | W                           | ell Cos:           | ng (003   | e in c        | fround-                                                                                                             |            |                |                         |  |
|                               |                             |                    |           |               | Cancre                                                                                                              | 1          |                |                         |  |
|                               | 36                          |                    | 1 6034    | CP of         | (ancre                                                                                                              | K.         |                |                         |  |
|                               |                             |                    |           |               |                                                                                                                     |            |                |                         |  |
|                               |                             |                    |           | 22            |                                                                                                                     |            | 10             |                         |  |
| )                             |                             | ×                  |           |               |                                                                                                                     |            |                |                         |  |



| Well Name                    |                       | HYD-0              | 8-10      |                | Project Numbe        |             | 10              | 4822                      | 7 |  |  |
|------------------------------|-----------------------|--------------------|-----------|----------------|----------------------|-------------|-----------------|---------------------------|---|--|--|
| Date                         |                       | Aug 4/             | 21        |                | Client               |             | YG EMR<br>Ketza |                           |   |  |  |
| Sampler                      |                       | 31/A               |           |                | Project Name         |             | Ketza           |                           | 1 |  |  |
| Weather                      |                       | IHC.               | Overcaje  | ,              | ·                    |             |                 |                           | 1 |  |  |
| Datalogger [<br>(download in |                       |                    | MA        | Monitoring We  | ell Details          | 2, - 1 1    | VID - 1-7-7-1   |                           |   |  |  |
| Depth to Wa                  | ter (m)               | 65.2               |           |                | Well casing hei      | ight (magl) |                 |                           |   |  |  |
| Depth to Bot                 | tom (m)               | 111.97             | 15        |                | Tubing Depth (       | m)          |                 |                           | 1 |  |  |
| Well Diamete                 | ell Diameter 2        |                    |           |                | 155                  |             |                 |                           | 1 |  |  |
| Purge Metho                  | ge Method HydroSleeve |                    |           | Estimated Wate | er Volume (L)        |             |                 |                           |   |  |  |
| illi ett ja                  |                       | 1-11-1             | 7         | Field Read     | dings                |             | 1 1 1 1 1       |                           |   |  |  |
| Time                         | Purge<br>Volume       | Water Level<br>(m) | Temp (°C) | DO (mg/L)      | Conductivity (µs/cm) | рН          | Redox (mV)      | Appearance,<br>odour etc. | 1 |  |  |
| 1100                         | 21                    |                    | 8.2       | 5.36           | 1012                 | 7.68        | 581.2           | 39.65                     |   |  |  |
|                              | a a                   |                    | 34        |                |                      |             |                 |                           |   |  |  |
|                              |                       |                    | -         |                |                      |             |                 |                           |   |  |  |
|                              |                       |                    | ÷         |                |                      |             |                 |                           |   |  |  |
|                              |                       |                    |           |                |                      |             | -               |                           | - |  |  |
| Sample Ti                    | me (24 hr)            | Sample             | Method    | Field Filtere  | d & Preserved        | Q.A         | QC Sample Col   | lected                    | ĺ |  |  |
| 1100                         | )                     | Hydrosle           | eve       | Yes            | ) No                 | Yes—N       | ame:            |                           |   |  |  |
|                              | s, Calculations       |                    | ا امه     |                |                      |             | v-1 (-          |                           |   |  |  |
|                              | Λ<br>01 10            | jen ala 1          | nor Nave  | - )-61         | of on it             | , ecb       | o feel to       |                           |   |  |  |
|                              | Elemon.               | b. Or              | jan-c A   | natter of      | og on it             | of ove      |                 |                           |   |  |  |
|                              | _                     |                    |           |                | wer meta             |             |                 |                           |   |  |  |
| 1                            | \\ 0\cl               | Colin              | 48        | ن ماهما        | A (10)               | (· ~ )      |                 |                           |   |  |  |
|                              | 1~ (2014)             | CATING             | J-1       | 100 JC 11      | Stelled.             | . — > (     | wor ply         |                           |   |  |  |



| Well Name                  |                 | 440-0              | 8-098     |               | Project Number                                                                                                                                                                                     |                | 10-                                                                                           | 4822         |  |  |
|----------------------------|-----------------|--------------------|-----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------|--------------|--|--|
| Date                       |                 | Aug 4/             | 21        |               | Client                                                                                                                                                                                             | - M - M - 1    | YG                                                                                            | EMR          |  |  |
| Sampler                    |                 | 21/                | A         |               | Project Name                                                                                                                                                                                       |                | Ke                                                                                            | etza         |  |  |
| Weather                    |                 | 14'2               | outrest   | L             | 7                                                                                                                                                                                                  |                | - <del></del>                                                                                 |              |  |  |
| Datalogger D (download inf |                 |                    |           |               | 724                                                                                                                                                                                                |                |                                                                                               |              |  |  |
| 1102 31 31                 | a 1             | 911, 411           |           | Monitoring We |                                                                                                                                                                                                    |                |                                                                                               | the state of |  |  |
| Depth to Wat               |                 |                    |           |               | Project Name Ketza  Sell Details  Well casing height (magl)  Tubing Depth (m)  Estimated Water Volume (L)  Sings  Conductivity (µs/cm)  PH  Redox (mV)  Appearan odour, etc.  Appearan odour, etc. |                |                                                                                               |              |  |  |
| Depth to Botto             | om (m)          | 3.350              | 1         |               | Tubing Depth (r                                                                                                                                                                                    | n)             | YG EMR Ketza  1.150  Redox (mV) Appearance odour, etc  QAQC Sample Collected Name:  SGM COWN. |              |  |  |
| Well Diamete               | r               | 1''                |           | V             | Estimated Water                                                                                                                                                                                    | er Volume (L.) |                                                                                               |              |  |  |
| Purge Method               | Purge Method    |                    |           |               |                                                                                                                                                                                                    | -volatile (L)  | Redox (mV)  Appearance, odour, etc.  AQC Sample Collected ame:                                |              |  |  |
|                            |                 |                    |           | Field Read    |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
| Time                       | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)     |                                                                                                                                                                                                    | pH             | Redox (mV)                                                                                    |              |  |  |
|                            |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
|                            |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
|                            |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
|                            |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
| •                          |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
| 7 14                       |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
|                            |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |
| Sample Tir                 | me (24 hr)      | Sample             | Method    | Field Filtere | d & Preserved                                                                                                                                                                                      | Q              | AQC Sample Col                                                                                | lected       |  |  |
| 0910                       |                 |                    |           | Yes           | No                                                                                                                                                                                                 | Yes N          | Name:                                                                                         |              |  |  |
| General Notes              | s, Calculation  | s:                 | Nell      | block         | ed 3                                                                                                                                                                                               | 3.356          | m dow                                                                                         | 'v -         |  |  |
|                            |                 |                    | No wa     | fa.           |                                                                                                                                                                                                    |                | 1                                                                                             |              |  |  |
|                            |                 | F)                 | Well      | Casing        | (00 % ·                                                                                                                                                                                            | r degr         | nol.                                                                                          |              |  |  |
| )                          |                 |                    |           |               |                                                                                                                                                                                                    |                |                                                                                               |              |  |  |



| GROG                         | NOVA            | TEIX OF            | (IVII EE  | OOLL          |                            | OTTLE      | •                                                                                   |                         |  |
|------------------------------|-----------------|--------------------|-----------|---------------|----------------------------|------------|-------------------------------------------------------------------------------------|-------------------------|--|
| Well Name                    |                 | tIND-0             | 8-09A     |               | Project Number             |            | 104                                                                                 | 1822                    |  |
| Date                         |                 | 10g 4              | /21       |               | Client                     |            | YG                                                                                  | EMR                     |  |
| Sampler                      |                 | TI                 | 1         | -             | Project Name               |            | Ke                                                                                  | etza                    |  |
| Weather                      |                 |                    | 7         |               |                            |            |                                                                                     |                         |  |
| Datalogger D<br>(download in |                 |                    |           |               |                            |            |                                                                                     |                         |  |
|                              |                 |                    |           | Monitoring We | II Details                 | W. Tr      |                                                                                     | 45-5-179                |  |
| Depth to Wat                 | ter (m)         | 13.960             | )         |               | Well casing hei            | ght (magl) | YG EMR Ketza  L.OZO  Redox (mV) Appearanged odour, et al. 20  QAQC Sample Collected |                         |  |
| Depth to Bottom (m)          |                 | 13.960             | .000      |               | Tubing Depth (i            | n)         |                                                                                     |                         |  |
|                              | Well Diameter   |                    |           |               | Estimated Water Volume (L) |            |                                                                                     |                         |  |
| Purge Method                 |                 | Hydros             | leve      |               |                            |            |                                                                                     |                         |  |
| التناييا                     | , 1             |                    |           | Field Read    |                            |            | A Partie of                                                                         |                         |  |
| Time                         | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm)       | рН         | Redox (mV)                                                                          | Appearance, odour, etc. |  |
| 9:26                         | 2               |                    | 6.9       | 10.59         | 465                        | 5.09       | 146.2                                                                               | 0                       |  |
|                              |                 |                    |           |               |                            |            |                                                                                     |                         |  |
|                              |                 |                    |           |               |                            |            |                                                                                     |                         |  |
|                              |                 |                    |           |               |                            |            |                                                                                     |                         |  |
|                              |                 | 80                 |           |               |                            |            |                                                                                     |                         |  |
|                              |                 |                    |           |               |                            |            |                                                                                     | v.                      |  |
|                              |                 |                    |           |               |                            |            | 2.5                                                                                 | -                       |  |
| Sample T                     | ime (24 hr)     | Sample             | Method    | Field Filtere | ed & Preserved             | Q          | AQC Sample Co                                                                       | llected                 |  |
| 9:4                          | 5               | Hudros             | leeve     | Yes           | No                         | Yes -1     | lame:                                                                               |                         |  |
| General Note                 | es, Calculation | ns:                |           |               |                            | •          | ) <del>(</del>                                                                      | 5                       |  |
|                              |                 | 1061               | 1-00      | N -           | mand                       |            |                                                                                     |                         |  |
|                              |                 | VVC                | (00%      | "             | giores.                    |            |                                                                                     |                         |  |
|                              |                 |                    |           |               |                            |            |                                                                                     |                         |  |
|                              |                 |                    | •         |               |                            |            | 6                                                                                   |                         |  |
| 2                            |                 |                    | je.       |               |                            |            |                                                                                     |                         |  |
| Ļ                            | 8               |                    |           |               |                            |            |                                                                                     |                         |  |
| ŕ                            |                 |                    |           |               |                            |            |                                                                                     |                         |  |



| GROU                          | NDWA            | VIER S             | AMPLE      | : COLL        | ECHON                             | SHEE       | T              |                         |   |  |
|-------------------------------|-----------------|--------------------|------------|---------------|-----------------------------------|------------|----------------|-------------------------|---|--|
| Vell Name                     |                 | KR-05              | - 688      |               | Project Number                    |            | 10-            | 4822                    |   |  |
| ate                           |                 | Aug 4              | 121        |               | Client                            |            | YG             | EMR                     |   |  |
| Sampler                       |                 | TI                 | AT         |               | Project Name                      |            | K              | etza                    |   |  |
| Veather                       |                 |                    | lli nu     | krast         |                                   |            |                |                         | 1 |  |
| Datalogger De<br>download inf |                 | AVA                | 100        |               |                                   |            |                |                         |   |  |
|                               |                 | THE PERSON         | 14 14 E.L. | Monitoring We | Well Details                      |            |                |                         |   |  |
| Depth to Wate                 | er (m)          | 47.                | 472        |               | Well casing height (magl)         |            |                |                         |   |  |
| Depth to Botto                | om (m)          | 72.                | 42         |               | Tubing Depth (m)                  |            |                |                         |   |  |
| Well Diamete                  | r               | 2"                 |            |               |                                   | 111000     |                |                         |   |  |
| Purge Method                  | ,               | Hydro              | 1: F4      |               | Estimated Water Volume (L) 49.894 |            |                |                         |   |  |
|                               |                 | 310 111            | WEST T     | Field Read    |                                   |            | R VAL          | Bu 5 70                 |   |  |
| Time                          | Purge<br>Volume | Water Level<br>(m) | Temp (°C)  | DO (mg/L)     | Conductivity (µs/cm)              | рН         | Redox (mV)     | Appearance, odour, etc. | N |  |
| 1630                          | (OL             |                    | 5.3        | 6.23          | 828                               | 7.28       | 153.0          | 0                       | , |  |
| 1637                          | 204             |                    | 4.6        | 6.20          | 418                               | 7.27       | 152.8          | 0                       |   |  |
| 140                           | 25              |                    | 4.6        | 6.21          | 814                               | 7.26       | 152.2          | 0                       | 1 |  |
| 126                           |                 |                    | * * *      |               |                                   | . ~        |                |                         | 1 |  |
|                               |                 |                    |            |               |                                   |            |                |                         | 1 |  |
|                               |                 |                    |            |               |                                   |            | -              |                         | 1 |  |
|                               | A               |                    |            |               |                                   |            |                |                         |   |  |
| Sample Tir                    | me (24 hr)      | Sample             | Method     | Field Filtere | d & Preserved                     | 0/         | AQC Sample Col | lected                  |   |  |
|                               |                 | المراجبية ا        |            | Yes           | - 15 EM                           |            |                | ected .                 |   |  |
| Peneral Notes                 |                 | Hydrolia<br>s:     | <i>:/</i>  | res           | / NO                              | N          | ame: F. S      | ν,                      |   |  |
|                               |                 |                    |            |               | , . ×                             | 10/0       | 1/             | . /                     |   |  |
| 4                             | 47              | .472               |            |               |                                   | VVC.       | l'ing          | oof                     |   |  |
|                               | - 72            | .420               |            |               |                                   |            | and,           | lia                     |   |  |
|                               | 24.             | 948                | メフ・        | 49            | 901                               |            |                |                         |   |  |
|                               | 4               | 1                  |            | . , , , ,     | 0-16                              |            |                |                         |   |  |
|                               | Puge            | 30L                | \$ 59      | impled.       | Paramet                           | les de     | 66             |                         |   |  |
|                               | . 0             |                    |            | ( )           | THEME                             | المحرر راب | 1046           |                         |   |  |



| Well Name                      |                 | 1510            | prtal m       | <b>د</b> اا   | Project Number       | " I'E'T'S     | YG EMR  Ketza  Appearance, odour, etc. |                         |  |  |
|--------------------------------|-----------------|-----------------|---------------|---------------|----------------------|---------------|----------------------------------------|-------------------------|--|--|
| Date                           |                 | Aug U           | 71            |               | Client               |               | YG                                     | EMR                     |  |  |
| Sampler                        |                 | TH              | IA.           |               | Project Name         |               | Ke                                     | etza                    |  |  |
| Weather                        |                 | Bi              | nverce        | .ct           | W                    |               |                                        |                         |  |  |
| Datalogger Do<br>(download inf |                 |                 | N/a           |               |                      |               |                                        |                         |  |  |
| 1 1                            |                 |                 | May a William | Monitoring We | ll Details           |               | g ni jilika ni y                       |                         |  |  |
| Depth to Wate                  | er (m)          | 62              | 870           | Κ.            | Well casing hei      | ght (magl)    | 0                                      |                         |  |  |
| Depth to Botto                 | om (m)          | 96              | . 344         |               | Tubing Depth (r      | n)            |                                        |                         |  |  |
| Well Diamete                   | r .             | 1               | t"            |               | Cotymated Mate       | or Volume (L) |                                        |                         |  |  |
| Purge Method                   |                 |                 | Hydrostee     | vi            | Estimated Wate       | er volume (L) | Appearance                             |                         |  |  |
|                                |                 |                 |               | Field Read    | dings                |               |                                        | - * Ph                  |  |  |
| Time                           | Purge<br>Volume | Water Level (m) | Temp (°C)     | DO (mg/L)     | Conductivity (µs/cm) | pH            | Redox (mV)                             | Appearance, odour, etc. |  |  |
| 14:09                          | 2               |                 | 8.0           | 8.72          | 597                  | 7.59          | 157.5                                  | 1.72                    |  |  |
|                                |                 |                 |               |               | 4                    |               | II.                                    |                         |  |  |
|                                |                 |                 |               |               |                      |               |                                        |                         |  |  |
|                                |                 |                 |               |               |                      |               |                                        |                         |  |  |
|                                |                 |                 |               |               |                      |               |                                        |                         |  |  |
|                                |                 |                 |               |               |                      |               |                                        |                         |  |  |
|                                |                 | 181             |               |               |                      |               |                                        |                         |  |  |
|                                | me (24 hr)      | Sample          | Method        | Field Filtere | d & Preserved        | QA            | AQC Sample Col                         | lected                  |  |  |
| 14:1                           |                 | -yacos          | ler/e         | Yes           | ) No                 | Yes N         | ame:                                   |                         |  |  |
| General Note                   | s, Calculation  | s: ()           | 1             |               | 11.                  | . 1. 7.       | - 0                                    |                         |  |  |
|                                | 1               | Nell            | 4" in d       | lianeter.     | dict                 | 10+ Ne        | we Cap                                 | on it                   |  |  |
|                                | and             | we              | 201           | Ar U"         | 0                    | , 01          |                                        |                         |  |  |
|                                | 1.              |                 | V VALV        | 77            | Caps.                | 16/1          | open                                   |                         |  |  |
|                                | 1250            | n apo           | indoned       | 7+1           | ucturk.              |               |                                        |                         |  |  |
|                                |                 | 8               |               |               |                      |               |                                        |                         |  |  |
| )                              |                 | -               |               |               |                      |               | 300                                    |                         |  |  |

| GROU                            | NUVA            | ILIX OF    | ZIVII EE                   | OOLL          | LOTTON                |           |               | 1. 20                                 |  |
|---------------------------------|-----------------|------------|----------------------------|---------------|-----------------------|-----------|---------------|---------------------------------------|--|
| Well Name                       |                 | Vole       | Milly                      | vell          | Project Number        |           | 104822        |                                       |  |
| Date                            |                 | Aug 5      | 18                         |               | Client                |           | YG            | EMR                                   |  |
| Sampler                         | in the          | A          | SI                         |               | Project Name          |           | Ke            | etza                                  |  |
| Weather                         |                 | 160        | c. Ou                      | rest          |                       |           |               | , , , , , , , , , , , , , , , , , , , |  |
| Datalogger De<br>(download info |                 | TO I       | MA                         |               |                       |           | * *           |                                       |  |
| download into                   | 0, 0.0.)        | TEPELA     |                            | Monitoring We | ell Details           |           |               |                                       |  |
| Depth to Wate                   | er (m)          |            |                            |               | Well casing heig      | ht (magl) | 0             |                                       |  |
| Depth to Botto                  | om (m)          | -          |                            |               | Tubing Depth (m       | 1)        |               |                                       |  |
| Well Diamete                    | r               | 4          | Estimated Water Volume (L) |               |                       |           |               |                                       |  |
| Purge Method                    | Purge Method    |            | 0                          |               |                       | 3 353     |               | 37.2                                  |  |
|                                 | LIL SHE         | Weterlevel |                            | Field Rea     | dings<br>Conductivity |           |               | Appearance,                           |  |
| Time                            | Purge<br>Volume | (m)        | Temp ( <sup>0</sup> C)     | DO (mg/L)     | (µs/cm)               | pH        | Redox (mV)    | odour, etc.                           |  |
| 1885                            | 500             |            | 6.2                        | 5.20          | 582                   | 7.83      | -78.9         | 0                                     |  |
|                                 |                 |            |                            |               | 14<br>1525 - 14       |           | je.           |                                       |  |
|                                 |                 | -          | 251                        | -: "          |                       |           |               |                                       |  |
|                                 |                 |            |                            |               | 5-11                  |           |               |                                       |  |
|                                 |                 |            |                            |               |                       |           |               |                                       |  |
|                                 |                 |            |                            |               |                       |           |               |                                       |  |
|                                 |                 |            |                            |               |                       |           |               |                                       |  |
| Sample T                        | ime (24 hr)     | Sample     | : Method                   | Field Filter  | ed & Preserved        | C         | AQC Sample Co | ollected                              |  |
|                                 | 00              | Ana        |                            | Ve:           | s) No                 | Yes       | Name:         |                                       |  |
|                                 | es, Calculatio  | ons:       |                            |               | ,                     |           |               |                                       |  |
|                                 |                 | 14         | A Pro                      | m hos         | e O pom               | e Thack   | / - ×         |                                       |  |
|                                 |                 | 191        | 1                          | *             |                       | 1 -       |               |                                       |  |
|                                 |                 | 4.         | 101                        | 214           | nin Gefe              | ne San    | rple.         |                                       |  |
|                                 |                 | 4 %        | 1                          |               |                       |           |               |                                       |  |
|                                 |                 |            |                            |               |                       |           |               |                                       |  |
| ) .                             |                 |            |                            |               |                       |           |               |                                       |  |



