

NORTHERN BOREAL FOREST CONVERSION TO AGRICULTURAL LANDSCAPES ALTERS SOIL MICROBIAL CARBON AND NITROGEN CYCLING POTENTIAL

Brent Seuradge¹, Kristine Ferris², Jonathan Lucas², Rachel Pugh³, Lori Phillips¹

¹ Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, ON ²Energy, Mines and Resources, Agriculture Branch, Government of Yukon, Whitehorse, YT ³Yukon University Research Center, Yukon University, Whitehorse, YT

NORTHERN CANADA & CLIMATE CHANGE

- Warming due to Climate Change is occurring rapidly in Boreal and Arctic regions in Canada
- ---> Growing interest and capacity to convert land to agriculture as warming continues
- Potential contributors to food supplies²

FOREST CONVERSION TO AGRICULTURE IN YUKON

- Yukon Government's 2020 published policy on Agriculture, Climate Change, Energy, and a Green Economy
- ---> Focus on agricultural intensification
- ---- Assess forest removal strategies for land clearing

CONVENTIONAL METHODS

EXPERIMENTAL TRIALS

- ---> Land clearing/mulch experiment
- ---→ Ibex Valley, Yukon
- ---- Assess how cleared forest material can be introduced back into the soil environment, improving soil health

Undisturbed forest

Mixed aspen,coniferous (pine,spruce), openwoodland with somewillow

Conventional

Tree material
completely NOT reintroduced into
plots but burned
(once dried)

Surface Mulch

Tree material
 mulched and applied
 at sowing (each
 year, starting 2021)
 to soil surface

Subsoil Mulch

Tree material
mulched and
incorporated into
soil to a depth of 912"

- --- Samples taken from 0-15 cm
- --- Oats (*Avena sativa*)
- ---> Fertilization (applied at the time of seeding each year):

2021: ~175lb/ac 30-8-8-4

2022: ~158lb/ac 30-8-8-4

Assess the impacts of different land conversion strategies (mulching techniques) from forest to agriculture on:

Assess the impacts of different land conversion strategies (mulching techniques) from forest to agriculture on:

---> The soil microbial (bacterial and fungal) community composition

Assess the impacts of different land conversion strategies (mulching techniques) from forest to agriculture on:

- The soil microbial (bacterial and fungal) community composition
- The soil microbial nutrient cycling potential

Assess the impacts of different land conversion strategies (mulching techniques) from forest to agriculture on:

Which processes are being activated/deactivated as a response to land conversion and what are the implications for GHG emissions and agricultural management?

METHODS

Marker-gene amplicon sequencing

- --- 16S rRNA gene (bacteria)
- ---> ITS2 (fungi)

Quantitative PCR

C-CYCLING

- ---→ Xylanse (CH11) Hemicelluose breakdown
- Cellulose breakdown

NITRIFICATION

- ---> Ammonia monooxygenase (amoA) NH₁₁⁺ ► NO₂⁻
- ---> Cellobiohydrolase (CBH) ---> Nitrite oxidoreductase (nxrA) NO₂. ► NO₃.

DENITRIFICATION

- ---> Nitrite reductase (nirK) NO₂. ► NO
- --- Nitrous oxide reductase (nosZ) $N_20 \triangleright N_2$

WHAT DID WE FIND?

RAPID FUNDAMENTAL SHIFTS IN MICROBIAL COMMUNITIES

RAPID FUNDAMENTAL SHIFTS IN MICROBIAL COMMUNITIES

- ----> Conventional and
 Surface mulch
 treatments showed
 more similar
 responses
- Subsoil treatments showed the greatest shift from the undisturbed systems
- Very strong shifts in key taxa

Conversion strategy

- Undisturbed forest
- Conventional
- Surface mulch
- Surface mulch
 Subsoil mulch