| Well Name                    |                       | LIYE            | 08-1      | 7                | Project Number             |                                         | 10-           | 4822                    |
|------------------------------|-----------------------|-----------------|-----------|------------------|----------------------------|-----------------------------------------|---------------|-------------------------|
| Date                         |                       | Aug C           | -/21      | 191              | Client                     |                                         | YG            | EMR                     |
| Sampler                      |                       | 74/             | 9         | 4.6              | Project Name               |                                         | Ke            | etza                    |
| Weather                      |                       | 12/             | 16e       | Octras           | 1                          |                                         |               |                         |
| Datalogger [<br>(download in | Details<br>ifo, etc.) | 搜               | NIA       | Monitoring We    | 4. 1                       |                                         |               | Sa Televisia            |
| Depth to Wa                  | ter (m)               | 3.17            |           | vioritioning vvo | Well casing hei            | ght (magl)                              | 0.99          |                         |
| Depth to Bot                 | tom (m)               | 41.4            |           | 4 3 NO           | Tubing Depth (r            | n)                                      | - , Y         |                         |
| Well Diamete                 |                       | - 7             | 2"        |                  | Estimated Water Volume (L) |                                         |               |                         |
| Purge Metho                  | od                    | -43             | and the   | Field Read       |                            |                                         |               |                         |
| Time                         | Purge<br>Volume       | Water Level (m) | Temp (°C) | DO (mg/L)        | Conductivity (µs/cm)       | рН                                      | Redox (mV)    | Appearance, odour, etc. |
| 1100                         | 80                    |                 | 3.4       | 1.10             | 554.                       | 6.82                                    | -55.9         | 147,97                  |
|                              | l' s                  | . 2             | 1=1       |                  | V .                        |                                         | u ji e        | 10                      |
|                              |                       |                 |           |                  |                            |                                         | 7 +           |                         |
| 1 6                          |                       | 14              |           |                  | 1 1                        | * · · · · · · · · · · · · · · · · · · · | 5 14          |                         |
|                              |                       | 100             |           |                  | 3 18                       | *                                       |               |                         |
|                              | - it                  | *               |           |                  |                            | 1970                                    |               |                         |
|                              |                       |                 |           |                  |                            |                                         |               |                         |
| Sample 1                     | Time (24 hr)          | Sample          | Method    | Field Filtere    | ed & Preserved             | Q                                       | AQC Sample Co | llected                 |
| 1100                         | )                     | LOWF            | low       | Yes              | No                         | Ye <u>s</u>                             | lame:         |                         |
| General Not                  | es, Calculation       |                 |           |                  |                            | ,                                       |               |                         |
|                              |                       |                 |           | - ku             |                            | 1                                       |               |                         |
|                              |                       | noty            | - 801     | 2                | vell vlear                 | all.                                    |               | AL IN                   |
|                              |                       | ampled          | after     | (2 cha           | eged                       |                                         | , s , w a     |                         |
| A                            |                       |                 | 1.50      | 3 to PV          | · Cl                       | ,e***                                   |               |                         |
|                              |                       | A: 0.           | of L      | 3 70 1           | 0                          |                                         |               | 11                      |



| Well Name                                 | Mend Comp                 | Well           | Project Number       | 7 5 5         | 10             | C Sample Collected                     |  |  |  |
|-------------------------------------------|---------------------------|----------------|----------------------|---------------|----------------|----------------------------------------|--|--|--|
| Date                                      | Aug 5/2                   | 1              | Client               |               | YG             | EMR                                    |  |  |  |
| Sampler                                   | A America                 | / Suppose      | Project Name         |               | K              | YG EMR  Ketza  Appearance, odour, etc. |  |  |  |
| Weather                                   | 42 = 0                    | ) Wester       | 11                   | 100           |                |                                        |  |  |  |
| Datalogger Details<br>(download info_etc) | MA                        | Monitoring We  |                      |               |                | · ·                                    |  |  |  |
| Depth to Water (m)                        | NAME OF TAXABLE PARTY.    | Morntoning VVC | Well casing hei      | ght (magl)    | N              | Appearance, odour, etc.                |  |  |  |
| Depth to Bottom (m)                       | THE PERSON NAMED IN       |                | Tubing Depth (r      | n)            |                | 3.                                     |  |  |  |
| Well Diameter                             | 4                         |                |                      |               |                |                                        |  |  |  |
| Purge Method                              | Pump                      |                | Estimated Wate       | er Volume (L) |                |                                        |  |  |  |
|                                           |                           | Field Read     | dings                |               | 1 1 3          | L - T L T - W                          |  |  |  |
| Time Purge<br>Volume                      | Water Level (m) Temp (°C) | DO (mg/L)      | Conductivity (µs/cm) | рН            | Redox (mV)     |                                        |  |  |  |
| 60                                        | 29.5                      | 5.71           | 460                  | 7.46          | 72.6           | 0                                      |  |  |  |
|                                           | 1                         |                |                      |               | u .            |                                        |  |  |  |
| = 1                                       | FA.                       |                |                      | 5 ec          |                |                                        |  |  |  |
|                                           | 1 2 4                     |                |                      |               |                |                                        |  |  |  |
|                                           | V.                        |                |                      |               |                |                                        |  |  |  |
|                                           |                           |                |                      |               |                |                                        |  |  |  |
|                                           |                           | 12             | 0                    |               |                |                                        |  |  |  |
| Sample Time (24 hr)                       | Sample Method             | Field Filtere  | d & Preserved        | QA            | AQC Sample Col | lected                                 |  |  |  |
| 2020                                      | PUMP                      | Yes            | No                   | Yes Na        | ame:           |                                        |  |  |  |
| General Notes, Calculations               | S                         | Al A           |                      |               |                |                                        |  |  |  |
| a a                                       |                           | ý              | V.,                  | 20            | \$<br>)        | <b>≅</b>                               |  |  |  |
|                                           | 9                         |                |                      |               |                |                                        |  |  |  |



| Vell Name                   |                 | Pale.       | -12B                              |               | Project Number     |               | 10            | )4822                |  |  |  |
|-----------------------------|-----------------|-------------|-----------------------------------|---------------|--------------------|---------------|---------------|----------------------|--|--|--|
| ate                         |                 | Aug 3       | 3/21                              |               | Client             |               | YG            | EMR                  |  |  |  |
| Sampler                     |                 | 7-          | (A-                               |               | Project Name       |               | К             | 0.944<br>Appearance, |  |  |  |
| Veather                     |                 | 17:         | Sonne                             | (             | Rain               | · (ast        | 246 .         |                      |  |  |  |
| atalogger D<br>download inf |                 |             | NIA                               |               |                    | 1,000         |               |                      |  |  |  |
|                             |                 |             |                                   | Monitoring We | ell Details        | 100           |               | 10 X 15 11           |  |  |  |
| epth to Wat                 | 0.600           |             |                                   | M-            |                    |               |               |                      |  |  |  |
| epth to Botte               | om (m)          | 9.072       | 2                                 |               | Tubing Depth (r    | n)            |               |                      |  |  |  |
| Vell Diamete                | r               | 7"          |                                   |               | Estimated Wate     | er Volume (L) | · 0.1         | ,                    |  |  |  |
| urge Method                 | 1               | Bailer      | Estimated Water Volume (L) 0, 944 |               |                    | 4             |               |                      |  |  |  |
|                             | Purge           | Water Level |                                   | Field Read    | dings Conductivity |               |               | Annearance           |  |  |  |
| Time                        | Volume          | (m)         | Temp (°C)                         | DO (mg/L)     | (µs/cm)            | pН            |               | odour, etc.          |  |  |  |
| 1512                        | IL              |             | 6.6                               | 2.95          | 559                | 7.54          | 92.3          | 1.87                 |  |  |  |
| 1515                        | 2L              | ×           | 4.8                               | 3.30          | 566                | 7,58          | 67.7          | 4.29                 |  |  |  |
| 1518                        | 3L              |             | 4.4                               | 3.69          | 563                | 7.59          | 47.8          | 7.70                 |  |  |  |
| 7.                          | 1               | <u> </u>    | 1)7                               |               |                    |               |               |                      |  |  |  |
|                             | 9               |             |                                   |               |                    |               |               |                      |  |  |  |
|                             |                 |             |                                   | -             |                    | -             |               | ×                    |  |  |  |
|                             |                 |             |                                   |               |                    |               |               |                      |  |  |  |
| Sample Ti                   | me (24 hr)      | Sample      | Method                            | Field Filtere | ed & Preserved     | Q.F           | AQC Sample Co | llected              |  |  |  |
| 152                         | D               | Bailer      |                                   | Yes           | No                 | (Yes ) N      | ame: P96-1    | 12.D                 |  |  |  |
|                             | s, Calculations | s:          |                                   |               | 18.                |               |               |                      |  |  |  |
|                             |                 | 8.60        |                                   |               |                    | ()            | uplicate      | Ac west              |  |  |  |
|                             |                 | 9.0         | f2<br>——                          |               |                    |               |               |                      |  |  |  |
|                             |                 | 0.4         | 72                                | x2 =1         | 0.444              | X 3           | = 2.8         | 32 L Progr           |  |  |  |
|                             | Q               | VC 0        | 00 54                             | idring        | 960UL M            | 1/-1          |               | Tuege                |  |  |  |
|                             | \               |             | , (C ),                           |               | 101                | the Ca        | Sing          |                      |  |  |  |



| Well Name                    |                               | GT-         | 10-66     | A             | Project Number       |               | 104            | 4822                                         |  |  |
|------------------------------|-------------------------------|-------------|-----------|---------------|----------------------|---------------|----------------|----------------------------------------------|--|--|
| Date                         | 3, 3,27                       | Aun         | 5/21      |               | Client               |               | YG             | EMR                                          |  |  |
| Sampler                      | "( 8" X - V                   | JE          | 100       |               | Project Name         | All property  | Ke             | etza                                         |  |  |
| Weather                      | 1 1 1 5                       | 150         | , oulcel  | <del>l</del>  |                      |               |                |                                              |  |  |
| Datalogger D<br>(download in |                               | NI          | A         | Monitoring We | ell Details          |               |                | 7 7 7 1 1 1                                  |  |  |
| Depth to Wa                  | ter (m)                       | 39          | .650      |               | Well casing hei      | ght (magl)    | 1.08           |                                              |  |  |
| Depth to Bot                 | tom (m)                       | (4          | 3.54      |               | Tubing Depth (i      | m)            |                |                                              |  |  |
|                              | Well Diameter<br>Purge Method |             | FRE       |               | Estimated Wate       | er Volume (L) |                | Redox (mV) Appearance odour, etc. 41, 0 48.6 |  |  |
| Purge Metho                  |                               |             | (         | Field Read    |                      |               |                |                                              |  |  |
| Time                         | Purge<br>Volume               | Water Level | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm) | рН            | Redox (mV)     | Appearance, odour, etc.                      |  |  |
| 1(:44                        |                               |             | 6.8       | 7.36          | (१११                 | 12.19         | -41.0          | 4                                            |  |  |
| )                            |                               |             |           | ж             |                      |               |                |                                              |  |  |
| 2                            |                               | 27          | *         |               |                      |               |                |                                              |  |  |
|                              |                               |             |           |               |                      |               |                |                                              |  |  |
| -                            | 1                             |             |           |               |                      |               |                |                                              |  |  |
|                              |                               |             | 2         |               |                      |               |                |                                              |  |  |
| Sample T                     | ime (24 hr)                   | Sample      | Method    | Field Filtere | d & Preserved        | Q             | AQC Sample Col | llected                                      |  |  |
| )1./ (                       | 50                            | Bailer      |           | )(e)s         | No                   | Yes N         | ame:           | -                                            |  |  |
|                              | es, Calculation               | is: M       | 1         |               |                      |               |                |                                              |  |  |
|                              | Only                          | 1/4         | of las    | 40 1          | 2025/                |               | 11111          | 2                                            |  |  |
| 1                            | 11/0/1                        | -1-1        | 191       | se g          | erus i               | soule f       | Net octa       | -(                                           |  |  |
|                              | ,,,,,                         | Vent dry    | Wif       | dr            | echarge.             |               |                |                                              |  |  |
|                              |                               |             |           |               |                      |               | a F 100        |                                              |  |  |
| )                            |                               |             |           |               |                      |               |                |                                              |  |  |



| Well Name                     |               | HYD-C       | 8-08      | )             | Project Numbe                  |               | 10            | 104822 YG EMR  Ketza                                   |  |  |  |
|-------------------------------|---------------|-------------|-----------|---------------|--------------------------------|---------------|---------------|--------------------------------------------------------|--|--|--|
| Date                          |               | Auc 31      | 121       |               | Client                         |               | YG            | EMR                                                    |  |  |  |
| Sampler                       |               | TE          | /A        | 4             | Project Name                   |               | K             | etza                                                   |  |  |  |
| Weather                       |               | Hº.         | NJOSCO    | 12            |                                |               |               |                                                        |  |  |  |
| Datalogger D<br>(download inf |               |             | NIA       |               |                                |               |               | 9                                                      |  |  |  |
| Depth to Wat                  | er (m)        | . Q12       | 18        | Monitoring We | ell Details<br>Well casing hei | aht (maal)    | Law           | YG EMR  Ketza  (mV) Appearance, odour, etc.  7 -2-95 0 |  |  |  |
| Depth to Botte                | om (m)        |             |           | -             | Tubing Depth (i                |               | 1,410         | )                                                      |  |  |  |
| Well Diamete                  | 104, 375      |             |           |               |                                |               |               |                                                        |  |  |  |
|                               |               |             | ¥         |               | Estimated Wate                 | er Volume (L) |               |                                                        |  |  |  |
| Purge Method                  |               | Hydros      | (eve      | Field Read    | No ac                          |               | odour, etc.   |                                                        |  |  |  |
| Time                          | Purge         | Water Level | Temp (°C) | DO (mg/L)     | Conductivity                   | рН            | Redox (mV)    |                                                        |  |  |  |
| 12:36                         | Volume<br>2)  | (m)         | 5.5       | 學3.32         | (µs/cm)                        | 6.02          |               | odour, etc.                                            |  |  |  |
|                               | 7             | 1           | 34 5      | 10.3172       | 070                            | 0.2           | 115,T         | 200                                                    |  |  |  |
| )                             |               |             |           |               |                                | 2             |               |                                                        |  |  |  |
|                               |               |             | 0         |               |                                |               |               |                                                        |  |  |  |
| 37 = =                        |               |             |           | * T           |                                |               |               | - E                                                    |  |  |  |
|                               | 7             |             | -         |               |                                | · ·           |               | × ~                                                    |  |  |  |
| - 4                           |               |             | - 14      | 2             |                                |               | 2             |                                                        |  |  |  |
| Sample Tii                    | me (24 hr)    | Sample      | Method    | Field Filtere | d & Preserved                  | 0.0           | ACC Cample Co | Vocate d                                               |  |  |  |
|                               |               |             |           | Yes           |                                |               |               | liected                                                |  |  |  |
| \325<br>General Notes         |               | Hydrosla    | Je        | Yes           | No                             | Yes N         | ame:          | ->-                                                    |  |  |  |
| 4                             | , calculation | Dela        | odor.     | n water       | 1'R                            | i 'y lei      | 1 color.      |                                                        |  |  |  |
| )                             | We'           |             |           | er to 1       | Loose                          | in gro        | ind, co       | acked                                                  |  |  |  |



| Depth to Water (m)  Depth to Bottom (m)  Nell Diameter  Datalogger Details  NA  B. 8666  15.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring We                       | ell Details<br>Well casing he<br>Tubing Depth (<br>Estimated Wat                                        | m) er Volume (L)  pH 7. 46 7.39             | 13.447  Redox (mV)  100.6     | Appearance, odour, etc. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|-------------------------|
| Veather  Depth to Water (m)  Depth to Bottom (m)  Vell Diameter  Purge Method  Purge Volume  15.597  Time  Purge Volume  16.20  17.20  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.8666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.86666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.8666666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.866666  18.8666666  18.8666666  18.8666666  18.8666666  18.8666666  18.866666666  18.86666666666 | Field Read  DO (mg/L)  3-05         | Rein (a)  ell Details  Well casing he  Tubing Depth (  Estimated Wate  dings  Conductivity (µs/cm)  519 | ight (magl) m) er Volume (L)  pH 7. 46 7.39 | 1.220<br>13.442<br>Redox (mV) | Appearance, odour, etc. |
| Depth to Water (m) Depth to Water (m) Depth to Bottom (m)  Vell Diameter  Purge Method  Purge Water Level (m)  Time Purge (m)  Purge (m)  Temp (°C)  1012 13L 4.4  10120 26L 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field Read  DO (mg/L)  3-05         | Well casing he Tubing Depth ( Estimated Wate  dings  Conductivity (µs/cm)  519                          | ight (magl) m) er Volume (L)  pH 7. 46 7.39 | 1,220<br>13.447<br>Redox (mV) | Appearance, odour, etc. |
| Depth to Water (m) Depth to Water (m) Depth to Bottom (m)  Vell Diameter  Purge Method  Purge Water Level (m)  Time Purge (m)  Purge (m)  Temp (°C)  10,20 202 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field Read  DO (mg/L)  3-05         | Well casing he Tubing Depth ( Estimated Wate  dings  Conductivity (µs/cm)  519                          | m) er Volume (L)  pH 7. 46 7.39             | 13.447  Redox (mV)  120.6     | Appearance, odour, etc. |
| Depth to Bottom (m)  15.597  Nell Diameter  Purge Method  Purge Water Level (m)  10,20 20L  3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Read<br>C) DO (mg/L)<br>3-0 5 | Well casing he Tubing Depth ( Estimated Wate dings Conductivity (µs/cm) 519                             | m) er Volume (L)  pH 7. 46 7.39             | 13.447  Redox (mV)  120.6     | Appearance, odour, etc. |
| Depth to Bottom (m)  15.597  Vell Diameter  Purge Method  Purge Water Level (m)  10.20 202 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-05<br>2,55                        | Tubing Depth ( Estimated Water  dings  Conductivity (µs/cm)  519                                        | m) er Volume (L)  pH 7. 46 7.39             | 13.447  Redox (mV)  120.6     | Appearance, odour, etc. |
| Veil Diameter  Purge Method  Purge Water Level (m)  Time Purge (%C)  1012 13L 4.4  10120 26L 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-05<br>2,55                        | Estimated Water dings  Conductivity (µs/cm)  519                                                        | pH 7. 46 7.39                               | Redox (mV)                    | Appearance, odour, etc. |
| Purge Method    Purge   Water Level   Temp (°C   10/20   26L   3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-05<br>2,55                        | Conductivity (µs/cm) 519                                                                                | рн<br>7. 46<br>7.39                         | Redox (mV)                    | Appearance, odour, etc. |
| Time Purge Volume (m) Temp (°C 10.7.20 20.4.4 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3-05<br>2,55                        | Conductivity (µs/cm) 519                                                                                | рн<br>7. 46<br>7.39                         | Redox (mV)                    | Appearance, odour, etc. |
| Time Purge Volume (m) Temp (°C 10.7.20 206 / 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-05<br>2,55                        | Conductivity (µs/cm) 519 516                                                                            | 7.46<br>7.39                                | 120.6                         | odour, etc.             |
| Volume (m) Temp (°C 1012 13L 4.4 1012 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.05                                | (µs/cm)<br>519<br>516                                                                                   | 7.46<br>7.39                                | 120.6                         | odour, etc.             |
| 10:20 266 / 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,55                                | 516                                                                                                     | 7.39                                        | 119.1                         |                         |
| 10:20 266 / 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | 516                                                                                                     | 7.31                                        | 119.1                         | 35.6/                   |
| 10:33 39 4 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.07                                | 114                                                                                                     | -                                           |                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                         | 7.48                                        | 124.3                         | 93,13                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | -21.1                                                                                                   | . 10                                        |                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                         |                                             |                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                         | Ψ.                                          | · ·                           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                         | -                                           | Jan 1918                      |                         |
| County Time (24 h.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                         |                                             |                               |                         |
| Sample Time (24 hr) Sample Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | ed & Preserved                                                                                          |                                             | AQC Sample Co                 | llected                 |
| General Notes, Calculations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Yes)                               | No                                                                                                      | Yes_N                                       | lame:                         | THE                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                         |                                             | 2                             | 10                      |
| 8.866<br>15.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                         |                                             | 100                           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 11                               |                                                                                                         |                                             |                               |                         |
| 6.731 X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4                                | 62 X                                                                                                    | 3 40                                        | .386L1                        | weeks purged            |
| Puc Sticks at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | have said                           | 2000                                                                                                    | u.                                          | reach.                        |                         |



| Well Name                    |                    | BH-10                             | -DIB      |               | Project Number        |              | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1822        |
|------------------------------|--------------------|-----------------------------------|-----------|---------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Date                         |                    |                                   | 3/21      |               | Client                |              | YG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EMR         |
| Sampler                      |                    | A= 1                              | (JI       |               | Project Name          |              | Ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etza        |
| Weather                      |                    | 176                               | CUMAN     |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Datalogger De (download info | etails<br>o, etc ) | 7                                 | NA        |               |                       |              | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                              |                    |                                   | 1         | Monitoring We |                       | 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Depth to Wate                |                    | ry                                |           |               | Well casing heig      |              | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Depth to Botto               | om (m)             | 3.39                              |           |               | Tubing Depth (m       | 1)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Well Diameter                | · L.V.             | t "                               |           |               | Estimated Water       | · Volume (L) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Purge Method                 | 1 1                |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              | Purge              | Water Level                       |           | Field Read    | lings<br>Conductivity |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Appearance, |
| Time                         | Volume             | (m)                               | Temp (°C) | DO (mg/L)     | (µs/cm)               | pН           | Redox (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | odour, etc. |
|                              |                    | The last and the second districts |           |               | a                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| .8                           |                    |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              | 1                  |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              | V.                 |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              | v                  |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K.          |
|                              |                    |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                    |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Sample Ti                    | me (24 hr)         | Sample                            | Method    | Field Filtere | d & Preserved         |              | QAQC Sample Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | llected     |
|                              |                    |                                   |           | Yes           | No                    |              | Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | () S (80)   |
| 1710<br>General Note         | s, Calculations    | s:                                |           | 19152         | 100000                | (NSE(N) )    | YOTH NEW YORK OF THE PARTY OF T |             |
|                              |                    | dry. 1                            | Jo Farn   | 00            |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              | Voc                |                                   |           | P.C.          |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                    |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                    |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                    |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                              |                    |                                   |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| )                            |                    | 141                               |           |               |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |



| Vell Name                   |                      | RH-10              | -01A      |               | Project Number       |               | 10-           | 4822        |
|-----------------------------|----------------------|--------------------|-----------|---------------|----------------------|---------------|---------------|-------------|
| Date                        |                      | Aug '              | 3/21      |               | Client               |               | YG            | EMR         |
| Sampler                     |                      | TI /               | 4         |               | Project Name         |               | K             | etza        |
| Weather                     |                      | 17%                | Sunni     | /             |                      |               |               | *           |
| Datalogger D<br>download in |                      | 1.77               | NIA       |               |                      |               |               |             |
|                             | 1 1 1                |                    | E-1-191   | Monitoring We |                      |               |               | era PSEATE  |
| Depth to Wat                | er (m)               | 10.98              | 5         |               | Well casing heigh    | ght (magl)    | 0.94          |             |
| Depth to Bott               | om (m)               | 11.59              | 2         |               | Tubing Depth (r      | n)            |               |             |
| Well Diamete                | er                   | 2                  | υ<br>-    |               | Estimated Wate       | or Volume (L) |               | ,           |
| Purge Metho                 | d                    | B5.60              |           | Z             | Estimated vvale      | i volume (E)  | 1.214         | 1           |
| 1000                        | P. C.                |                    |           | Field Read    |                      |               |               | Appearance; |
| Time                        | Purge<br>Volume      | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm) | рН            | Redox (mV)    | odour, etc. |
| 1713                        | 1.2                  |                    | Ce.1      | 7.45          | 714                  | 7,43          | 64.2          | 710         |
| 1715                        | 2.4                  |                    | 4.3       | 7,60          | 703                  | 7.35          | 68.9          | 091         |
| 1717                        | 3.6                  |                    | 5.5       | 6,47          | 686                  | 7.30          | 72.3          | 784         |
| 91                          | * v :                |                    |           |               |                      |               |               |             |
|                             |                      | . · · · · · ·      |           |               |                      |               |               |             |
| E .                         | 1.                   |                    | _         |               |                      |               | N &           |             |
|                             |                      |                    |           |               |                      |               | 7             |             |
| Sample T                    | ime (24 hr)          | Sample             | Method    | Field Filtere | ed & Preserved       | Q             | AQC Sample Co | llected     |
| 100                         |                      |                    | Medica    | Ves           | No                   |               | lame:         |             |
| General Note                | )<br>es, Calculation | Bailes<br>1s:      |           | l es          | ) 140                | 160           | iaino.        |             |
|                             |                      |                    |           |               |                      |               |               |             |
|                             |                      | 10.985             |           | 9             |                      | *             |               |             |
|                             |                      | 0.00               |           | 1 7           | 214 ×                | 7 3.          | 642 to        | purge       |
|                             |                      | 0.607              | XZ        | ; 1. 2        | X                    | )             |               | V           |
|                             | Qu                   | 0000               | Class     |               | 1 1                  |               |               |             |
|                             | 100                  | Libral             | 24-CKZ    | 96006         | Melal                | casing.       | (8)           |             |
|                             | Nell                 | Stindu             |           |               |                      |               |               |             |



| GROO                           | NOTTA           |                    |           |               |                      |               |               |                         |
|--------------------------------|-----------------|--------------------|-----------|---------------|----------------------|---------------|---------------|-------------------------|
| Well Name                      |                 | BH-10              | 05        |               | Project Number       |               | 104           | 1822                    |
| Date                           |                 | Α.                 | 5/21      |               | Client               | " The S       | YG            | EMR                     |
| Sampler                        |                 | 7                  | I Ar      |               | Project Name         |               | Ke            | etza                    |
| Weather                        |                 | 170                | . Sur     | 14            |                      |               |               |                         |
| Datalogger De<br>(download inf |                 |                    | ( \)      | A'            |                      | 9             |               |                         |
| (                              |                 | NEW YORK           |           | Monitoring We | II Details           | 1-1 - 5-      | S - Hug       | 71 2 1 2 1 1 2 1 1 1    |
| Depth to Wate                  | er (m)          | 4.41               | ø5        |               | Well casing hei      | ght (magl)    | 0.7           | 53                      |
| Depth to Botto                 | om (m)          | 9.48               | ,2        |               | Tubing Depth (r      | m)            |               |                         |
| Well Diamete                   | r               | 7"                 |           |               | Estimated Wate       | or Volume (L) | (1)           | 201                     |
| Purge Method                   | d William       | Hydro              | (: f1     |               | Estimated Water      | or volume (L) | 10            | .034                    |
|                                |                 |                    |           | Field Read    | dings                |               |               |                         |
| Time                           | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm) | рН            | Redox (mV)    | Appearance, odour, etc. |
| 1960                           | (0              |                    | 3.1       | 5.40          | 476                  | 7.60          | 30.3          | 457.0                   |
| 1903                           | 220             |                    | 2.5       | 7.40          | 451                  | 759           | 91.0          | 484.0                   |
| 1906                           | 30              |                    | 2.4       | 7.35          | 944                  | 7.49          | 46.9          | 618.0                   |
|                                | -               |                    |           |               |                      |               |               |                         |
|                                |                 |                    |           |               | - 11                 |               |               |                         |
|                                |                 |                    | 8         |               |                      |               |               |                         |
|                                |                 |                    |           |               |                      | 14            |               |                         |
| Sample T                       | ime (24 hr)     | Sample             | Method    | Field Filtere | ed & Preserved       | Q             | AQC Sample Co | llected                 |
| 19:19                          | 5               | Lyclo              | 1:A.      | (es           | <b>)</b> No          | -¥es N        | ame:          |                         |
| General Note                   | es, Calculation | 15.                |           |               |                      |               |               |                         |
|                                | 4.              | 465                |           |               |                      |               |               |                         |
|                                | d               | 482                |           |               |                      |               |               |                         |
|                                |                 |                    |           |               |                      |               |               |                         |
|                                | 5               | .017               | x2        | : 10.0        | osy x                | 3 : 30        | 0.102         |                         |
|                                | . 1             |                    | A         | 4             | 1.                   |               |               |                         |
| 1                              | W               | ell in             | E) 000 (3 | cano          | litien               |               |               | >                       |
| 1                              |                 |                    | •         | 4             |                      |               |               |                         |



| GROL                         | INDWA           | ATER S             | AMPLE                  | COLL          | ECTION               | SHEE          | :T                 |                         |
|------------------------------|-----------------|--------------------|------------------------|---------------|----------------------|---------------|--------------------|-------------------------|
| Well Name                    |                 | BH10-              | 02                     |               | Project Numbe        | r - 10        | 10                 | 14822                   |
| Date                         |                 | Au 3/22            |                        |               | Client               | The Late      | YG                 | EMR                     |
| Sampler                      | 13.00           | A                  | -1                     |               | Project Name         |               | К                  | etza                    |
| Weather                      |                 | 176,               | Sunau                  |               |                      |               |                    |                         |
| Datalogger [<br>(download in |                 | Nol                | - (                    | Monded        |                      |               | 71                 |                         |
| COMMODITION OF               | 110, 010.)      | 100,               |                        | Monitoring VV | ell Details          | 17 KE         |                    |                         |
| Depth to Wa                  | ter (m)         | 5.39               | 5                      |               | Well casing he       | ight (magl)   | 0.88               | 5                       |
| Depth to Bot                 | tom (m)         | 14.0               | 52                     |               | Tubing Depth (       | m)            |                    |                         |
| Well Diamete                 | er              | z"                 |                        |               |                      |               | 40 1 1             |                         |
| Purge Metho                  | od .            | Grant Land         | Hydr                   | <b>.</b>      | Estimated Wate       | er Volume (L) | 19.11              | 1                       |
|                              | 1 1             | ESING              | 11 700                 | Field Read    | dings                |               | 1277               | 5-11 L                  |
| Time                         | Purge<br>Volume | Water Level<br>(m) | Temp ( <sup>0</sup> C) | DO (mg/L)     | Conductivity (µs/cm) | pH            | Redox (mV)         | Appearance, odour, etc. |
|                              | 19              |                    | 3.8                    | 3.65          | 489                  | 7.81          | -108               | 35.67                   |
|                              | 38              |                    | 2.8                    | 2.96          | 492                  | 7.71          | -104.9             | 47.71                   |
|                              | 57              |                    | 2.6                    | 2.53          | 493                  | 7.70          | -101.5             |                         |
|                              | 2               |                    |                        |               | ,                    | ,,,,          |                    |                         |
|                              |                 |                    | _                      |               |                      |               |                    |                         |
|                              |                 |                    |                        |               |                      |               |                    |                         |
|                              |                 |                    |                        |               |                      |               |                    |                         |
| Sample T                     | ime (24 hr)     | Sample             | Method                 | Field Filtere | ed & Preserved       | Q             | AQC Sample Co      | llected                 |
| .0                           |                 | II lost            | M                      | (es           |                      |               | lame: <b>BH-10</b> |                         |
| 18:15<br>General Note        | es, Calculation | HYAIOI.            | ++                     |               |                      |               |                    | -000                    |
|                              |                 | 5.395              |                        |               |                      | (1            | 242 }              | o ourde                 |
|                              | \               | 4.952              |                        | 0 19          | .114 ×               | Dr.           | ,                  | ( )                     |
|                              | -/              | 9.50               | of X                   | -             |                      |               |                    |                         |
|                              | > 0             |                    |                        |               |                      |               |                    | ×                       |
|                              |                 |                    |                        |               |                      |               |                    |                         |
|                              |                 |                    |                        |               |                      |               |                    |                         |



| Vell Diameter  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vell Name      |            | P90-9   | 8;                  |               | Project Number  |               | 104           | 1822                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|---------|---------------------|---------------|-----------------|---------------|---------------|---------------------|
| Vealiner  ITY Survey  Nationager Details  N/A  Monitoring Well Details  Well casing height (magl)  Depth to Water (m)  8.185  Well casing height (magl)  Tubing Depth (m)  Vell Diameter  11''  Estimated Water Volume (L)  Purge Mater Level (m)  Field Readings  Time Purge Water Level (m)  Temp (°C) DO (mg/L) Conductivity pH Redox (mv) Appearance odour, etc.  NoT IL 9.6 7.47 -139.1 360  NoT IL 9.6 7.49 -140.6 380  NOT IL 9.6 7.49 509 7.49 -142.7 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate            | Shirte     | Aug 3/1 | 21                  |               | Client          |               | YG            | EMR                 |
| Depth to Water (m)   B.185   Well casing height (magl)   Depth to Bottom (m)   B. (a   B   Tubing Depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampler        | H-WCZ      | TI/     | 1                   | £.            | Project Name    |               | Ke            | etza                |
| Monitoring Well Details  Depth to Water (m)  8.185 Well casing height (magl) Depth to Bottom (m)  8.168 Tubing Depth (m)  Well casing height (magl)  Depth to Bottom (m)  8.168 Tubing Depth (m)  Estimated Water Volume (L)  Purge Method  Field Readings  Fi | Veather        |            | 174 S   | jong.               |               | Rain La         | st 29L        | -             |                     |
| Depth to Water (m)  8.185  Well casing height (magl)  Depth to Bottom (m)  8.608  Tubing Depth (m)  Purge Method  Becaler  Field Readings  Time Purge Volume (m)  Purge Water Level (m)  Temp (°C)  1406  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  1407  14 |                |            | N/s     | 4                   |               | r.              |               |               |                     |
| Depth to Bottom (m)    B   6   B     Tubing Depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000           |            |         |                     | Monitoring We |                 |               |               | le garge of the say |
| Nell Diameter   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth to Wate  | er (m)     | 8.185   |                     |               |                 |               | 0             |                     |
| Purge   Water Level   Temp (°C)   DO (mg/L)   Conductivity   pH   Redox (mV)   Appearance   Ap   | Depth to Botto | om (m)     | 8.618   | 3                   |               | Tubing Depth (r | n)            |               |                     |
| Purge   Water Level   Temp (°C)   DO (mg/L)   Conductivity   pH   Redox (mV)   Appearance   Redox (mV)   Appearance   Redox (mV)   Appearance   Redox (mV)   Redox (mV)   Redox (mV)   Appearance   Re   | Well Diametei  |            | -       |                     |               | Estimated Wate  | er Volume (L) | 0.866         | 26                  |
| Field Readings           Time         Purge Volume         Water Level (m)         Temp (°C)         DO (mg/L)         Conductivity (μs/cm)         pH         Redox (mV)         Appearance octour, etc.           Ileole         0.5 L         9.2         7.47         505         7.47         -139.1         360           Ileo7         1 L         9.6         7.40         500         7.47         -140.6         380           Ileo4         2 L         9.6         2.48         509         7.49         -142.7         386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purge Method   | i .        | Baile   | - =                 |               |                 |               |               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time           |            |         | Temp (°C)           |               | Conductivity    | pН            | Redox (mV)    | Appearance,         |
| 1607 1L 9.6 2.40 500 7.47 -140.6 380<br>1609 ZL 9.6 2.48 509 7.49 -142.7 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1606           |            | (11)    | 9.2                 | 2.47          |                 | 7.47          | -139.1        |                     |
| 1609 ZL 9.6 2.48 509 7.49 -142.7 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102            | 16         |         |                     | 2.40          |                 |               |               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ZL         | -       | 0                   |               | 509             | 7.49          | -142.7        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |         |                     |               |                 |               |               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            | ¥.      |                     |               |                 |               |               | -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            | *       | = 1/                |               | - 4             |               |               |                     |
| Sample Time (24 hr) Sample Method Field Filtered & Preserved QAQC Sample Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |            |         |                     |               | ev*             |               |               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Ti      | me (24 hr) | Sample  | Method              | Field Filtere | ed & Preserved  | Q,            | AQC Sample Co | llected             |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nelo           | 114        |         |                     | Yes           | · No            | ⇔Yès₀ N       | ame:          | + 1 -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |            | 8.618   |                     | 0,21          | 10 2 2          | - 2           | 598LP         | ila 6               |
| 8.185<br>8.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |            | 0.433   | 16 11 S             |               | 15.1            |               | 1. 60 a       | Au.                 |
| 8.618<br>0.433 x2 : 0.816 x3 = 25986 pure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mo-            | hrong o    | proken  | "Death Si<br>at gra | ned level     | Mell 13         | es not        | to be a       |                     |
| Strong odor > "Death Smed!". Well is broken to be a flich mount of broken at grand level and was not covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | suff;          | well.      | Mal is  | in a                | deppress      | iun. Roa        | d wolf        | going di      | creetly into        |



| ate<br>ampler                 |                 | 1                  |           |               |                      |              | 4             |                         |
|-------------------------------|-----------------|--------------------|-----------|---------------|----------------------|--------------|---------------|-------------------------|
| ampler                        |                 | 1/20 5             | n         |               | Client               |              | YG            | EMR                     |
|                               |                 | TI /A              | -         |               | Project Name         |              | К             | etza                    |
| eather                        |                 | 14'01              | overcust  | ,             |                      |              |               |                         |
| atalogger Det<br>ownload info |                 | *                  | NIF       | t             |                      |              | <b>a a</b>    |                         |
| te start                      | No. of          | Mary John          |           | Monitoring We | ll Details           |              |               |                         |
| epth to Water                 | r (m)           | 2.28               | 1         |               | Well casing heig     | jht (magl)   | 1.40          |                         |
| epth to Bottor                | m (m)           | 6.46               |           |               | Tubing Depth (n      | n)           |               |                         |
| ell Diameter                  |                 | ("                 |           |               | Estimated Wate       | r Voluma (L) | X             | c =                     |
| urge Method                   |                 | Lberl              | Flow      |               | Estimated vvale      | r volume (L) |               |                         |
|                               |                 |                    |           | Field Read    |                      |              | وكارواك       | HOE!                    |
| Time                          | Purge<br>Volume | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm) | рН           | Redox (mV)    | Appearance, adour, etc. |
| 1950                          | 500ml           | 3.235              | 6.3       | 1.19          | £ 521                | 7.70         | -21.5         | 68.28                   |
| 0951                          |                 | 3.25Ce             | 7.2       | 0.55          | 525                  | 7.17         | -30.8         | 68.40                   |
| 0956                          | 1400m1          | 3.255              | 7.6       | 0.37          | 529                  | 7.17         | -34.6         | 62.00                   |
|                               | = W             | ÷1                 |           |               |                      |              |               |                         |
|                               |                 |                    |           |               |                      |              |               |                         |
|                               |                 | l ki               |           |               |                      |              |               |                         |
|                               |                 |                    |           |               | ×                    |              |               |                         |
| Sample Tim                    | ie (24 hr)      | Sample             | Method    | Field Filtere | d & Preserved        | Q.           | AQC Sample Co | llected                 |
| 1000                          |                 | 1001               | From      | Yes           | No                   | Yes N        | ame           |                         |
| eneral Notes,                 | Calculations    |                    | 1.3       |               |                      |              |               |                         |
|                               | 2               | No ca              | 6 justa   | Ked on        | well.                | Mehl         | casing fell   | over.                   |
|                               |                 | Puc st             | 944:19    | مرامه         | N.                   |              | ,             |                         |
|                               | 41              | 100 5              | , ,       | Mance         |                      |              |               |                         |



| Vell Name                      |                       | HYD                | -08-1     | IA            | Project Number       |               | 10            | 4822                      |
|--------------------------------|-----------------------|--------------------|-----------|---------------|----------------------|---------------|---------------|---------------------------|
| Date                           |                       | Aug                | 5/21      |               | Client               |               | YG            | EMR                       |
| Sampler                        |                       | 20                 | AT        |               | Project Name         |               | К             | etza                      |
| Veather                        |                       | 116                | Merca     | 4             |                      |               |               |                           |
| Datalogger De<br>download infe |                       | 100                |           | * 4           | V                    |               |               |                           |
|                                | 95.00                 |                    | e MR BY   | Monitoring We | II Details           | 100           | 15 79 1977    |                           |
| epth to Wate                   | er (m)                | 12.6               | 45        |               | Well casing hei      | ght (magi)    | a t           |                           |
| epth to Botto                  | om (m)                | 37                 | 2.130     | ,             | Tubing Depth (r      | n)            |               |                           |
| Vell Diameter                  |                       | 2"                 |           |               |                      |               | 740           | ·                         |
| ourge Method                   | 1                     | West               | ea /h     | varol: A      | Estimated Wate       | er Volume (L) | 38.9          | t                         |
|                                |                       |                    | A TO HAIL | Field Read    |                      |               |               |                           |
| Time                           | Purge<br>Volume       | Water Level<br>(m) | Temp (°C) | DO (mg/L)     | Conductivity (µs/cm) | рН            | Redox (mV)    | Appearance<br>odour, etc. |
| 1415                           | 38L                   | w                  | 3.7       | 7.30          | 419                  | 3.81          | 457.6         | 25.05                     |
| 1423                           | 76L                   |                    | 3.4       | 7.63          | 414                  | 3.75          | 469.3         | 23.20                     |
| 1435                           | 1161                  |                    | 3.7       | 7.59          | 491                  | 3.74          | 474.9         | 114.85                    |
|                                | -                     | 4                  |           |               |                      | ×             |               |                           |
| 17)                            |                       |                    |           |               |                      |               |               |                           |
|                                | -                     |                    |           |               |                      |               |               |                           |
|                                | * *                   |                    | -+1       | E             |                      |               |               |                           |
| Sample Tir                     | me (24 hr)            | Sample             | Method    | Field Filtere | d & Preserved        | Q.A           | AQC Sample Co | llected                   |
| 144                            | 12                    | Water              |           | <b>Res</b>    | No                   | Yes N         | ame:          | _                         |
|                                | ( )<br>s, Calculation |                    |           |               |                      |               |               |                           |
|                                | 4                     |                    | _         |               |                      |               |               | 10 T                      |
| <b>X</b>                       |                       | 32.130             |           |               | 2.                   |               |               |                           |
|                                |                       |                    | 11        | -             | 799                  | 9 47          | 1/69          | P                         |
|                                |                       | 19:1               | 10)       | XL            | 30.1                 | ' /)          | 1.0.1         |                           |
|                                | E 1                   | vell in-           | door      | randi         | 38.9<br>fin          | ,             |               |                           |
|                                | > n * (/              | VCL //             | good      | (00,100)      |                      | 20.           |               |                           |