Collection month

- □ Sep

Edaphic gradients

- → Total carbon (w/w)
- → Total nitrogen (w/w)
- → NH₄⁺-N (mg kg⁻¹ dry weight)
- → NO₃⁻-N (mg kg⁻¹ dry weight)
- --> Not significant (p > 0.05)

- Strong shifts in key NCycling bacteria in the
 Conventional and
 Surface Mulch
 systems
- Consistent
 relationship in genes
 associated with
 nitrification
- → Effect less pronounced in the Subsoil Mulch

- **—→** Dominant fungal taxa:
 - ---→ Ascomycota (~50-90%)
 - → Basidiomycota (~15-45%)
- ---> Shift from Basidiomycota to Ascomycota when forest was converted to agriculture

- **---→** Dominant fungal taxa:
 - ---→ Ascomycota (~50-90%)
 - → Basidiomycota (~15-45%)
- ---> Shift from Basidiomycota to Ascomycota when forest was converted to agriculture
- ---> C-Cycling genes associated with hemicellulose and cellulose showed most variation across treatments
- More pronounced effects in the Conventional and Surface Mulch treatments

HIGHER POTENTIAL FOR INCOMPLETE DENITRIFICATION

HIGHER POTENTIAL FOR INCOMPLETE DENITRIFICATION

Spikes in genes associated with production of N₂0 but the agricultural treatments are similar (if not less) to the undisturbed forests in terms of denitrification potential

CONCLUSIONS

- Forest clearing and Mulching techniques fundamentally shifted microbial community composition and C & N Cycling potential
- ---> Subsoiling appears to moderate the microbial community response of forest conversion
 - More stable "slow release" of nutrients without completely removed C from the system
- ··· Microbial potential to release N₂O

FUTURE DIRECTIONS

- ---> Longer term tracking of how this system evolves (agronomy, nutrient pools, microbial ecology)
- ---> Implementing direct measures of greenhouse gas emissions insitu

ACKNOWLEDGEMENTS

CO-PIs

Lori Phillips
Kristine Ferris
Jonathan Lucas
Rachel Pugh

Field Assistance
Dillon Vickerman

Lab Assistance Savannah Knorr

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

HOW DO WE APPROACH THIS?

It's complicated...

- ---> Emphasize adapting to regional agricultural practices currently being used by communities in Northern regions
- ---> Long term research is required to assess impacts on nutrient cycling potential and biological communities

"UNTAPPED" POTENTIAL?

BENEFICIAL

- Estimates of up to 1 billion people can be fed by 2100 by a 10-20% expansion of agriculture into northern regions²
- ---> Potential to 1 autonomy in Northern communities

ADVERSE

- ---→ Boreal forests stores ~32% of the global forest carbon stocks¹
- Agricultural conversion may cause upwards of a 76% loss of carbon stored in plants and soils
- ---> Potential increasing GHG emissions?¹

IMPACTS OF LAND CONVERSION

Community composition

IMPACTS OF LAND CONVERSION

Community composition

SOILS ARE IMPORTANT

SOILS ARE IMPORTANT

Nutrient Cycling / Fertility

C, N, P, S

Soil Formation & Weathering

Plant / Crop Health

Pollutant degradation

Carbon Sequestration

Soil Resiliency

Human Health

IMPACTS OF LAND CONVERSION

**p* < 0.05

IMPACTS OF LAND CONVERSION

What are the implications of this fundamental switch in fungal dominance?

Basidiomycota includes:

- Mushrooms (edible and poisonous), smuts, and rusts
 - many ectomycorrhizal fungi
 - many decomposers that are capable of breaking down lignin

Ascomycota includes:

- yeasts and filamentous fungi
 - other mycorrhizal species
- many decomposers of other types of plant material
 - pathogens

But lots of functional complementarity: many Ascomycota will perform the same role as Basidiomycota did in the forest, just in their own terms/time

Fungal pictures: DOI: 10.1128/microbiolspec.FUNK-0053-2016