# Hemm 'a

| 100                                  |
|--------------------------------------|
| -17                                  |
| - 11                                 |
| #                                    |
| 1                                    |
| U.                                   |
| 7                                    |
| 7                                    |
| $\underline{}$                       |
|                                      |
| C                                    |
| Ш                                    |
|                                      |
|                                      |
| URFACE WATER SAMPLE COLLECTION SHEET |
| $\mathcal{L}$                        |
| O                                    |
| ш                                    |
|                                      |
| $\overline{a}$                       |
| E                                    |
|                                      |
| <b>Q</b>                             |
| S                                    |
| ~                                    |
| ***                                  |
| ш                                    |
| 5                                    |
| 3                                    |
| 3                                    |
|                                      |
| щ                                    |
| U                                    |
| 1                                    |
| 4                                    |
| <b>Y</b>                             |
|                                      |
|                                      |

| Site Name               | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                        |                                                             |                                        |          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-------------------------------------------------------------|----------------------------------------|----------|
|                         | Netza KKIG Project Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104822-01              | Site Name              | Ketza KP                                                    | Ketza KPIS Project Number              | 104822-0 |
| Uate                    | Asy 5/21 Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YG EMR                 | Date                   | Die 6/71                                                    |                                        | 0 V      |
| Sampler                 | ST /A Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ketza                  | 1<br>2<br>0<br>7       | 11000                                                       |                                        | ים בושא  |
| Geographic              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 0.00 miles             | 31/187                                                      | Project Name                           | Ketza    |
| Weather.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Coordinates            |                                                             |                                        |          |
| Field Parameters (note) | Fed Parameters (note units if office in the contract of the co | Q.                     | Westher                | 13, oxecat                                                  |                                        |          |
| Water Doneh (m)         | TOPING STORY TO SEE STORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | Fleid Parameters (note | Fleid Parameters (note units if different man those stated) | (pa                                    |          |
| maret Ceptul (m)        | 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Water Depth (m)        | 2                                                           |                                        |          |
| Temperature (°C)        | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Temperature (°C)       | 2:0                                                         |                                        |          |
| DO (mg/L)               | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                      | DO (ma/L)              |                                                             |                                        |          |
| Conductivity (µs/cm)    | 497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | Conductivity fusion    | 00.00                                                       |                                        |          |
| Ŧ                       | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 000                                                         | ").5                                   | ā        |
| Redox (mV)              | 02 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | E.                     | 7.72                                                        | (40)                                   |          |
| Treebleite, farren      | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Redox (mV)             | ,                                                           |                                        |          |
| (MID)                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                    | Turbidity (NTU)        | (C)                                                         |                                        |          |
| Appearance / Odour      | Clad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Appearance / Odour     |                                                             |                                        |          |
| Sample Time (24 hr)     | Field Preserved & GAGC Sample Collected Filtered if Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S 5, 500               | Sample Time (24 m)     | רופטע                                                       | DATE COVERAGE                          |          |
|                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ر                      |                        |                                                             | to call pile Colatting                 | Anavs s  |
| 0417                    | Yes Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) De coc               | 1550                   | (Yes No Yes Name.                                           | ame:                                   | 00       |
| General Notes:          | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | General Notes:         |                                                             | D                                      | 3        |
| Stream                  | tan clear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | Salt Flow              | Soll                                                        | C-11-2                                 |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | -                      | THA                                                         | 7 150                                  |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                        | TS: 16:04                                                   | TS: (6:09                              |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 200                    |                                                             | TE. (6:11)                             |          |
|                         | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | 430. 1864<br>430. 1960 | ×                                                           | R G6                                   |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , (4<br>, (4)<br>, (4) | 62. 129.5              |                                                             | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #:                     |                        |                                                             | 0 . 0                                  |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 4                      |                                                             | 1                                      |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                        |                                                             |                                        |          |
| 2 2 4000                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                        |                                                             |                                        |          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                        |                                                             |                                        |          |





| Site Maine                                                   | KR-10                                     | Project Number        | 104822-01 | Site Name    |
|--------------------------------------------------------------|-------------------------------------------|-----------------------|-----------|--------------|
| Date                                                         | 100 6/21                                  | Otent                 | YG EMR    | Date         |
| Sampler                                                      | XXXX                                      | Project Name          | Ketza     | Sample       |
| Geographic<br>Coordinates                                    |                                           |                       |           | Geographic   |
| Weather                                                      | Dein                                      |                       |           | Weather      |
| Field Parameters (note units if different than those stated) | units if different than the               | ose stated)           |           | Field Paran  |
| Water Depth (m)                                              | 52.0                                      |                       | 30        | Water Dept   |
| Temperature (°C)                                             | 120                                       |                       |           | Temperatu    |
| DO (mg/L)                                                    | 42.D                                      |                       |           | DO (mg/L)    |
| Conductivity (µs/cm)                                         | 415                                       |                       |           | Conductivi   |
| F4                                                           | 9.40                                      |                       |           | Hd           |
| Redox (mV)                                                   | 82.1                                      |                       |           | Redox (mV    |
| Turbidity (NTU)                                              | 75                                        |                       |           | Turbidity (1 |
| Appearance / Odour                                           | SI:OFF                                    | Cloudy                |           | Appearanc    |
| Sample Time (24 hr)                                          | Field Preserved &<br>Filtered it Required | OAQC Sample Collected | Analysis  | Sample Ti    |
| 9                                                            | Veg No                                    | Yes Name:             | Specol    |              |
|                                                              |                                           | General Notes:        |           |              |
|                                                              |                                           |                       |           |              |

| Site Name                                                    |                                        | Project Number        | 104822-01 |
|--------------------------------------------------------------|----------------------------------------|-----------------------|-----------|
| Date                                                         |                                        | Client                | YG EMR    |
| Sampler                                                      |                                        | Project Name          | Ketza     |
| Geographic<br>Combinates                                     |                                        |                       | <         |
| Weather                                                      |                                        |                       |           |
| Field Parameters (note units if different than those stated) | mis it different than th               | cose stated)          |           |
| Water Depth (m)                                              |                                        |                       |           |
| Temperature (°C)                                             |                                        |                       |           |
| DO (mg/L)                                                    |                                        |                       |           |
| Conductivity (µs/cm)                                         |                                        |                       |           |
| Ą                                                            |                                        |                       |           |
| Redox (mV)                                                   |                                        |                       |           |
| Turbidity (NTU)                                              |                                        |                       |           |
| Appearance / Odour                                           |                                        |                       |           |
| Sample Time (24 hr)                                          | Fleid Preserved & Filtered if Required | QAQC Sample Collected | Analysis  |
|                                                              | Yes No                                 | Yes Name:             |           |
|                                                              |                                        | General Notes:        |           |
|                                                              |                                        | *                     |           |
|                                                              |                                        |                       |           |
|                                                              |                                        |                       |           |
|                                                              |                                        |                       |           |
|                                                              |                                        |                       |           |
|                                                              |                                        |                       |           |
| -                                                            |                                        |                       |           |
|                                                              |                                        |                       |           |
|                                                              |                                        |                       |           |





| Site Name                 | KR-12                                                        | Project Number        | 104822-01 | Site Name   |
|---------------------------|--------------------------------------------------------------|-----------------------|-----------|-------------|
| Date                      | 6-Ang-21                                                     | Olent                 | YG EMR    | Date        |
| Sampler                   | AT/77                                                        | Project Name          | Ketza     | Sampler     |
| Geographic<br>Coordinates |                                                              |                       |           | Geographi   |
| Weamer                    | (7.C, No                                                     | Mostly clouds         |           | Weather     |
| Field Parameters (note    | Field Parameters (note units it different than those stated) | ose stated)           |           | Freid Parar |
| Water Depth (m)           | 840,08                                                       | 24                    |           | Water Dep   |
| Temperature (°C)          | 11 -                                                         |                       |           | Temperatu   |
| DO (mg/L)                 | 9.0                                                          |                       |           | DO (mg/L)   |
| Conductivity (µs/cm)      | 489.1                                                        |                       |           | Conductiv   |
| Hd                        | 8.30                                                         |                       |           | F           |
| Redox (mV)                | 93.1                                                         |                       |           | Redox (m)   |
| Turbidity (NTU)           | 14.96                                                        |                       |           | Turbidity ( |
| Appearance / Odour        | -hirbid                                                      |                       |           | Appearance  |
| Sample Time (24 nm)       | Field Preserved &<br>Entered if Required                     | QAQC Sample Collected | Ånalysis  | Sample T    |
| 16:45                     | Yes No                                                       | Yes Name:             | Sep (a    | 175         |
|                           |                                                              | General Notes:        |           |             |
|                           |                                                              |                       |           |             |
|                           |                                                              |                       |           |             |
|                           |                                                              |                       |           |             |
|                           | 84                                                           |                       |           |             |
|                           |                                                              |                       |           |             |
|                           |                                                              |                       |           |             |
|                           |                                                              |                       |           |             |

| Site Name                 | ( ) に に い                                                    | Designed Misseshore   | 404822 04 |
|---------------------------|--------------------------------------------------------------|-----------------------|-----------|
|                           | 8                                                            | inclination indicate  | 10-220401 |
| Date                      | (2/9 dy                                                      | Glient                | YG EMR    |
| Sampler                   | JA M                                                         | Project Name          | Ketza     |
| Geographic<br>Coordinates |                                                              |                       |           |
| Weather                   | PC, Somy                                                     | <                     |           |
| Field Parameters (note    | Field Parameters (note units if different than those stated) |                       |           |
| Water Depth (m)           | 52.0                                                         |                       |           |
| Temperature (°C)          | 101                                                          |                       |           |
| DO (mg/L)                 | 6.0                                                          |                       |           |
| Conductivity (us/cm)      | 759                                                          |                       |           |
| Н                         | 2.38                                                         |                       |           |
| Redox (mV)                | GH.C                                                         |                       |           |
| Turbidity (NTU)           | Q                                                            |                       |           |
| Appearance / Odour        | Sul                                                          |                       |           |
| Sample Time (24 hr)       | Field Preserved & GAGC &                                     | QAQC Sample Collected | Analysis  |
| SSLI                      | _                                                            | Je:                   | See Ge    |
|                           | General Notes:                                               | otes:                 |           |
|                           |                                                              |                       |           |
|                           |                                                              |                       | <b>3</b>  |
|                           |                                                              |                       |           |
|                           |                                                              |                       |           |
|                           |                                                              |                       |           |
|                           |                                                              |                       |           |





| •   | Sile Name                 | KZ01                                                         | Project Number        | 104822-01 | Site Name    |
|-----|---------------------------|--------------------------------------------------------------|-----------------------|-----------|--------------|
|     | Date                      | 12/6 6/21                                                    | Client                | YG EMR    | Date         |
|     | Sampler                   | AT/TI                                                        | Project Name          | Ketza     | Sample:      |
|     | Seographic<br>Coordinates |                                                              |                       |           | Geographic   |
|     | Meather                   | 17° onless                                                   | (esc)                 |           | Weather      |
|     | Field Parameters (note t  | Freid Parameters (note units if different than those stated) | (0)                   |           | Fleid Parame |
|     | Water Depth (m)           | 22.0                                                         |                       |           | Water Depth  |
|     | Temperature (°C)          | 11.5                                                         |                       |           | Temperature  |
|     | DO (mg/L)                 | 9.03                                                         |                       |           | DO (mg/L)    |
|     | Conductivity (µs/cm)      | 304.6                                                        |                       |           | Conductivity |
|     | Н                         | 8.29                                                         |                       |           | 표            |
|     | Redox (mV)                | 25.1                                                         |                       |           | Redox (mV)   |
|     | Turbidity (NTU)           | 0                                                            | 1                     |           | Turbidity (N |
|     | Appearance / Odour        | clear                                                        |                       | ~         | Appearance   |
|     | Sample Time (24 hr)       | ઝ જ                                                          | QAQC Sample Collected | Analysis  | Sample Tim   |
|     | <u>S</u>                  | Yes No Yes N                                                 | Yes Name: 78          | Section   | 6:9/         |
|     | Salt kul                  | General Notes:                                               | Notes:                | 2         |              |
|     | J. 702. 6                 |                                                              | 75 75                 | カルー       |              |
| # 1 | 1 522                     | 当                                                            | 70                    | 4:19      |              |
|     | 3 956                     | <b>&amp;</b> *                                               | 304.7                 | 2/2       |              |
|     | ×                         | 0 7                                                          | (075 /                | 1         |              |
|     |                           | D 150                                                        | 100 nosi              | 000       |              |
|     | _                         |                                                              |                       |           |              |

| Sun Name                                                     | KR-11                                     | Project Number        | 104822-01 |
|--------------------------------------------------------------|-------------------------------------------|-----------------------|-----------|
| Date                                                         | (5-Aux-11                                 | // Otent              | YG EMR    |
| Sample                                                       | サノオ                                       | Project Name          | Ketza     |
| Geographic<br>Coordinates                                    |                                           |                       | 11        |
| Weather                                                      | 17.61                                     | mostly cloudy         |           |
| Field Parameters (note units if different than those stated) | units it different than th                | hose stated)          |           |
| Water Depth (m)                                              | 0.25                                      |                       | ×         |
| Temperature (°C)                                             | 8://                                      |                       |           |
| DO (mg/L)                                                    | 9.23                                      |                       |           |
| Conductivity (µs/cm)                                         | 481.7                                     |                       |           |
| Н                                                            | 8.38                                      |                       | i i       |
| Redox (mV)                                                   | 83.9                                      |                       |           |
| Turbidity (NTU)                                              | Ø                                         |                       |           |
| Appearance / Odour                                           | clesr                                     |                       |           |
| Sample Time (24 hr)                                          | Field Preserved &<br>Filtered if Reguired | QAQC Sample Collected | Analysis  |
| (6:30                                                        | (es) No                                   | Yes Name:             | See Coc   |
|                                                              |                                           | General Notes:        |           |
|                                                              |                                           |                       |           |
|                                                              |                                           |                       | (2        |
|                                                              |                                           |                       |           |
|                                                              |                                           |                       |           |
|                                                              |                                           |                       |           |
|                                                              |                                           |                       |           |



# LI Hemmera An Ausenco Company

| Site Name                | ITAIMN                                                       | Project Number        | 104822-01 | Site Neise                  |          |
|--------------------------|--------------------------------------------------------------|-----------------------|-----------|-----------------------------|----------|
| Date                     | 10-Aug-21                                                    | Chent                 | YGEMR     | Dain                        | -        |
| ,                        | & Suite                                                      |                       |           | Date                        |          |
| od ripie.                | JT /AT                                                       | Project Name          | Ketza     | Sampler                     |          |
| Goordinates              |                                                              |                       |           | Geographic                  |          |
| Aeather                  | - July                                                       | 7                     |           | SOUTHERNOON                 |          |
| Field Parameters (note u | Field Parameters (note units if different than those stated) | 357                   |           | Wealher                     |          |
| Water Depth (m)          |                                                              |                       |           | ried Parameters (note units | 5_       |
| Temperature (°C)         |                                                              |                       |           | water Depth (m)             | _        |
|                          |                                                              |                       |           | Temperature (°C)            |          |
| DO (mg/L)                | 939                                                          |                       |           | DO (mg/L)                   | _        |
| Conductivity (µs/cm)     | 843                                                          |                       |           | Conductivity (µs/cm)        | _        |
| Æ                        | 7:96                                                         |                       |           | Hd                          |          |
| Redox (mV)               | 74.4                                                         |                       |           | Redox (mV)                  | -        |
| Turbidity (NTU)          | D, d                                                         |                       |           | Turbidity (NTU)             | _        |
| Appearance / Odour       | (had)                                                        |                       |           | Appearance / Odour          | -        |
| Sample Time (24 hr)      | Field Preserved & CACC<br>Pillered if Required               | DADC Sample Collected | Analysis  | Sample Time (24 m)          | <u> </u> |
| 1300                     | Yes No Yes Name:                                             |                       | The Coll  | 1275                        |          |
|                          | / General N                                                  |                       |           | 1363                        |          |
| 1808                     | 29 (+                                                        | -                     |           | SOF                         |          |
|                          | 0                                                            |                       | ,,,       | ,                           |          |
| 77<br>85.4               | 4                                                            | _                     | 74/4      | Kal                         |          |
| 1801                     | 75 1769                                                      | 75 120                | 2         | 543                         |          |
| 2 1295                   | TE 1305                                                      | 408 37                | 00        | 1748                        |          |
| 3 (82                    | ond<br>O                                                     | S8 2                  |           | 2 933                       |          |
|                          |                                                              | N 120                 | 2         | 2 1100                      |          |
| 9                        | 9791 V                                                       | 1                     | ^         |                             |          |
|                          | 25 D                                                         | で<br>マ                |           | . W.                        |          |
|                          |                                                              |                       |           |                             |          |
| X                        |                                                              |                       |           |                             |          |

|               | Site Name                 | 1101                                                         | Project Ni-mas        | 10,000000 | L  |
|---------------|---------------------------|--------------------------------------------------------------|-----------------------|-----------|----|
|               |                           | X                                                            |                       | 10-228401 |    |
|               | Date                      | 6-AUR, /21                                                   | Client                | YG EMR    |    |
|               | Sampler                   | 12/4                                                         | Project Name          | Ketza     |    |
|               | Geographic<br>Coordinates |                                                              |                       |           | 1  |
|               | Weather                   | (Te, Som                                                     | Jan 60                | 752       | 1  |
|               | Field Parameters (note    | Froid Parameters (note units if different than those stated) |                       |           |    |
| T             | Water Depth (m)           | SG: 0.215                                                    |                       |           |    |
|               | Temperature (°C)          | \$ 00.                                                       |                       |           | 1  |
|               | DO (mg/L)                 | 9,55                                                         |                       |           | 1  |
|               | Conductivity (µs/cm)      | 536                                                          | -                     | .4        |    |
|               | Hd                        | 05.8                                                         |                       |           | 1  |
|               | Redox (mV)                | 76.5                                                         |                       |           | 1  |
|               | Turbidity (NTU)           | b                                                            |                       | Te        | 10 |
|               | Appearance / Odour        | clesy                                                        |                       | 3         | 1  |
|               | Sample Time (24 hr)       |                                                              | GAGC Sample Collected | Analysis  |    |
|               | 1325                      | Yes Name:                                                    |                       | 36        |    |
|               | Sr (+.                    | General Notes:                                               | tes:                  | 3         |    |
| -             | 5 -                       | スティー                                                         | X                     | 7.        |    |
| _             | Kel                       | 15 13.20                                                     | 15 6                  | 6:30      |    |
| $\rightarrow$ | E 54%                     | TE 13:36                                                     | TE 13:41              | 15:3      |    |
| _             | 748                       | 8 536                                                        | 53                    | 23.8      |    |
| _             | )                         | A 1050                                                       | <                     | )         |    |
|               | 2 = 94                    | 1606                                                         | 82017                 | 78        |    |
|               |                           | 905                                                          | Q 1566                | ٠         |    |
|               |                           | -                                                            |                       |           |    |
|               |                           |                                                              |                       |           |    |





| 2 11/02<br>15 15 04<br>15 05<br>15 05<br>15<br>15 05<br>15 0 | 777             | Sample Time (24 hr)      | Appearance / Odour | Turbidity (NTU) | Redox (mV) | H    | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Paranleters (note u | Meamer  | Geographic<br>Coordinates | Sampler      | Date      | Site Name      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|---------------------------|---------|---------------------------|--------------|-----------|----------------|
| General Notes  Francisco  TE 7226  TE 7230  TE 7230  TE 7230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes No Yes Name | Filtered if Required QAQ | Cham               | 0               | 715        | 6.70 | 67                   | 9,70      | 11.9             | 6-1             | rent than those st        | 140 Ohn |                           | 177/4        | Aug, 6/21 | EDIMIN         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | QAQC Sample Collected    |                    | 1,              |            |      |                      |           |                  | 9               | 2)                        | 1605/   |                           | Project Name | Client    | Project Number |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ha DOW          | Analysis                 | Ą                  | Tu              | Z.         | pt   | ç                    | DO        | Те               | - W             | 20                        | W       | ଦୁ ଦୁ                     | Ketza        | YG EMR    | 104822-01      |

| 104822-01    | Sie Name                  | NWID-2 Project Number                      | 104822-01   |  |
|--------------|---------------------------|--------------------------------------------|-------------|--|
| YG EMR       | Sec                       | AUG 6 /21 CIEM                             | YG EMR      |  |
| le Ketza     | Sampler                   | T. M. Project Name                         | Ketza       |  |
| [6]          | Geographic<br>Geordinales |                                            |             |  |
|              | Westier                   | Ohmes Al                                   | HQ.         |  |
|              | Field Parameters (note u  | en:                                        |             |  |
| 74.          | Water Depth (m)           | (Su)                                       |             |  |
|              | Temperature (°C)          | I. &                                       |             |  |
| · •          | DO (mg/L)                 | - Ch'C                                     | A           |  |
|              | Conductivity (µs/cm)      | 583                                        |             |  |
|              | рН                        | 21.8                                       |             |  |
|              | Redox (mV)                | 1 日 / の                                    | 7           |  |
|              | Turbidity (NTU)           | (0)                                        |             |  |
| *            | Appearance / Odour        | Chas                                       |             |  |
| ted Analysis | Sample Time (24 hr)       | Fillered if Required QAQC Sample Collected | d Analysis  |  |
| - Fow Only   | 1240                      | 1 2 18                                     | - Flow Ohly |  |
| Set 2        | 25                        |                                            | 7577        |  |
| 1121 JE 1270 | 15 de 150                 | \$25.57<br>\$2.57<br>\$2.57                | P 581       |  |
| D 1381       | 2 1250                    | 1                                          | D 785       |  |
| 0 5/9        | 25/11 6                   |                                            |             |  |
|              | ×                         |                                            |             |  |
|              |                           |                                            |             |  |



| 104822-01 YG EMR Keiza  Flau On ( |
|-----------------------------------|
|-----------------------------------|

| 36 2                                                                                     | Flowardy        | Analysis               | Į.                 | 2               |            |      |                      | X.        |                  |                 |                                                              | 1           |                           | Ketza        | YG EMR   | 104822-01      |
|------------------------------------------------------------------------------------------|-----------------|------------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|-------------|---------------------------|--------------|----------|----------------|
| Fav. St. 1<br>K G. 1<br>8 430<br>1 638<br>2 854<br>3 1041                                | 120g            | Sample Time (24 hr)    | Appearance / Odour | Turbidity (NTU) | Redox (mV) | PH   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note t                                     | Weather     | Geographic<br>Coordinates | Sampler      | Date     | Site Name      |
| General Notes:<br>527 1<br>527 1<br>75 1768<br>75 1268<br>76 12:12<br>10 426:7<br>10 509 | Yes No Yes Name | Fileid Preserved & QAC | Class              | 0               | 69.9       | 6:30 | 425-8                | 11.5      | 5.9              | 0               | Field Parameters (note units if different than those stated) | 14°C. Over  |                           | TILLAT       | AD6 6/21 | 7166           |
|                                                                                          | 1               | QAQC Sample Collected  |                    | 8               |            | 26   |                      |           |                  |                 | ed)                                                          | Diverce St. |                           | Project Name | Client   | Project Number |
| 257<br>2005<br>2005<br>2005<br>2005<br>2005                                              | Town on the     | Analysis               | · ·                | × ·             |            |      |                      | 4         | 40               |                 |                                                              |             | *                         | Ketza        | YG EMR   | 104822-01      |





| 2 893<br>2 1720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Far C         | 5    | Sample Time (24 hr)       | Appearance / Odour | Turbidity (NTU) | Redox (mV) | рН   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note u                                     | Weather  | Geographic<br>Coordinates | Sampler      | Date       | Site Name      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|---------------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|----------|---------------------------|--------------|------------|----------------|
| 555 V St. 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General Notes |      | Filtered if Required QAQC | Cha                | 0               | 2.17       | 8.22 | 425.4                | 9.42      | Dis.             | 0.10            | Field Parameters (note units if different than those stated) | 14° Kain |                           | TE 14-       | Aug - 6/21 | 15cD-3         |
| 515 O 2545 B 11.52 B 1 | 8             | ime: | QAQC Sample Collected     | ve.                | 3               |            | a    |                      |           |                  | a K             |                                                              |          | 4                         | Project Name | Client     | Project Number |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 2           | Flow | Analysis                  |                    |                 |            | F,   |                      | 3         |                  |                 |                                                              |          | 21                        | Ketza        | YG EMR     | 104822-01      |

|      | 2 868 | 1 650   | ב ברון ק | 7.00 | Flow and       | 138              | Sample Time (24 hr)                     | Appearance / Odour | Turbidity (NTU) | Redox (mV) | РН   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note                                       | Weather | Geographic<br>Coordinales | Sampler            | Date           | Site Name                |
|------|-------|---------|----------|------|----------------|------------------|-----------------------------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|---------|---------------------------|--------------------|----------------|--------------------------|
| Q 50 | D 633 | 0 76    | \        | 12 N | General Notes: | Yes No Yes Name: | Field Preserved & QAQC Sample Collected | (but               | 5.87            | 71.9       | 8.21 | 1/26.                | 9.34      | 10.6             | 0.15            | Field Parameters (note units if different than those stated) | 57 3M   |                           | 77./AT Pro.        | AUG 6/21 CHENT | LSCD-2 PRO               |
| 0    | h29 0 | 15-14 S | 151151   | 1 ST |                | Flow Only        | le Collected Analysis                   |                    |                 |            |      |                      | 40        | 100              |                 |                                                              |         |                           | Project Name Ketza | YG EMR         | Project Number 104822-01 |





| 2    | 200             | 1045      | Sample Time (24 hr)   | Appearance / Odour | Turbidity (NTU) | Redox (mV) | рн   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note units if different than those stated) | Weather | Geographic<br>Coordinates | Sampler      | Date        | Site Name      |
|------|-----------------|-----------|-----------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|---------|---------------------------|--------------|-------------|----------------|
|      | Pier. Jaken for | Yes No    | Filtered if Required  | Che                | 0               | 82.9       | 7,80 | 639                  | 20        | (A)              |                 | units if different than th                                   | 271     | 1 10                      | シネ           | AUA 6       | KR-601         |
|      | alson from      | Yes Name: | QAQC Sample Collected |                    |                 |            |      |                      |           |                  |                 | iose slated)                                                 |         |                           | Project Name | /2   Client | Project Number |
| # ** | of some sil     | See con   | Analysis              |                    |                 | •          | 8    |                      |           |                  | le S            |                                                              |         |                           | Ketza        | YG EMR      | 104822-01      |
| ,    |                 |           | Sa                    | App                | Turl            | Red        | рН   | Con                  | DO        | Теп              | Wat             | Fie                                                          | Wea     | Gec<br>Coo                | San          | Date        | Site           |

| <br>Scharge    | ce coc    | Analysis                                     |                    |                 |            |      |                      |           |                  | 19              |                                                              |         |                           | Ketza        | YG EMR   | 104822-01      |
|----------------|-----------|----------------------------------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|---------|---------------------------|--------------|----------|----------------|
| 90             | 1100      | Sample Time (24 hr)                          | Appearance / Odour | Turbidity (NTU) | Redox (mV) | PH   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note                                       | Weather | Geographic<br>Coordinates | Sampler      | Date     | Site Name      |
| General Notes: | -         | Field Preserved & QA<br>Filtered if Required | Cluer              | 9               | 4,58       | 8,23 | 543                  | 8.53      | 16.60            | 1759            | Field Parameters (note units if different than those stated) | 1400    | 14                        | 一种一个         | AUG 6/21 | 100-20         |
| General Notes: | Yes Name: | QAQC Sample Collected                        |                    |                 |            |      |                      |           |                  |                 | ed)                                                          | 6.5     |                           | Project Name | Client   | Project Number |
| KR-090         | Der 1000  | Analysis                                     |                    |                 |            |      | F                    | *         |                  |                 |                                                              |         | æ                         | Ketza        | YG EMR   | 104822-01      |





|                                         |                                                              | 101000 01  |
|-----------------------------------------|--------------------------------------------------------------|------------|
| Site Name                               | KR-08 Project Number                                         | 104822-01  |
| Date                                    | AUG G/Z) Cient                                               | YG EMR     |
| Sampler                                 | TIA. Project Name                                            | Ketza      |
| Geographic<br>Coordinates               |                                                              |            |
| Weather                                 | 15 K                                                         |            |
| Field Parameters (note un               | Field Parameters (note units if different than those stated) |            |
| Water Depth (m)                         | 56:0.190                                                     |            |
| Temperature (°C)                        | 6.4                                                          |            |
| DO (mg/L)                               | 9.65                                                         |            |
| Conductivity (µs/cm)                    | 436.0                                                        |            |
| PH                                      | C 2.3                                                        |            |
| Redox (mV)                              | 41.9                                                         |            |
| Turbidity (NTU)                         | 59.00                                                        | ·          |
| Appearance / Odour                      | Cloudit                                                      |            |
| Sample Time (24 hr)                     | Filtered if Required A DAGE 5                                | ) maken    |
| 5610                                    |                                                              | See Oc     |
| 6                                       | General Notes:                                               |            |
| 1 1 Lang /a                             | tool.                                                        | aghing     |
|                                         | 2                                                            | Salt 2     |
| Ka                                      |                                                              | TE: 643,06 |
| 210016<br>1250<br>1250<br>1250<br>127.2 | B 138.8                                                      | B: 440.2   |
|                                         |                                                              |            |

| See Marie                 | Project Number                                               | 104822-01 |
|---------------------------|--------------------------------------------------------------|-----------|
|                           | 121                                                          | YG EMR    |
| Sampler                   | A Project Name                                               | Ketza     |
| Geographic<br>Coordinales |                                                              |           |
| Weather                   | THE KOS                                                      |           |
| Field Parameters (note to | Field Parameters (note units if different than those stated) |           |
| Water Depth (m)           | 6.25                                                         |           |
| Temperature (°C)          | a J                                                          |           |
| DO (mg/L)                 | 9,49                                                         |           |
| Conductivity (µs/cm)      | 414 3                                                        |           |
| P                         | 20 27                                                        |           |
| Redox (mV)                | A2 6                                                         |           |
| Turbidity (NTU)           |                                                              |           |
| - TOdour                  | Char                                                         |           |
| is Sample Time (24 hr)    | Field Preserved & QAQC Sample Collected                      | Analysis  |
| 080                       | Yes No Yes Name:                                             | Se Cor    |
|                           | General Notes:                                               | pouring   |
| 000                       | to p of weir.                                                |           |
| ) 7 6<br>6                | 22                                                           |           |
|                           |                                                              |           |
|                           |                                                              |           |

| Project Name  Project Name  Project Name  Sample Collected  Sample Collected  Sample Collected | 4.50<br>4.50<br>4.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1.50<br>1 | 16:00 Yes | Sample Time (24 hr) Field P             | Appearance / Odour C/ear | Turbidity (NTU) | Redox (mV) 74 | Ø. | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note units if different than those stated) | Weather 14 | Geographic<br>Coordinates | Sampler          | Date 27 | Sta Varie 大が           |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|-----------------------------------------|--------------------------|-----------------|---------------|----|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|------------|---------------------------|------------------|---------|------------------------|
|                                                                                                | General Notes  Collected  Flaw                                                    | No        | Field Preserved & OAOC Sample Collected | , w/ brown al            |                 | , ,           | 0/ | 50                   | 4         | N .              | 0,10            | fferent than those stated)                                   |            |                           | 7 T Project Name | 2       | -04-7V3 Project Number |
|                                                                                                |                                                                                   |           | Analysis                                | 2 50                     |                 |               |    |                      |           | €                |                 |                                                              |            |                           | Ketza            | YG EMR  | 104822-01              |

. 6

| 00000000000000000000000000000000000000 | 0              | 1810      | Sample Time (24 hr)   | Appearance / Odour | Turbidity (NTU) | Redox (mV) | PH   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note                                       | Weather | Geographic<br>Coordinates | Sample       | Date     | Site Name      |
|----------------------------------------|----------------|-----------|-----------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|---------|---------------------------|--------------|----------|----------------|
| 00 2 60 0<br>V 2 60 0                  | Johnson Com    |           | Filed Preserved & C   | (likey             | О               | 56.1       | 8.27 | ななた                  | H0.8      | 14.              | 0.10            | Field Parameters (note units if different than those stated) | THE DWG | 1.0                       | TT/A         | Aug 5/21 | Wier 3         |
|                                        | General Notes: | Yes Name: | QAQC Sample Collected |                    |                 | -          | ×    |                      |           |                  |                 | sta(ed)                                                      | (5.5)   |                           | Project Name | Client   | Project Number |
|                                        | *              | *         | Analysis              |                    |                 | 2          |      | 4                    | 4         |                  | 3               | 1                                                            |         |                           | Ketza        | YG EMR   | 104822-01      |



| 16.30                  | Meir in             | 1705             | Sample Time (24 Fr)                                          | Appearance / Odour | Turbidity (NTU) | Redox (mV) | Hq   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note u                                     | Weather   | Geographic<br>Coordinates | Sampler           | Date            | Site Name               |
|------------------------|---------------------|------------------|--------------------------------------------------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|-----------|---------------------------|-------------------|-----------------|-------------------------|
| @ 152 -> Volumetic the | collected Condition | Yes No Yes Name: | Field Preserved & GAGC Sample Collegied Filtered if Required | ولسما              | O               | 664        | 7.90 | t.88h                | 9.28      | 14.1             | 0.15            | Field Parameters (note units if different than those stated) | This, Ren |                           | T AT Project Name | Aug S/2) Client | KR-05-52 Project Number |
| c How                  | 7                   | See Cac          | Analysis                                                     |                    |                 |            | 3.00 |                      |           |                  |                 |                                                              |           |                           | Ketza             | YG EMR          | 104822-01               |

|   | G,               | 15.15                                    |                    |                 |            | 8    |                      |           |                  |                 |                                                              |                |                           | Za                | MR             | 2-01           |
|---|------------------|------------------------------------------|--------------------|-----------------|------------|------|----------------------|-----------|------------------|-----------------|--------------------------------------------------------------|----------------|---------------------------|-------------------|----------------|----------------|
| 3 | 1740             | Sample Time (24 hr)                      | Appearance / Odour | Turbidity (NTU) | Redox (mV) | рН   | Conductivity (µs/cm) | DO (mg/L) | Temperature (°C) | Water Depth (m) | Field Parameters (note)                                      | Weather        | Geographic<br>Coordinates | Sampler           | Dale.          | Site Name      |
|   | Yes No Wes Name: | Fireto Preserved & QAQC Sample Collected | The                | <b>D</b>        | 89,9       | 7.69 | 709                  | 9.11      | 11.8             | 56:0.629        | Field Parameters (note units if different than those stated) | (5°, 720, 125) | × / × /                   | A TI Project Name | AG 5/7   Clent | Project Number |
|   | See (01          | Analysis                                 |                    |                 |            |      |                      |           |                  |                 |                                                              |                |                           | Ketza             | YG EMR         | 104822-01      |
|   | 20               | VS18                                     |                    |                 |            |      |                      |           |                  |                 |                                                              |                |                           | za                | :MR            | :2-01          |





104822-01 YG EMR

Project Name

Compared to last August, water OAGC Sample Collected clear, alase on rocks Yes Name: leid Parameters (note units if different than those stated) Field Preserved & Fitered if Required 8 Y K- 5- S Ketza 9 50.50 0 (se) 7.4 TOH 0 Sample Time (24 rm) Appearance / Odour Conductivity (µs/cm) (6:50 (emperature (°C) Nater Depth (m) rurbidity (NTU) General Notes: Redox (mV) DO (mg/L) 3eograph. Site Name Weather Samper SURFACE WATER SAMPLE COLLECTION SHEET BB 104822-01 YG EMR Ketza OAGC Sample Collected KR13 Ketza Project Name Yes Name: ers (note units if different than those stated) 5/21 7 Field Preserved & Filtered if Required ž 9.82 418.4 927 8.40 0.10 (3) Sample Time (24 hr) Conductivity (µs/cm) Appearance / Odour 16 25 General Notes: emperature (°C) Vater Depth (m) (UTU) eld Paramete Redox (mV) Geographic Coordinates DO (mg/L) Veather Sampler

(0C



# Appendix F - Flow Measurements Datasheets

### KR-15 Peel Creek at Road

| Station ID & Name:        | KR-15   | Peel Creek at Road |               |
|---------------------------|---------|--------------------|---------------|
| GPS (WGS 84 Lat Long D.D) | 61.5422 | -132.2475          | 1301 m a.s.l. |

### Gauging comments

Date: 2021-08-31

Best flow estimate available for KR-15 is using the difference in discharge from velocity-area cross-sections (FlowTracker 2 instrument) above and below Peel Creek - Cache Creek confluence, i.e. PCC-1 flow (downstream) minus KR-08 flow (upstream):

0.044 m<sup>3</sup>/s around 10:00 on 2021-08-31.

Visual flow estimate during KR-15 site visit: 40 L/s at 12:00.

Salt dilution gauging conducted on 2021-08-31 around 11:55 but result was rejected.

Discharge result was suspect due to inadequate mixing range. Selected measurement reach was too short and tracer plume passed too fast, likely leading to a discharge overestimate by the QiQuac instrument (conductivity probes).



KR-15 Gauging pool looking across from left downstream bank, upstream of road crossing

## PC-DS3 Peel Creek d/s of Seep 3

| Station ID & Name:                | PC-DS3                | Peel Creek d/     | 's of Seep 3     |
|-----------------------------------|-----------------------|-------------------|------------------|
| GPS (WGS 84 Lat Long D.D)         | 61.5427               | -132.2681         | 1499 m a.s.l.    |
| Salt Dilution - Slug Injection M  | ethod – Two Hi-Res Co | nductivity Probes | Weather          |
| Parameter                         | Value                 | Unit              | Dry - Clear      |
| Date                              | 2021-08-31            | YYYY-MM-DD        | Instrument - S/N |
| Start Trace Time                  | 13:50:26              | HH:MM             | QiQuac           |
| End Trace Time                    | 13:55:47              | HH:MM             | QM5.24           |
| Mass of salt (dry)                | 0.100                 | kg                | Firmware Version |
| Mixing reach length               | 50                    | m                 | QQF0.3.5         |
| Mixing potential                  | good                  | Y/N               | NaCl Brand       |
| Field Calibration? [NaCl] 5.0 g/l | Υ                     | [NaCl](g/l)       | Sifto (Pool)     |
|                                   | Ch0                   | Probe             | Ch1              |
| Probe S/N                         | TM7.206               |                   | TM7.144          |
| Field Q                           | 0.035                 | m³/sec            | 0.036            |
| Field Grade                       | Α                     | QUnc. & %DQ       | Α                |
| Discharge (post-processed)        | 0.035                 | m³/sec            | 0.036            |
| Background EC.T (avg, n=20)       | 559.37                | μS/cm             | 572.08           |
| Peak EC.T                         | 654.77                | μS/cm             | 665.15           |
| Peak above BG EC.T in %           | + 17 %                |                   | + 16 %           |
| Salt pulse duration               | 00:05:21              | HH:MM:SS          | 00:05:10         |
| QUnc. (95% conf. intrvl.)         | 5.4                   | %                 | 5.4              |
| CF.T (field cal.)                 | 0.514                 | (mg/L)/(μS/cm)    | 0.492            |



PC-DS3 Conductivity probe locations looking downstream

## PC-DS2 Peel Creek d/s of Seep 2

| Station ID & Name:                | PC-DS2 Peel Creek d/s of Seep 2 |                 | d/s of Seep 2    |
|-----------------------------------|---------------------------------|-----------------|------------------|
| GPS (WGS 84 Lat Long D.D)         | 61.5428                         | -132.2701       | 1519 m a.s.l.    |
| Salt Dilution - Slug Injection Me | thod – Two Hi-Res Condo         | uctivity Probes | Weather          |
| Parameter                         | Value                           | Unit            | Dry - Clear      |
| Date                              | 2021-08-31                      | YYYY-MM-DD      | Instrument - S/N |
| Start Trace Time                  | 14:31:07                        | HH:MM           | QiQuac           |
| End Trace Time                    | 14:37:42                        | HH:MM           | QM5.24           |
| Mass of salt (dry)                | 0.100                           | kg              | Firmware Version |
| Mixing reach length               | 70                              | m               | QQF0.3.5         |
| Mixing potential                  | good                            | Y/N             | NaCl Brand       |
| Field Calibration? [NaCl] 5.0 g/l | Y                               | [NaCl](g/l)     | Sifto (Pool)     |
|                                   | Ch0                             | Probe           | Ch1              |
| Probe S/N                         | TM7.206                         |                 | TM7.144          |
| Field Q                           | 0.021                           | m³/sec          | 0.021            |
| Field Grade                       | Α                               | QUnc. & %DQ     | Α                |
| Discharge (post-processed)        | 0.021                           | m³/sec          | 0.021            |
| Background EC.T (avg, n=20)       | 593.12                          | μS/cm           | 607.30           |
| Peak EC.T                         | 688.78                          | μS/cm           | 707.36           |
| Peak above BG EC.T in %           | + 16 %                          |                 | + 16 %           |
| Salt pulse duration               | 00:06:55                        | HH:MM:SS        | 00:06:35         |
| QUnc. (95% conf. intrvl.)         | 5.3                             | %               | 5.6              |
| CF.T (field cal.)                 | 0.497                           | (mg/L)/(μS/cm)  | 0.478            |



PC-DS2 Conductivity probe locations looking upstream

## PC-DS1 Peel Creek d/s of Seep 1

| Station ID & Name:                | PC-DS1 Peel Creek d/s of Seep 1 |                 | d/s of Seep 1    |
|-----------------------------------|---------------------------------|-----------------|------------------|
| GPS (WGS 84 Lat Long D.D)         | 61.5427                         | -132.2681       | 1525 m a.s.l.    |
| Salt Dilution - Slug Injection Me | thod – Two Hi-Res Condu         | uctivity Probes | Weather          |
| Parameter                         | Value                           | Unit            | Dry - Clear      |
| Date                              | 2021-08-31                      | YYYY-MM-DD      | Instrument - S/N |
| Start Trace Time                  | 18:11:20                        | HH:MM           | QiQuac           |
| End Trace Time                    | 18:19:55                        | HH:MM           | QM5.24           |
| Mass of salt (dry)                | 0.100                           | kg              | Firmware Version |
| Mixing reach length               | 45                              | m               | QQF0.3.5         |
| Mixing potential                  | fair                            | Y/N             | NaCl Brand       |
| Field Calibration? [NaCl] 5.0 g/l | Υ                               | [NaCl](g/l)     | Sifto (Pool)     |
|                                   | Ch0                             | Probe           | Ch1              |
| Probe S/N                         | TM7.206                         |                 | TM7.144          |
| Field Q                           | 0.008                           | m³/sec          | 0.007            |
| Field Grade                       | С                               | QUnc. & %DQ     | С                |
| Discharge (post-processed)        | 0.008                           | m³/sec          | 0.007            |
| Background EC.T (avg, n=20)       | 746.51                          | μS/cm           | 767.75           |
| Peak EC.T                         | 989.23                          | μS/cm           | 1069.45          |
| Peak above BG EC.T in %           | + 33 %                          |                 | + 39 %           |
| Salt pulse duration               | 00:08:35                        | HH:MM:SS        | 00:08:00         |
| QUnc. (95% conf. intrvl.)         | 6.6                             | %               | 6.3              |
| CF.T (field cal.)                 | 0.488                           | (mg/L)/(μS/cm)  | 0.473            |
|                                   |                                 |                 |                  |

#### Gauging conditions comments:

Subpar channel conditions, steep gradient of steps/pools, coarse streambed, flow in substrate.



PC-DS1 Conductivity probe locations looking downstream

## KR-08 Cache Creek (upstream of Peel confluence)

| Station ID & Name:              | KR-08               | Cacl                   | no Crook u/s Pool          |
|---------------------------------|---------------------|------------------------|----------------------------|
|                                 |                     |                        | ne Creek u/s Peel          |
| GPS (WGS 84 Lat Long D.D)       | 61.543              | -132.236               | 1242 m a.s.l.              |
| Wading –Velocity                | /-Area Method – Acc | oustic Doppler Velocii | metry (ADV)                |
| Parameter                       | Value               | Unit                   | Instrument                 |
| Date                            | 2021-08-31          | YYYY-MM-DD             | Sontek FlowTracker2        |
| Start Time                      | 10:00               | HH:MM                  | Handheld/Probe Serial #    |
| End Time                        | 10:49               | HH:MM                  | FT2H2048013                |
| Stations                        | 25                  | #                      | FT2P2050002                |
| Discharge                       | 0.388               | m³/sec                 | Operator                   |
| Section Width                   | 2.95                | m                      | AM & SL                    |
| Section Area                    | 0.644               | m²                     | Q location relative to SG  |
| Mean Velocity                   | 0.602               | m/sec                  | Downstream                 |
| Highest Panel % of Q            | 7.3                 | %                      | Q Dist. to SG (m)          |
| Uncertainty (IVE)               | 3.2                 | %                      | 2                          |
| Staff Gauge (SG) Reading / Time | 0.130               | m / HH:MM              | 10:34                      |
| Stage-Discharge Control         | Туре                | Effectiveness          | Control distance to SG (m) |
| Natural                         | Section             | Partial                | 4                          |
| Condition:                      | Clear               | Time cleaned:          | Not cleaned                |



 $KR-08\ Velocity-area\ cross-section-looking\ downstream$ 

## PCC-1 Cache Creek downstream of Peel Creek confluence

| Station ID & Name:              | PCC-1                                                             | Cach          | ie Creek d/s Peel          |
|---------------------------------|-------------------------------------------------------------------|---------------|----------------------------|
| GPS (WGS 84 Lat Long D.D)       | 61.556                                                            | -132.236      | 1241 m a.s.l.              |
| Wading –Velocity                | Wading –Velocity-Area Method – Acoustic Doppler Velocimetry (ADV) |               |                            |
| Parameter                       | Value                                                             | Unit          | Instrument                 |
| Date                            | 2021-08-31                                                        | YYYY-MM-DD    | Sontek FlowTracker2        |
| Start Time                      | 09:06                                                             | нн:ММ         | Handheld/Probe Serial #    |
| End Time                        | 09:40                                                             | HH:MM         | FT2H2048013                |
| Stations                        | 22                                                                | #             | FT2P2050002                |
| Discharge                       | 0.432                                                             | m³/sec        | Operator                   |
| Section Width                   | 3.05                                                              | m             | AM                         |
| Section Area                    | 0.750                                                             | m²            | Q location relative to SG  |
| Mean Velocity                   | 0.576                                                             | m/sec         | N/A                        |
| Highest Panel % of Q            | 8.6                                                               | %             | Q distance to SG (m)       |
| Uncertainty (IVE)               | 6.0                                                               | %             | N/A                        |
| Staff Gauge (SG) Reading / Time | N/A                                                               | m / HH:MM     | N/A                        |
| Stage-Discharge Control         | Туре                                                              | Effectiveness | Control distance to SG (m) |
| Natural                         | Section                                                           | Partial       | N/A                        |
| Condition:                      | Clear                                                             | Time cleaned: | Not cleaned                |



PCC-1 Velocity-area cross-section – looking upstream

## KR-22 Misery Creek

| KR-22              | Misery Creek                                                                                                               |                                                                                                                                                                                                                                            |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61.545             | -132.220                                                                                                                   | 1221 m a.s.l.                                                                                                                                                                                                                              |
| Area Method – Acou | ustic Doppler Velocim                                                                                                      | etry (ADV)                                                                                                                                                                                                                                 |
| Value              | Unit                                                                                                                       | Instrument                                                                                                                                                                                                                                 |
| 2021-09-01         | YYYY-MM-DD                                                                                                                 | Sontek FlowTracker2                                                                                                                                                                                                                        |
| 15:18              | HH:MM                                                                                                                      | Handheld/Probe Serial #                                                                                                                                                                                                                    |
| 15:50              | HH:MM                                                                                                                      | FT2H2048013                                                                                                                                                                                                                                |
| 24                 | #                                                                                                                          | FT2P2050002                                                                                                                                                                                                                                |
| 0.337              | m³/sec                                                                                                                     | Operator                                                                                                                                                                                                                                   |
| 3.40               | m                                                                                                                          | AM                                                                                                                                                                                                                                         |
| 0.725              | m²                                                                                                                         | Q location relative to SG                                                                                                                                                                                                                  |
| 0.466              | m/sec                                                                                                                      | Downstream                                                                                                                                                                                                                                 |
| 8.5                | %                                                                                                                          | Q distance to SG (m)                                                                                                                                                                                                                       |
| 5.9                | %                                                                                                                          | 300                                                                                                                                                                                                                                        |
| 0.285              | m / HH:MM                                                                                                                  | 15:00                                                                                                                                                                                                                                      |
| Туре               | Effectiveness                                                                                                              | Distance to SG (m)                                                                                                                                                                                                                         |
| Section            | Partial                                                                                                                    | 2                                                                                                                                                                                                                                          |
| Clear              | Time cleaned:                                                                                                              | Not cleaned                                                                                                                                                                                                                                |
|                    | 61.545  Area Method – Acou  Value  2021-09-01  15:18  15:50  24  0.337  3.40  0.725  0.466  8.5  5.9  0.285  Type  Section | 61.545 -132.220  Area Method – Acoustic Doppler Velocim  Value Unit  2021-09-01 YYYY-MM-DD  15:18 HH:MM  15:50 HH:MM  24 #  0.337 m³/sec  3.40 m  0.725 m²  0.466 m/sec  8.5 %  5.9 %  0.285 m / HH:MM  Type Effectiveness Section Partial |



KR-22 Velocity-area cross-section – looking upstream

# Appendix G - Hydrometric Network Assessment

### KR-12 Ketza River

| Station name      | KR-12 Ketza River downs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tream of Cache Creek confluence                   |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| Location          | 61.575544°, -132.172186° (WGS84), 1,086 m asl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |  |
|                   | The hydrometric station is located on the right bank of the Ketza River about 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |  |
|                   | metres west of the Ketza camp access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | road at a point along the road 1.2 kilometers     |  |
|                   | north of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ketza creek bridge.                               |  |
| Watershed<br>Area |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s the most downstream station in existing         |  |
|                   | monitoring network. Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | elevation in watershed is 2,168 m asl.            |  |
| Flow Range        | Low:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Annual maximum:                                   |  |
|                   | 2011-2012 Winter average: 0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012-06-22 Freshet peak: 12.120 m <sup>3</sup> /s |  |
|                   | m³/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2012-00-22 Heshet peak. 12.120 III-75             |  |
| Rationale         | EBA chose this location close to the Project boundary to monitor flows leaving the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |  |
|                   | property.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |  |
|                   | Ketza River is the receiving water for Cache Creek.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |  |
|                   | Primary purpose is to estimate % of discharge from Cache Creek that contributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |  |
|                   | to Ketza River flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |  |
| Photos            | The state of the s |                                                   |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |  |
|                   | KR-12 looking upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KR-12 looking downstream                          |  |

| Station name | KR-12 Ketza River downs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tream of Cache Creek confluence                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Sketch       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . N                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | la i                                                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V /                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              | - GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ueine                                                                              |
|              | TR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANSECT                                                                             |
|              | BMZ 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
|              | (Rebar in soil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                  |
|              | Housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>7</sup> m<br>1.                                                               |
|              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                           |
|              | <b>₹</b> •} \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
|              | 861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              | 2012 Sketch of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | layout of KR12 – Ketza R.                                                          |
|              | Source: EBA. 2013. Ketza Rive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Project 2012 Hydrological Report.                                               |
| Channel      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ollapsed at stilling well location.                                                |
| conditions   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stream of S.G. but fair at the S.G. location.                                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riffle downstream of left bend.                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eam draining adjacent wetland. Gravel bar otential for braiding at certain stages. |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | currently located in the middle of a wetland                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r flood plain.                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
| Satellite    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>+</u> . V                                                                       |
| imagery      | The state of the s |                                                                                    |
|              | KR-12 hydro new                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              | ≪R-12 hydro eid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |
|              | image © 2221 Maari Tec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
|              | Imagery date: 2005-08-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KR-12 current location in wetland (2019-                                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06)                                                                                |

|                | KR-12 Ketza R                                                                                        | liver downstream of Cache Creek confluence                                                                                                                                                                                |  |
|----------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | https://caltopo.com/ma                                                                               | ap.html#ll=61.57694,-132.17319&z=16&b=imagery                                                                                                                                                                             |  |
| Current infra- | EBA (2013): "A 2.5 m long, 5 cm diameter Schedule 40 galvanized steel pipe was                       |                                                                                                                                                                                                                           |  |
| structure      | attached to a large boulder located near the right bank of the creek by means                        |                                                                                                                                                                                                                           |  |
|                | two heavy duty mounting                                                                              | tabs secured to the boulder with 3/8 inch by 6 inch long                                                                                                                                                                  |  |
|                |                                                                                                      | re/temperature instrumentation located within the pipe                                                                                                                                                                    |  |
|                |                                                                                                      | tre of water depth near the edge of the right bank of the                                                                                                                                                                 |  |
|                | nodoling is in about 1.0ine                                                                          | river.                                                                                                                                                                                                                    |  |
|                | The staff saves was year                                                                             |                                                                                                                                                                                                                           |  |
|                |                                                                                                      | tically mounted to a 2" x 4" by 8' long pressure treated                                                                                                                                                                  |  |
|                |                                                                                                      | the river bed to depth of 0.7 metres. The gauge is further                                                                                                                                                                |  |
|                | secured by attaching the k                                                                           | pack of the stake to a 3 cm diameter rebar 2meters long,                                                                                                                                                                  |  |
|                | driv                                                                                                 | ven one meter into the river bed."                                                                                                                                                                                        |  |
|                |                                                                                                      | Hydrometric Station Key Elevations                                                                                                                                                                                        |  |
|                | 6/14/2012 2:30 PM                                                                                    | Date and time of the elevation survey                                                                                                                                                                                     |  |
|                | 1086.000 metres MSL<br>1086.631 metres MSL                                                           | Assumed elevation of the primary benchmark BM1 (from Google Earth)  Elevation of the secondary benchmark (BM2)                                                                                                            |  |
|                | 1084.821 metres MSL                                                                                  | Elevation of the pressure / temperature sensor located within the housing                                                                                                                                                 |  |
|                | 1084.920 metres MSL                                                                                  | Elevation of the zero reading on the staff gauge                                                                                                                                                                          |  |
|                | 1085.538 metres MSL<br>0.120 metres                                                                  | Water surface elevation near the housing at the time of the survey  Correction to staff gauge reading to obtain pressure transducer water level                                                                           |  |
|                |                                                                                                      | elevations in 2012 at KR-12 (EBA 2013)                                                                                                                                                                                    |  |
|                | Stilling well location nov<br>Benchmark boulder shatt                                                | staff gauge is slightly loose, tilted and damaged.  w inadequate. Boulder supporting sensor housing has collapsed into river.  ered and will collapse in river with further bank erosion.  BM1 unreliable. BM2 not found. |  |
| Recommended    | The existing KR-12 location in the middle of a wetland and/or flood plain is not                     |                                                                                                                                                                                                                           |  |
| infrastructure | adequate for hydrometric monitoring.                                                                 |                                                                                                                                                                                                                           |  |
|                | WRB suggests to relocate                                                                             | the station downstream (61.57907°, -132.17929°) as it                                                                                                                                                                     |  |
|                |                                                                                                      | each with no sign of gravel bars, braiding or flood plain.                                                                                                                                                                |  |
|                |                                                                                                      | at shoreline suggest elevated banks and confinement                                                                                                                                                                       |  |
|                |                                                                                                      | There also appears to be a rocky outcropping on LDB                                                                                                                                                                       |  |
|                |                                                                                                      |                                                                                                                                                                                                                           |  |
|                | _                                                                                                    | e suitable for a bedrock bolt or staff plate benchmark.                                                                                                                                                                   |  |
|                | Thalweg is on the left downstream bank                                                               |                                                                                                                                                                                                                           |  |
|                |                                                                                                      |                                                                                                                                                                                                                           |  |
|                | Installa                                                                                             | ation as per R.I.S.C. 2018 guidelines:                                                                                                                                                                                    |  |
|                |                                                                                                      | ation as per R.I.S.C. 2018 guidelines:<br>auge with adequate support structure                                                                                                                                            |  |
|                | Staff Ga                                                                                             |                                                                                                                                                                                                                           |  |
|                | Staff Ga<br>3 elevation benchmarks                                                                   | auge with adequate support structure s (rock bolt in boulder or ground rod driven to refusal)                                                                                                                             |  |
|                | Staff Ga<br>3 elevation benchmarks<br>Stilling well or mid-s                                         | auge with adequate support structure s (rock bolt in boulder or ground rod driven to refusal) tream anchor deployment (pending site inspection)                                                                           |  |
|                | Staff Ga<br>3 elevation benchmarks<br>Stilling well or mid-s<br>Pressure tr                          | auge with adequate support structure s (rock bolt in boulder or ground rod driven to refusal)                                                                                                                             |  |
| Monitoring     | Staff Ga<br>3 elevation benchmarks<br>Stilling well or mid-s<br>Pressure tr<br>Cable way hardware (f | auge with adequate support structure s (rock bolt in boulder or ground rod driven to refusal) tream anchor deployment (pending site inspection) ansducer (continuous water level logger).                                 |  |

| Station name  | KR-12 Ketza River downstream of Cache Creek confluence                             |
|---------------|------------------------------------------------------------------------------------|
|               | Pre-spring freshet (late April – early May) to ensure loggers are synchronized and |
|               | in working order                                                                   |
|               | Spring freshet (late May – early June snowmelt peak)                               |
|               | Late melt (late June, early July)                                                  |
|               | Significant rain event(s)                                                          |
|               | Summer low flow                                                                    |
|               | Pre-freeze-up (September) to winterize loggers (protect from freezing damage)      |
|               | Early winter (November)                                                            |
|               | Late winter/winter low flow (March)                                                |
|               | Survey stage (water surface elevation) on each visit.                              |
|               | Develop rating curve and derive continuous discharge from corrected stage time-    |
|               | series.                                                                            |
|               |                                                                                    |
| Measurement   | High flow: cross section standard measurement with ADCP (i.e. cableway and boat    |
| methods       | deployment)                                                                        |
|               | Moderate – low flow: cross section standard measurement with ADV or equivalent     |
|               | (i.e. wading)                                                                      |
|               | Winter flow: salt dilution gauging following R.I.S.C. 2018 best practices.         |
|               |                                                                                    |
|               | Alternative if high flow measurements are unsafe: collect discharge measurement    |
|               | from bridge at KR-11 (upstream of Cache Creek confluence) and estimate             |
|               | discharge by adding Q from KR-10 and KR-11.                                        |
|               |                                                                                    |
| Priority rank | 1 – Essential                                                                      |

# KR-10 Cache Creek (upstream of Ketza River confluence)

| Station name  KR-10 Cache Creek (upstream of Ketza River confluence)  61.564608°, -132.16450°  The hydrometric station is located on the right bank of Cache Creek about 70 metres east of the camp access road at a point along the road 200 metres south of the Ketza River bridge. The si located about 20metres south east of an old camper/trailer located near the abandoned airstream Area  Flow Range  Low:  2011-2012 Winter average: 0.060 m³/s  EBA chose this location as the most downstream option along Cache Creek to quantify flows let the property before the stream reaches a floodplain and its confluence with the upper branch of River.  Primary purpose is to estimate % of discharge from Cache Creek that contributes to Ketza River  KR-10 looking upstream  KR-10 looking at well on RDB | te is<br>rip.                                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| The hydrometric station is located on the right bank of Cache Creek about 70 metres east of the camp access road at a point along the road 200 metres south of the Ketza River bridge. The si located about 20metres south east of an old camper/trailer located near the abandoned airstream Area  Flow Range  Low:  2011-2012 Winter average: 0.060 m³/s  EBA chose this location as the most downstream option along Cache Creek to quantify flows let the property before the stream reaches a floodplain and its confluence with the upper branch of River.  Primary purpose is to estimate % of discharge from Cache Creek that contributes to Ketza River.                                                                                                                                                     | te is<br>rip.                                                                                      |  |
| Area  Flow Range  Low: 2011-2012 Winter average: 0.060 m³/s  EBA chose this location as the most downstream option along Cache Creek to quantify flows lethe property before the stream reaches a floodplain and its confluence with the upper branch of River.  Primary purpose is to estimate % of discharge from Cache Creek that contributes to Ketza River.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |  |
| Low: 2011-2012 Winter average: 0.060 m³/s  EBA chose this location as the most downstream option along Cache Creek to quantify flows lethe property before the stream reaches a floodplain and its confluence with the upper branch of River.  Primary purpose is to estimate % of discharge from Cache Creek that contributes to Ketza River.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |  |
| Rationale  EBA chose this location as the most downstream option along Cache Creek to quantify flows let the property before the stream reaches a floodplain and its confluence with the upper branch of River.  Primary purpose is to estimate % of discharge from Cache Creek that contributes to Ketza River.  Photos  Photos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |  |
| Rationale the property before the stream reaches a floodplain and its confluence with the upper branch of River.  Primary purpose is to estimate % of discharge from Cache Creek that contributes to Ketza River.  Photos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ketza                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |  |
| Sketch  BM1  TRAILER  2012 Sketch of the layout of KR10 – Cache Cr Source: EBA. 2013. Ketza River Project 2012 Hydrological Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The 2012 location is not suitable anymore due to substantial sedimentation on the right downstream |  |
| conditions bank. Main flow is in the middle and/or in left half of the channel in the upstream vicinity. Immediately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |  |

downstream options are limited since the channel is less constricted before the creek spills out of its old bed and braids trough the former airstrip prior to confluence with Ketza River.





https://caltopo.com/map.html#II=61.56447,-132.16224&z=17&b=imagery

EBA (2013): "A 2.5 m long, 5 cm diameter Schedule 40 galvanized steel pipe was attached to a large boulder located near the right bank of the creek by means of two heavy duty mounting brackets secured to the boulder with 3/8 inch by 6 inch long rock anchors. The pressure/temperature instrumentation located within the pipe housing is in about 0.4 metres water depth at the time of installation.

The staff gauge was mounted to a pressure treated 2" x 4" by 8' wooden stake driven into the river bed to a depth of 0.8metres. The staff gauge is further secured by attaching the back of the wooden stake to a 3 cm diameter rebar 2 meters long that was driven one meter into the river bed."

#### Current infrastructure

Satellite imagery

|                     | Hydrometric Station Key Elevations                                          |
|---------------------|-----------------------------------------------------------------------------|
| 6/16/2012 9:07 AM   | Date and time of the elevation survey                                       |
| 1094.000 metres MSL | Assumed elevation of the primary benchmark BM1 (from Google Earth)          |
| 1093.926 metres MSL | Elevation of the secondary benchmark (BM2)                                  |
| 1093.117 metres MSL | Elevation of the pressure / temperature sensor located within the housing   |
| 1093.099 metres MSL | Elevation of the zero reading on the staff gauge                            |
| 1093.559 metres MSL | Water surface elevation near the housing at the time of the survey          |
| -0.079 metres       | Correction to staff gauge reading to obtain pressure transducer water level |

#### Surveyed elevations in 2012 at KR-10 (EBA 2013)

2021 observations: Stilling well location now inadequate due to sediment accumulation and not proper gauging pool in surrounding area. Galvanized pipe present, partially buried in sediments. Pipe cap was seized due to corroded threads. Benchmarks rods appeared to have been subject to vertical movements.

#### Recommended

WRB suggests to relocate the station upstream within the same reach. The current reach still presents a long, straight reach with good channel constriction. Potential small gauging pools exist on the left

| infra-        | downstream bank for installing a stilling well. Alternative option is to deploy the logger mid-channel |
|---------------|--------------------------------------------------------------------------------------------------------|
| structure     | without a stilling well.                                                                               |
|               |                                                                                                        |
|               | Installation as per R.I.S.C. 2018 guidelines:                                                          |
|               | Staff Gauge with adequate support structure                                                            |
|               | 3 elevation benchmarks (rock bolt in boulder or ground rod driven to refusal)                          |
|               | Stilling well or mid-stream anchor deployment (pending site inspection)                                |
|               | Pressure transducer (continuous water level logger).                                                   |
|               | Cable way hardware (for tethered ADCP boat measurements in high flows)                                 |
|               | Sufficiently frequent station visits to capture:                                                       |
|               | Pre-spring freshet (late April – early May) to ensure loggers are synchronized and in working order    |
|               | Spring freshet (late May – early June snowmelt peak)                                                   |
|               | Late melt (late June, early July)                                                                      |
|               | Significant rain event(s)                                                                              |
| Monitoring    | Summer low flow                                                                                        |
| objectives    | Pre-freeze-up (September) to winterize loggers (protect from freezing damage)                          |
|               | Early winter (November)                                                                                |
|               | Late winter/winter low flow (March)                                                                    |
|               | Survey stage (water surface elevation) on each visit.                                                  |
|               | Develop rating curve and derive continuous discharge from corrected stage time-series.                 |
|               | Open water (high to moderate): Area-velocity discharge measurement with ADV or equivalent (i.e.        |
| Measure-      | wading).                                                                                               |
| ment          | Low flow and winter: salt dilution gauging following R.I.S.C. 2018 best practices.                     |
| methods       | Stage survey with differential leveling                                                                |
|               | Follow R.I.S.C. 2018 guidelines.                                                                       |
| Priority rank | 1 – Essential                                                                                          |

## KR-22 Misery Creek

| Station name | KR-22 Misery Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Location     | 61.552903°, -132.218339° (WGS84), 1,221 m asl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
|              | Velocity –Area cross section reach located 160 m downstream of gauging pool.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
|              | The hydrometric station is located near the right bank of Misery Creek about 40 metres upstream of the existing water quality station and 700metres upstream of the confluence will Cache Creek. The site is accessed by traveling east from camp down the camp access. Turn north on the dirt road 2 km past K15-Peel Creek station. Then turn right (south east) at the fi intersection. Travel down this road parallel to Misery creek for about 200 m and then left to the site when you are at the same elevation as the creek. |                                               |
| Watershed    | KD22 Minor Cond had been been in the condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (501                                          |
| Area         | KR22-Misery Creek basin has maximum extent<br>13.97 km². The maximum ba                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                             |
| Flow Range   | Low:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Annual maximum:                               |
|              | 2012 October min. measured: 0.088 m³/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2012-06-16 Freshet peak: 1.427 m³/s           |
| Rationale    | Significant tributary: in % of Cache Creek flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w, in contaminant loading (arsenic, sulfate)  |
| Photos       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
|              | KR-22 Staff Gauge & Sensor Casing - looking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KR-22 Velocity-Area cross section reach (flow |
| Sketch       | Housing S.G.  BM1 BM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GAUGING TRANSECT WIOOM D/S                    |

| Station name         |                                                                                                   | KR-22 Misery Creek                                                                                                    |
|----------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                      | 2012 Sketch of the layout of KR22 – Misery Cr                                                     |                                                                                                                       |
|                      |                                                                                                   | etza River Project 2012 Hydrological Report.                                                                          |
| Channel              | Turbulent flow with boils in the pool where the stilling well was installed. Gauging transect far |                                                                                                                       |
| conditions           | below the sensor pool where the reach is more straight and flow is more laminar (but without a    |                                                                                                                       |
| conditions           | •                                                                                                 | suitable gauging pool).                                                                                               |
| C 1 1111             |                                                                                                   | suitable gauging pool).                                                                                               |
| Satellite<br>imagery | Imagery date: 2005-08-09                                                                          | Imagery date: 2019-06                                                                                                 |
|                      | <u> </u>                                                                                          | 61.55305,-132.21812&z=17&b=imagery&a=c%2Cmba                                                                          |
| Comment infor        |                                                                                                   |                                                                                                                       |
| Current infra-       | EBA (2012): "A 2.5 m long, 5 cm diameter Schedule 40 galvanized steel pipe was attached to a      |                                                                                                                       |
| structure            | large boulder located near the right bank of the creek by means of two heavy duty mounting        |                                                                                                                       |
|                      | tabs secured to the boulder with 3/8 inch by 6 inch long rock anchors. The                        |                                                                                                                       |
|                      | pressure/temperature instrumentation located within the pipe housing is in about 0.25 metres      |                                                                                                                       |
|                      | water depth.                                                                                      |                                                                                                                       |
|                      | The staff gauge was vertically mounted to a pressure treated 2" x 4" by 4' pressure treated       |                                                                                                                       |
|                      | wooden stake and attached to a large boulder near the right bank.                                 |                                                                                                                       |
|                      | Two benchmarks were installed by p                                                                | placing 3/8 inch by 6 inch long rock anchors on the tops of                                                           |
|                      | two large rocks located on the right shore within 5 metres of the hydrometric station housing."   |                                                                                                                       |
|                      |                                                                                                   |                                                                                                                       |
|                      | H                                                                                                 | ydrometric Station Key Elevations                                                                                     |
|                      | June 15, 2012                                                                                     | Date and time of the elevation survey                                                                                 |
|                      | 1220.000 metres MSL<br>1220.079 metres MSL                                                        | Assumed elevation of the primary benchmark BM1 (from Google Earth)                                                    |
|                      | 1220.073 THERES WISE                                                                              | Elevation of the secondary benchmark (BM2)  Elevation of the pressure / temperature sensor located within the housing |
|                      | 1219.518 metres MSL                                                                               | Elevation of the zero reading on the staff gauge                                                                      |
|                      | 1219.901 metres MSL                                                                               | Water surface elevation near the housing at the time of the survey                                                    |
|                      | 0.014 metres                                                                                      | Correction to staff gauge reading to obtain pressure transducer water level                                           |
|                      | Surveyed elevations in 2012 at KR-22 (EBA 2013)                                                   |                                                                                                                       |
|                      | 2021 observations: the well cap threads are corroded and seized, does not open and the old        |                                                                                                                       |
|                      | OTT logger could not be retrieved from the casing. Turbulent flow with water boils right by the   |                                                                                                                       |
|                      | stilling well likely causes unreliable readings.                                                  |                                                                                                                       |
| Recom-               | WRB suggests to keep this location and upgrade the infrastructure, especially to prevent the      |                                                                                                                       |
| mended               |                                                                                                   | gger record and staff gauge readings.                                                                                 |
| infra-               | Dolls to affect to                                                                                | gger record and starr gauge redulings.                                                                                |
|                      | Lasta D. C.                                                                                       | a an may DICC 2010 modelation and                                                                                     |
| structure            |                                                                                                   | n as per R.I.S.C. 2018 guidelines:                                                                                    |
|                      | _                                                                                                 | e with adequate support structure                                                                                     |
|                      | 3 elevation benchmarks (ro                                                                        | ck bolt in boulder or ground rod driven to refusal)                                                                   |

| Station name  | KR-22 Misery Creek                                                                            |  |
|---------------|-----------------------------------------------------------------------------------------------|--|
|               | Stilling well                                                                                 |  |
|               | Pressure transducer (continuous water level logger).                                          |  |
|               |                                                                                               |  |
| Monitoring    | Sufficiently frequent station visits to capture:                                              |  |
| objectives    | Pre-spring freshet (late April – early May) to ensure loggers are synchronized and in working |  |
|               | order                                                                                         |  |
|               | Spring freshet (late May – early June snowmelt peak)                                          |  |
|               | Late melt (late June, early July)                                                             |  |
|               | Significant rain event(s)                                                                     |  |
|               | Summer low flow                                                                               |  |
|               | Pre-freeze-up (September) to winterize loggers (protect from freezing damage)                 |  |
|               | Early winter (November)                                                                       |  |
|               | Late winter/winter low flow (March)                                                           |  |
|               | Survey stage (water surface elevation) on each visit.                                         |  |
|               | Develop rating curve and derive continuous discharge from corrected stage time-series.        |  |
|               |                                                                                               |  |
| Measurement   | Open water (high to moderate): velocity-area method with ADV or equivalent (i.e. wading).     |  |
| methods       | Low flow and winter: salt dilution gauging following R.I.S.C. 2018 best practices.            |  |
|               | Stage survey with differential leveling                                                       |  |
|               | Follow R.I.S.C. 2018 guidelines.                                                              |  |
| Priority rank | 1 – Essential                                                                                 |  |

### KR-15 Peel Creek at Road

| Station name | KR-15 Peel Creek at Road                                                                                                                      |                                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Location     | 61.542206°, -132.247500° (WGS84), 1314 m asl                                                                                                  |                                                               |
|              | Located on Peel Creek on the right bank                                                                                                       | of the creek just upstream of where the flow enters a culvert |
|              | which passes (                                                                                                                                | under the Ketza camp access road.                             |
|              |                                                                                                                                               |                                                               |
| Watershed    | KR-15 hasin has maximum extents of                                                                                                            | 2.8 km by 1.1 km, a catchment area of 2.52 km², and the       |
| Area         |                                                                                                                                               | basin elevation is 2,134 m asl                                |
|              | maximam                                                                                                                                       | busin elevation is 2,134 in asi                               |
| Flow Range   | Low:                                                                                                                                          | Annual maximum:                                               |
|              | 2011-2012 Winter base flow in the                                                                                                             | 2012-06-24 Freshet peak: 0.466 m³/s                           |
|              | order of 0.010 m³/s                                                                                                                           | 2012 00 211 reshet pedit. 0.100 m /5                          |
| Rationale    | Significant tributary: in % of Cach                                                                                                           | e Creek flow, in contaminant loading (arsenic, sulfate)       |
| Photos       |                                                                                                                                               |                                                               |
|              | KR-15 looking at right bank                                                                                                                   | KR-15 looking upstream from culvert inlet                     |
|              | ROAD  CULVERT  (36")  ROAD  2012 Sketch of the layout of KR-15 – Peel Creek  Source: EBA. 2013. Ketza River Project 2012 Hydrological Report. |                                                               |
| Channel      | The terminus of the housing was in a gauging pool of water about 30 cm deep in 2012.                                                          |                                                               |
| conditions   |                                                                                                                                               | e filled in that pool has since installation.                 |
|              |                                                                                                                                               |                                                               |
|              | I                                                                                                                                             |                                                               |

| Station name              | KR-15 Peel Creek at Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                           | 03/15/2012 17:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Satellite<br>imagery      | The property of the 2010 OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                           | Imagery date: 2019-06  https://caltopo.com/map.html#ll=61.54284,-132.24933&z=16&b=imagery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Current<br>infrastructure | EBA (2013) installation notes: "A 2.5 m long, 5 cm diameter Schedule 40 galvanized steel pipe was attached to a large boulder located near the right bank of the creek by means of two heavy duty mounting tabs secured to the boulder with 3/8 inch by 6 inch long rock anchors. The pressure/temperature instrumentation located within the pipe housing is in about 0.25 metres water depth near the edge of the creek.  The staff gauge was vertically mounted to a pressure treated 2" x 4" by 8' pressure treated wooden stake driven into the river bed to a depth of 0.8metres. The gauge is further secured by attaching the back of the wooden stake to a 3 cm diameter rebar 2meters long that was driven one meter into the river bed.  Two benchmarks were installed consisting of rock anchor bolts installed on boulders at two locations within a 5metre radius of the hydrometric station housing." |  |

| Station name   | KR-15 Peel Creek at Road                                                                                                                        |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | Hydrometric Station Key Elevations                                                                                                              |  |
|                | June 15, 2012 at 16:45 Date and time of the elevation survey                                                                                    |  |
|                | 1314.000 metres MSL Assumed elevation of the primary benchmark BM1 (from Google Earth)                                                          |  |
|                | 1314.356 metres MSL Elevation of the secondary benchmark (BM2)                                                                                  |  |
|                | Elevation of the pressure / temperature sensor located within the housing  1312.162 metres MSL Elevation of the zero reading on the staff gauge |  |
|                | 1312.548 metres MSL Water surface elevation near the housing at the time of the survey                                                          |  |
|                | -0.143 metres Correction to staff gauge reading to obtain pressure transducer water level                                                       |  |
|                | Surveyed elevations in 2012 at KR-15 (EBA 2013)                                                                                                 |  |
|                | 2021 observations: staff gauge severely bent and buried in sediments. Aggradation in gauging pool                                               |  |
|                | (filled with fine rusty sediment); sensor and bottom of casing buried. 2012 installation unusable.                                              |  |
|                | Rock-bolted benchmarks stability not assessed.                                                                                                  |  |
| Recommended    | WRB suggests to keep this location and upgrade the infrastructure.                                                                              |  |
| infrastructure | Clear a 50 m trail upstream of station to facilitate access to a far enough injection site for salt dilution                                    |  |
|                | gauging.                                                                                                                                        |  |
|                | 94499.                                                                                                                                          |  |
|                | Installation as per R.I.S.C. 2018 guidelines:                                                                                                   |  |
|                | •                                                                                                                                               |  |
|                | Staff Gauge with adequate support structure                                                                                                     |  |
|                | 3 elevation benchmarks (rock bolt in boulder or ground rod driven to refusal)                                                                   |  |
|                | Stilling well                                                                                                                                   |  |
|                | Pressure transducer (continuous water level logger).                                                                                            |  |
|                | r ressare d'ansages (contantages water level logge.).                                                                                           |  |
| Monitoring     | Sufficiently frequent station visits to capture:                                                                                                |  |
| objectives     | Pre-spring freshet (late April – early May) to ensure loggers are synchronized and in working order                                             |  |
|                | Spring freshet (late May – early June snowmelt peak)                                                                                            |  |
|                | Late melt (late June, early July)                                                                                                               |  |
|                | Significant rain event(s)                                                                                                                       |  |
|                | Summer low flow                                                                                                                                 |  |
|                | Pre-freeze-up (September) to winterize loggers (protect from freezing damage)                                                                   |  |
|                |                                                                                                                                                 |  |
|                | Early winter (November)                                                                                                                         |  |
|                | Late winter/winter low flow (March)                                                                                                             |  |
|                | Survey stage (water surface elevation) on each visit.                                                                                           |  |
|                | Develop rating curve and derive continuous discharge from corrected stage time-series.                                                          |  |
|                |                                                                                                                                                 |  |
| Measurement    | High flow: velocity-area method with ADV or equivalent (i.e. wading).                                                                           |  |
| methods        | Moderate – low flow: salt dilution gauging following R.I.S.C. 2018 best practices.                                                              |  |
|                |                                                                                                                                                 |  |
| Priority rank  | 1 – Essential                                                                                                                                   |  |

# KR-08 Cache Creek (upstream of Peel confluence)

| Station name      | KR-08 Cache Creek (upstream of Peel confluence)                                                                                  |                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Location          | 61.542943°, -132.236814°, 1242 m asl                                                                                             |                                                                    |
| Watershed<br>Area | KR-08 basin has maximum extents of 5.3 km by 3.5 km, a catchment area of 14 km², and the maximum basin elevation is 2,075 m asl. |                                                                    |
| Flow Range        | Low:<br>Winter base flow in the order of 0.030 m³/s                                                                              | Annual maximum:<br>2012-06-24 Freshet peak: 3.5 m³/s<br>(estimate) |
| Stage Range       | N/A                                                                                                                              | N/A                                                                |
| Rationale         | Cache Creek flow downstream of tailings pond influence (tailings and water treatment discharge and                               |                                                                    |
|                   | tailings dam seepages).                                                                                                          |                                                                    |
| Photos            |                                                                                                                                  |                                                                    |
|                   | KR-08 looking upstream                                                                                                           | KR-13 looking downstream                                           |

| Station name | KR-08 Cache Creek (upstream of Peel confluence)                                                                  |
|--------------|------------------------------------------------------------------------------------------------------------------|
| Sketch       | ACCESS TRAIL  DISCHARGE  CROSS-SECTION BELOW 3.6  STAFF  GAUGE  2021 Sketch of the layout of KR-08 – Cache Creek |
| Channel      | The culvert debris from the old hydrometric infrastructure shaped the flow distribution, constricted to          |
| conditions   | left bank, which is convenient for station installation. No effective control in place, sparse boulders          |
|              | influence the water level in the reach but there is no well defined gauging pool present.                        |

| Station name          | KR-08 Cache Creek (upstream of Peel confluence)                                                         |  |
|-----------------------|---------------------------------------------------------------------------------------------------------|--|
| Satellite             |                                                                                                         |  |
| imagery               |                                                                                                         |  |
|                       | (R-0)                                                                                                   |  |
|                       | (1) KR-15                                                                                               |  |
|                       |                                                                                                         |  |
|                       |                                                                                                         |  |
|                       |                                                                                                         |  |
|                       | We Compliance                                                                                           |  |
|                       |                                                                                                         |  |
|                       |                                                                                                         |  |
|                       |                                                                                                         |  |
|                       |                                                                                                         |  |
|                       | KR-13 KR-14                                                                                             |  |
|                       |                                                                                                         |  |
|                       |                                                                                                         |  |
|                       | KR-01                                                                                                   |  |
|                       |                                                                                                         |  |
|                       | Imagery date: 2005-08-09                                                                                |  |
|                       | https://caltopo.com/map.html#ll=61.54372,-132.23447&z=15&b=imagery                                      |  |
| Current               | Debris of old infrastructure (prior to 2005). Staff gauge remains in stream but is not reliable (tilted |  |
| infrastructure        | and wobbly). No apparent benchmarks.                                                                    |  |
| Recommended           | WRB suggests to keep this location and upgrade the infrastructure.                                      |  |
| infrastructure        | We looked at an alternate location upstream of the Mill and Camp by KR-01 but could not find a          |  |
|                       | suitable reach and gauging pool due to channel braiding and low banks.                                  |  |
|                       | Installation as per R.I.S.C. 2018 guidelines:                                                           |  |
|                       | Staff Gauge with adequate support structure                                                             |  |
|                       | 3 elevation benchmarks (ground rod driven to refusal)                                                   |  |
|                       | Stilling well and pressure transducer (continuous water level logger).                                  |  |
| Monitoring            | Sufficiently frequent station visits to capture:                                                        |  |
| Monitoring objectives | Pre-spring freshet (late April – early May) to ensure loggers are synchronized and in working order     |  |
| objectives            | Spring freshet (late May – early June snowmelt peak)                                                    |  |
|                       | Late melt (late June, early July)                                                                       |  |
|                       | Significant rain event(s)                                                                               |  |
|                       | Summer low flow                                                                                         |  |
|                       | Pre-freeze-up (September) to winterize loggers (protect from freezing damage)                           |  |
|                       | Early winter (November)                                                                                 |  |
|                       | Late winter/winter low flow (March)                                                                     |  |
|                       | Survey stage (water surface elevation) on each visit.                                                   |  |
|                       | Develop rating curve and derive continuous discharge from corrected stage time-series.                  |  |
|                       |                                                                                                         |  |

| Station name  | KR-08 Cache Creek (upstream of Peel confluence)                                    |  |
|---------------|------------------------------------------------------------------------------------|--|
| Measurement   | High flow: velocity-area method with ADV or equivalent (i.e. wading).              |  |
| methods       | Moderate – low flow: salt dilution gauging following R.I.S.C. 2018 best practices. |  |
| Priority rank | 1 – Essential                                                                      |  |

### KR-14 Oxo Creek

| Station name      | KR-14 Oxo Creek Upper                                                                                                                     |                                               |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Location          | 61.533064°, -132.247683°, 1316 m asl                                                                                                      |                                               |
|                   | Station is located on the right bank of Oxo Creek about 130 metres south (upstream)                                                       |                                               |
|                   | of the confluence of Oxo and Cache Creek.                                                                                                 | The station is about 820 metres east of the   |
|                   | Ketza camp. To access the site, one must f                                                                                                | ollow a path from the tailings pond access    |
|                   | road up Oxo                                                                                                                               | Creek valley.                                 |
| Watershed<br>Area | KR14-Oxo Creek basin has maximum extents of 2.4 km by 2.7 km and a catchment area of 4.29 km². The maximum basin elevation is 1,954m asl. |                                               |
| Flow Range        | Low:                                                                                                                                      | Annual maximum:                               |
|                   | 2011-2012 Winter base flow in the order                                                                                                   | 2012-06-24 Freshet peak: 0.937 m³/s           |
|                   | of 0.010 m³/s                                                                                                                             |                                               |
| Stage Range       | 2012 open-water min: 0.150 m                                                                                                              | 2012 open-water max: 0.508 m                  |
| Rationale         | Oxo is one of the three major tributaries of                                                                                              | Cache Creek (along with Peel and Misery)      |
|                   | with their confluence just downstream                                                                                                     | of mine water discharge points (water         |
|                   | treatment outlet and to                                                                                                                   | ailings dam seepages)                         |
|                   | Oxo Creek flow record is useful in order to e                                                                                             | estimate the mine discharge (east of tailings |
|                   | pond) occurring between KR-13 a                                                                                                           | and KR-08 Cache Creek stations.               |
|                   |                                                                                                                                           |                                               |
| Photos            |                                                                                                                                           |                                               |
|                   | KR-14 looking upstream                                                                                                                    | KR-14 looking downstream                      |
| Sketch            | Housing 3m                                                                                                                                | S.G.                                          |
|                   | 2012 Sketch of the layou                                                                                                                  | ut of KR-14 - Oxo Creek                       |

| Station name   | KR-14 Oxo Creek Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | Source: EBA. 2013. Ketza River Project 2012 Hydrological Report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Channel        | To be less the Control of the Contro |  |
| conditions     | Turbulent flow in steep gradient of step-pools with cobble and boulder streambed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Satellite      | WO Complance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                | Imagery date: 2005-08-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                | Imagery date: 2005-08-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                | https://caltopo.com/map.html#II=61.52989,-132.23814&z=15&b=imagery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Current        | EBA (2013): "A 2.5 m long, 5 cm diameter Schedule 40 galvanized steel pipe was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| infrastructure | attached to a large boulder located near the right bank of the creek by means of two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                | heavy duty mounting tabs secured to a boulder with 3/8 inch by 6 inch long rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                | anchors. The pressure/temperature instrumentation located within the pipe housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                | in about 0.4metres water depth near the center of the creek.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                | The staff gauge was vertically mounted to a pressure treated 2" x 4" by 8' pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                | treated wooden stake which was attached to a large boulder by means of rock ancho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                | bolts. The staff gauge is located near the left bank of the creek near the pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                | transducer housing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                | Two benchmarks were installed consisting of rock anchor bolts installed on boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                | two locations within a 5metre radius of the hydrometric station housing."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                | Hydrometric Station Key Elevations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                | June 13, 2012 at 17:17 Date and time of the elevation survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                | 1316.000 metres MSL Assumed elevation of the primary benchmark BM1 (from Google Earth)  1316.175 metres MSL Elevation of the secondary benchmark (BM2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                | Elevation of the pressure / temperature sensor located within the housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                | 1315.055 metres MSL Elevation of the zero reading on the staff gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                | 1315.350 metres MSL Water surface elevation near the housing at the time of the survey  0.066 metres Correction to staff gauge reading to obtain pressure transducer water level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                | Correction to stall gauge reading to obtain pressure transducer water level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

2021 observations: staff gauge tilted, unusable since its placement is not vertical. Both sensor casing and staff gauge in a mediocre location, too close to turbulences. However, this gauging pool remains the best candidate in the reach before the gradient gets steeper and less accessible closer to confluence or upstream of current location.

| Station name   | KR-14 Oxo Creek Upper                                                                 |
|----------------|---------------------------------------------------------------------------------------|
|                |                                                                                       |
| Recommended    | WRB suggests to keep this location and upgrade the infrastructure.                    |
| infrastructure |                                                                                       |
|                | Installation as per R.I.S.C. 2018 guidelines:                                         |
|                | Staff Gauge with adequate support structure                                           |
|                | 3 elevation benchmarks (rock bolt in boulder or ground rod driven to refusal)         |
|                | Stilling well and pressure transducer (continuous water level logger).                |
| Monitoring     | Sufficiently frequent station visits to capture:                                      |
| objectives     | Pre-spring freshet (late April – early May) to ensure loggers are synchronized and in |
|                | working order                                                                         |
|                | Spring freshet (late May – early June snowmelt peak)                                  |
|                | Late melt (late June, early July)                                                     |
|                | Significant rain event(s)                                                             |
|                | Summer low flow                                                                       |
|                | Pre-freeze-up (September) to winterize loggers (protect from freezing damage)         |
|                | Early winter (November)                                                               |
|                | Late winter/winter low flow (March)                                                   |
|                | Survey stage (water surface elevation) on each visit.                                 |
|                | Develop rating curve and derive continuous discharge from corrected stage time-       |
|                | series.                                                                               |
| Measurement    | High flow: velocity-area method with ADV or equivalent (i.e. wading).                 |
| methods        | Moderate – low flow: salt dilution gauging following R.I.S.C. 2018 best practices.    |
| Priority rank  | 2 – Beneficial                                                                        |

## KR-13 Cache Creek Upper

| Station name | KR-13 Cach                                               | e Creek Upstream of TSF                                 |
|--------------|----------------------------------------------------------|---------------------------------------------------------|
| Location     | 61.533381°,                                              | -132.256428°, 1331 m asl                                |
|              | Located on Cache Creek in the approxim                   | ate vicinity of the existing camp, across the road from |
|              | the existing tailings pond. The housing is               | located on the left bank of the creek about 50 metres   |
|              | upstream of the tailings po                              | nd discharge location into Cache Creek.                 |
|              |                                                          |                                                         |
| Watershed    | KR13 basin has maximum extents of 4                      | 2 km by 2.6 km and a catchment area of 5.27 km².        |
| Area         |                                                          | sin elevation is 2,075m asl.                            |
| Flow Range   | Low:                                                     | Annual maximum:                                         |
|              | 2011-2012 Winter base flow in the<br>order of 0.011 m³/s | 2012-06-24 Freshet peak: 2.491 m³/s                     |
| Stage Range  | 2012 open-water min: 0.119 m                             | 2012 open-water max: 0.388 m                            |
| Rationale    | Cache Creek flow upstream of mine i                      | nfluence (tailings and water treatment discharge).      |
|              | However, flows maybe affected by mill                    | and camp runoff but we expect these impacts to be       |
|              | typicall                                                 | y below 0.003 m³/s                                      |
| Photos       |                                                          |                                                         |
|              | KR-13 looking upstream at sensor                         | KR-13 looking upstream at staff gauge                   |
| Sketch       |                                                          | 1                                                       |
|              |                                                          | 12                                                      |
|              |                                                          |                                                         |
|              | 5.6                                                      |                                                         |
|              | 2.0                                                      | 0                                                       |
|              | ← 3                                                      | HOUSENS A                                               |
|              | 1                                                        |                                                         |
|              | zon                                                      | ( EMZ (mil)                                             |
|              |                                                          |                                                         |
|              | y/saus                                                   | No.                                                     |
|              | TRAN                                                     | BM1/nck)                                                |
|              |                                                          |                                                         |
|              | ·                                                        | rout of KR-13 – Cache Creek Upper                       |
|              | Source: EBA. 2013. Ketza l                               | River Project 2012 Hydrological Report.                 |

| Station name              | KR-1                              | 3 Cache Creek Upstream of TSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel                   | Turbulent flow in steep gradient  | of step-pools with cobble and boulder streambed. Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| conditions                | constriction with high banks is c | onvenient to capture the whole range of water levels in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           |                                   | logger record.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Satellite                 | a <sup>™</sup> Ketza              | KR-13 615325, -132 25577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| imagery                   |                                   | EV 64-500 to COSSAN 1331 m WCSSAN 1331 m WC |
|                           | Google Omester                    | © Califon, MapRov, Mexik USDA Parm Service Agency, EOATT, contains modified Copernicus data (2019) N: WH 191E   Keyboard shortcots   Image may be subject to copyright   Terms of Use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                                   | Imagery date: 2019-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | https://caltopo.com/map           | .html#ll=61.53294,-132.25569&z=17&b=imagery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Current<br>infrastructure | a large boulder located on the le | diameter Schedule 40 galvanized steel pipe was attached to ft bank of the creek by means of heavy duty mounting tabs inch by 6 inch long rock anchors. The pressure/temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                           | instrumentation located within th | water depth at the time of the installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           |                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           |                                   | vas mounted to a 2" x 4" by 4' long pressure treated wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           |                                   | ed vertically to a large boulder near the right bank of the river                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 25metre                           | es upstream of the station housing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           | The two benchmarks consist of     | anchor bolts installed on the top of large boulders near the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           | station. BM1 is located 3 metres  | downstream of the housing near the creek left bank. BM2 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | located about 20metres o          | downstream and 3meters inland from the left bank."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                   | Hydrometric Station Key Elevations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | 6/13/2012, 10:16 AM               | Date and time of the elevation survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | 1331.000 metres MSL               | Assumed elevation of the primary benchmark BM1 (from Google Earth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | 1330.584 metres MSL               | Elevation of the secondary benchmark (BM2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           |                                   | Elevation of the pressure / temperature sensor located within the housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | 1330.258 metres MSL               | Elevation of the zero reading on the staff gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | 1330.601 metres MSL               | Water surface elevation near the housing at the time of the survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | -0.035 metres Surveyed ele        | Correction to staff gauge reading to obtain pressure transducer water level evations in 2012 at KR-13 (EBA 2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Recommended               | WRB suggests to ke                | ep this location and upgrade the infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| infrastructure            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Station name  | KR-13 Cache Creek Upstream of TSF                                                             |
|---------------|-----------------------------------------------------------------------------------------------|
|               | We looked at an alternate location upstream of the Mill and Camp by KR-01 but could not find  |
|               | a suitable reach and gauging pool due to channel braiding and low banks.                      |
|               |                                                                                               |
|               | Installation as per R.I.S.C. 2018 guidelines:                                                 |
|               | Staff Gauge with adequate support structure                                                   |
|               | 3 elevation benchmarks (rock bolt in boulder or ground rod driven to refusal)                 |
|               | Stilling well and pressure transducer (continuous water level logger).                        |
| Monitoring    | Sufficiently frequent station visits to capture:                                              |
| objectives    | Pre-spring freshet (late April – early May) to ensure loggers are synchronized and in working |
| -             | order                                                                                         |
|               | Spring freshet (late May – early June snowmelt peak)                                          |
|               | Late melt (late June, early July)                                                             |
|               | Significant rain event(s)                                                                     |
|               | Summer low flow                                                                               |
|               | Pre-freeze-up (September) to winterize loggers (protect from freezing damage)                 |
|               | Early winter (November)                                                                       |
|               | Late winter/winter low flow (March)                                                           |
|               | Survey stage (water surface elevation) on each visit.                                         |
|               | Develop rating curve and derive continuous discharge from corrected stage time-series.        |
| Measurement   | High flow: velocity-area method with ADV or equivalent (i.e. wading).                         |
| methods       | Moderate – low flow: salt dilution gauging following R.I.S.C. 2018 best practices.            |
| Priority rank | 1 – Essential                                                                                 |

## KR-01 Cache Creek Upstream of Mill and TSF

| Station name | KR-01 Cache Creek                             | Upstream of Mill and TSF                                |
|--------------|-----------------------------------------------|---------------------------------------------------------|
| Location     | 61.528983, -132                               | 2.27183°, 1414 m asl                                    |
|              | Located on Cache Creek in the reach upst      | tream of existing mill and camp, just upstream          |
|              | of waste rock / tailings piles. There is no h | ydrometric infrastructure at the current KR-01          |
|              | water quality sampling location but there     | are remnants of an older pre-2005 stilling well         |
|              | 50 m downs                                    | stream of KR-01.                                        |
| Watershed    | KR01 basin has maximum extents of 3.3         | 3 km by 2.6 km and a catchment area of 4.45             |
| Area         |                                               | km².                                                    |
|              | Maximum basin e                               | levation is 2,075m asl.                                 |
| Flow Range   | Low:                                          | Annual maximum:                                         |
|              | Winter base flow in the order of 0.010        | 2012 Freshet peak in the order 2.4 m³/s                 |
|              | m³/s                                          |                                                         |
| Stage Range  | N/A                                           | N/A                                                     |
| Rationale    |                                               | ence including the mill and its waste rock piles unoff. |
| Photos       | KR-01 looking upstream at sampling            | Downstream of KR-01 looking at old stilling             |
|              | location                                      | well (braided channel)                                  |
| Channel      | 1000.001                                      | pools with cobble and boulder streambed. The            |
| conditions   |                                               | gh vegetation downstream of KR-01 sampling              |
|              | <del>-</del>                                  | plicated for establishing a robust water level          |
|              |                                               | precise flow measurements.                              |
|              | 1 scora ana consaccing                        | p. 23.22 .10 W 11104041 011101101                       |

| Station name   | KR-01 Cache Creek Upstream of Mill and TSF                                                                                                                                              |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Satellite      | 7 Ketza KR01 61,5290,-132,27183 80 v 645,602 62,64330 H                                                                                                                                 |
| imagery        | → 14.1 m V/OSA  14.1 m V/OSA  16.0 m                                                                                                                                                    |
|                | 100 th.  ©COCION SUpSite Value USOA From Service Agency ECATE contains recorded Cocamina, and (COSS) for NN 101 to Expended Advances I maps may be subsent to copyright   Terms of Use. |
|                | Imagery date: 2019-06                                                                                                                                                                   |
| Comment        | https://caltopo.com/map.html#ll=61.52996,-132.27089&z=18&b=imagery                                                                                                                      |
| Current        | Old pre-2005 infrastructure is decrepit and channel conditions are not adequate there                                                                                                   |
| infrastructure | for meeting continuous monitoring requirements.                                                                                                                                         |
| Recommended    | WRB suggests to limit monitoring at KR-01 to discrete discharge measurements. These                                                                                                     |
| infrastructure | flow measurements must be conducted immediately after KR-13 flow measurements in                                                                                                        |
|                | order to potentially establish a reliable relationship between flow at KR-13 and KR-01.                                                                                                 |
|                | The continuous record at KR-13 could then be used to derive continuous flow at KR-01.                                                                                                   |
| Monitoring     | Sufficiently frequent station visits to capture:                                                                                                                                        |
| objectives     | Pre-spring freshet (late April – early May) r                                                                                                                                           |
|                | Spring freshet (late May – early June snowmelt peak)                                                                                                                                    |
|                | Late melt (late June, early July)                                                                                                                                                       |
|                | Significant rain event(s)                                                                                                                                                               |
|                | Summer low flow                                                                                                                                                                         |
|                | Pre-freeze-up (September)                                                                                                                                                               |
|                | Early winter (November)                                                                                                                                                                 |
|                | Late winter/winter low flow (March)                                                                                                                                                     |
|                | Measure flow at KR-01 immediately after KR-13.                                                                                                                                          |
|                | Estimate continuous discharge from the rating model at KR-13.                                                                                                                           |
| Measurement    | High flow: velocity-area method with ADV or equivalent (i.e. wading).                                                                                                                   |
| methods        | Moderate – low flow: salt dilution gauging following R.I.S.C. 2018 best practices.                                                                                                      |
| Priority rank  | 2 – Beneficial                                                                                                                                                                          |

Appendix H – Surficial Geology of the Ketza River Mine site





Appendix I – Groundwater Contours (Hemmera, August 2021)



Appendix J – Groundwater Monitoring Exceedance Summary (Hemmera, August 2021)

Table 4.4 Groundwater Exceedance Summary

|                  |                                                                                                                                                  | Parameters Exceeding and Dissolved Concentration                                                                                                                            | olved Concentration                                                                                                                    |                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| sample Location  | CCME-FAL                                                                                                                                         | FIGQFCS                                                                                                                                                                     | CSR AW                                                                                                                                 | CSR DW                                                       |
| 1510 Portal Well | Arsenic 13.8 µg/L                                                                                                                                | Sulphate 199 mg/L<br>Arsenic 13.8 µg/L<br>Total Cyanide 4.9 µg/L                                                                                                            | n/a                                                                                                                                    | n/a                                                          |
| BH-10-01A        | n/a                                                                                                                                              | Total Cyanide, 4.0 µg/L                                                                                                                                                     | n/a                                                                                                                                    | n/a                                                          |
| BH-10-02         | Fluoride 0.5 mg/L<br>Arsenic 38.9 µg/L                                                                                                           | Fluoride 0.5 mg/L<br>Sulphate 103 mg/L<br>Arsenic 38.9 µg/L                                                                                                                 | n/a                                                                                                                                    | Arsenic 38.9 μg/L<br>Total Cyanide 7.7 μg/L                  |
| BH-10-05         | n/a                                                                                                                                              | n/a                                                                                                                                                                         | n/a                                                                                                                                    | Manganese 69.3 µ/L                                           |
| Core Shack Well  | Fluoride 0.13 mg/L<br>Arsenic 34 µg/L<br>Selenium 1.46 µg/L                                                                                      | Fluoride 0.13 mg/L<br>Arsenic 34 µg/L<br>Selenium 1.46 µg/L                                                                                                                 | n/a                                                                                                                                    | Fluoride 0.13 mg/L<br>Arsenic 34 µg/L                        |
| GT-10-01         | Fluoride 0.27 mg/L<br>Zinc 11.8 µg/L                                                                                                             | Fluoride 0.27 mg/L<br>Sulphate 256 mg/L<br>Zinc 11.8 µg/L                                                                                                                   | n/a                                                                                                                                    | n/a                                                          |
| GT-10-06A        | Fluoride 0.55 mg/L Aluminum 560 µg/L Arsenic 1710 µg/L Cadmium 0.312 µg/L Chromium, Hexavalent 11.5 µg/L Copper 69.2 µg/L Total Cyanide 7.9 µg/L | Fluoride 0.55 mg/L<br>Sulphate 169 mg/L<br>Aluminum 560 µg/L<br>Arsenic 1710 µg/L<br>Cadmium 0.312 µg/L<br>Chromium 15.7 µg/L<br>Copper 69.2 µg/L<br>Total Cyanide 7.9 µg/L | Arsenic 1710 µg/L<br>Cadmium 0.312 µg/L<br>Chromium, Hexavalent 11.5<br>µg/L<br>Copper 69.2 µg/L<br>Nickel 369 µg/L<br>Sodium 244 µg/L | Aluminum 560 µg/L Antimony<br>9.98 µg/L<br>Arsenic 1710 µg/L |
| HYD-08-1A        | Fluoride 0.19 mg/L<br>Uranium 33.3 µg/L                                                                                                          | Fluoride 0.19 mg/L<br>Sulphate 101 mg/L<br>Uranium 33.3 µg/L                                                                                                                | n/a                                                                                                                                    | n/a                                                          |
| HYD-08-01B       | Arsenic 19.2 µg/L<br>Iron 0.306 mg/L                                                                                                             | Arsenic 19.2 µg/L<br>Iron 0.306 mg/L                                                                                                                                        | n/a                                                                                                                                    | Iron 0.306 mg/L<br>Manganese 69.4 µg/L                       |

|                 |                                                                                                                                                                       | Parameters Exceeding and Dissolved Concentration                                                                                                                                                        | lved Concentration                                     |                                                                                                      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Sample Location | CCME-FAL                                                                                                                                                              | FIGQFCS                                                                                                                                                                                                 | CSR AW                                                 | CSR DW                                                                                               |
| HYD-08-02       | Arsenic 12.2 µg/L<br>Copper 5.58 µg/L<br>Zinc 63.4 µg/L                                                                                                               | Arsenic 12.2 µg/L<br>Barium 647 µg/L<br>Copper 5.58 µg/L<br>Zinc 63.4 µg/L                                                                                                                              | n/a                                                    | Manganese 59.7 µg/L                                                                                  |
| HYD-08-04A      | Fluoride 0.49 mg/L<br>Arsenic 8.67 µg/L<br>Zinc 14.5 µg/L                                                                                                             | Fluoride 0.49 mg/L<br>Sulphate 218 mg/L<br>Arsenic 8.67 µg/L<br>Zinc 14.5 µg/L                                                                                                                          | n/a                                                    | n/a                                                                                                  |
| HYD-08-06A      | Fluoride 0.13 mg/L<br>Arsenic 11.5 µg/L<br>Iron 0.666 mg/L                                                                                                            | Fluoride 0.13 mg/L<br>Sulphate 497 mg/L<br>Arsenic 11.5 µg/L<br>Iron 0.666 mg/L                                                                                                                         | n/a                                                    | Iron 0.666 mg/L                                                                                      |
| HYD-08-08       | Fluoride 0.18 mg/L<br>Zinc 11.7 µg/L                                                                                                                                  | Fluoride 0.18 mg/L<br>Sulphate 300 mg/L<br>Zinc 11.7 µg/L                                                                                                                                               | n/a                                                    | Manganese 262 µg/L                                                                                   |
| HYD-08-09A      | Fluoride 0.21 mg/L<br>Aluminum 2880 µg/L<br>Cadmium 0.304 µg/L<br>Total Cyanide 141 µg/L<br>Zinc 129 µg/L                                                             | Fluoride 0.21 mg/L<br>Sulphate 223 mg/L<br>Aluminum 2880 µg/L<br>Cadmium 0.304 µg/L<br>Total Cyanide 141 µg/L<br>Zinc 129 µg/L                                                                          | Cobalt 21 µg/L<br>Total Cyanide 141 µg/L               | Aluminum 2880 µg/L<br>Manganese 322 µg/L                                                             |
| HYD-08-10       | Fluoride 0.78 mg/L Aluminum 18700 µg/L Arsenic 825 µg/L Calcium 1.25 µg/L Chromium, trivalent 13.2 µg/L Cobalt 313 µg/L Iron 62.5 mg/L Nickle 85.7 µg/L Zinc 221 µg/L | Fluoride 0.78 mg/L<br>Sulphate 760 mg/L<br>Aluminum 18700 µg/L<br>Arsenic 825 µg/L<br>Calcium 1.25 µg/L<br>Chromium 13.2 µg/L<br>Cobalt 313 µg/L<br>Iron 62.5 mg/L<br>Nickle 85.7 µg/L<br>Zinc 221 µg/L | Arsenic 825 µg/L<br>Calcium 1.25 µg/L<br>Zinc 221 µg/L | Sulphate 760 mg/L<br>Aluminum 18700 µg/L<br>Arsenic 825 µg/L<br>Iron 62.5 mg/L<br>Manganese 332 µg/L |

|                        |                                                                                                                                           | Parameters Exceeding and Dissolved Concentration                                                                                                                                        | lved Concentration                                                           |                                                                                                                                 |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Sample Location        | CCME-FAL                                                                                                                                  | FIGQFCS                                                                                                                                                                                 | CSR AW                                                                       | CSRDW                                                                                                                           |
| HYD-08-11A             | Fluoride 1.56 mg/L Aluminum 24800 µg/L Arsenic 58.6 µg/L Cadmium 6.66 µg/L Cobalt 610 µg/L Copper 529 µg/L Nickel 266 µg/L Zinc 1220 µg/L | Fluoride 1.56 mg/L<br>Sulphate 566 mg/L<br>Aluminum 24800 µg/L<br>Arsenic 58.6 µg/L<br>Cadmium 6.66 µg/L<br>Copper 529 µg/L<br>Manganese 1750 µg/L<br>Nickel 266 µg/L<br>Zinc 1220 µg/L | Arsenic 58.6 μg/L<br>Cadmium 6.66 μg/L<br>Cobalt 610 μg/L<br>Copper 529 μg/L | Fluoride 1.56 mg/L<br>Sulphate 566 mg/L<br>Aluminum 24800 µg/L<br>Arsenic 58.6 µg/L<br>Cadmium 6.66 µg/L<br>Manganese 1750 µg/L |
| HYD-08-17              | Cyanide 9.2 μg/L<br>Iron 2.36 mg/L<br>Uranium 17 μg/L                                                                                     | Sulphate 254 mg/L<br>Cyanide 9.2 µg/L<br>Iron 2.36 mg/L<br>Uranium 17 µg/L                                                                                                              | n/a                                                                          | Iron 2.36 mg/L<br>Manganese 60.5 µg/L                                                                                           |
| KR-05-688              | n/a                                                                                                                                       | Sulphate 166 mg/L                                                                                                                                                                       | n/a                                                                          | n/a                                                                                                                             |
| New Camp Water<br>Well | Arsenic 9.27 µg/L                                                                                                                         | Arsenic 9.27 µg/L                                                                                                                                                                       | n/a                                                                          | n/a                                                                                                                             |
| P90-7B                 | Arsenic 20.6 µg/L<br>Total Cyanide 8.5 µg/L                                                                                               | Arsenic 20.6 µg/L<br>Total Cyanide 8.5 µg/L                                                                                                                                             | n/a                                                                          | n/a                                                                                                                             |
| P90-8                  | Arsenic 506 µg/L<br>Total Cyanide 10.2 µg/L<br>Iron 1.09 mg/L                                                                             | Sulphate 189 mg/L<br>Arsenic 506 µg/L<br>Total Cyanide 10.2 µg/L<br>Iron 1.09 mg/L                                                                                                      | Arsenic 506 µg/L                                                             | Arsenic 506 µg/L<br>Iron 1.09 mg/L                                                                                              |
| P96-12A                | Arsenic 9.1 µg/L<br>Total Cyanide 15.5 µg/L                                                                                               | Arsenic 9.1 µg/L<br>Total Cyanide 15.5 µg/L                                                                                                                                             | n/a                                                                          | Manganese 840 µg/L                                                                                                              |
| P96-12B                | Arsenic 427 µg/L                                                                                                                          | Sulphate 125 mg/L<br>Arsenic 427 µg/L<br>Manganese 1720 µg/L                                                                                                                            | Arsenic 427 µg/L                                                             | Arsenic 427 µg/L<br>Manganese 1720 µg/L                                                                                         |
| Upper Mill Well        | Fluoride 0.57 mg/L<br>Arsenic 667 µg/L<br>Iron 0.915 mg/L<br>Zinc 27.2 µg/L                                                               | Fluoride 0.57 mg/L<br>Sulphate 118 mg/L<br>Arsenic 667 µg/L<br>Total Cyanide 3.7 µg/L<br>Iron 0.915 mg/L<br>Zinc 27.2 µg/L                                                              | Arsenic 667 µg/L                                                             | Arsenic 667 µg/L<br>Iron 0.915 mg/L                                                                                             |