

Marsh Lake Wastewater Treatment Facility Water Resources Revised Audit Report

Date of site visit: July 13, 2020

Licensee: Yukon Government – Community Services

Licence number: MS97-076-2 (Expired); MN20-058

(effective June 25, 2021)

Distribution list: YG-ECI, YG-CS, KDFN, CTFN, ECCC

Report Issued: Originally released February 2021;

revised September 2021

Field Team: Tyler Williams, Norbert Botca,

Ralph Yuson, Brendan Mulligan

Lead Author: Tyler Williams

The Water Resource Branch (WRB) is responsible for monitoring surface and groundwater in Yukon and is committed to responsible management, protection and conservation of the territory's water resources. As technical experts in water resources, we provide advice for compliance and inspections purposes and conduct reviews of projects undergoing water licensing and environmental assessment processes.

One of WRB's responsibilities is to conduct site visits of various undertakings that use or deposit waste to water. Site visits are undertaken to improve understanding of a project's effects on the receiving water environment, with the intention of identifying emerging issues and enhancing understanding of existing water quality and quantity conditions to support technical advice and input into assessment, licensing, and post-licensing processes. The opinions and recommendations expressed in this report are based on relevant data, reports, interpretation/analyses of scientific information available to WRB, and what was observed in the field.

This report is a revised version of the preliminary report released in February 2021 Due to COVID-19, the analytical laboratory at Environment and Climate Change Canada had been closed for an extended period of time. As a result, artificial sweetener samples were frozen and analyzed almost exactly one year after they had been sampled. This version of the report was revised to include these results.

Contents

Key Findings	3
Audit objectives	3
Background	3
History	3
Hydrogeology	4
Flow Volumes	6
Site Visit	6
Results	7
Groundwater Chemistry	7
Groundwater Level	13
Surface Water Quality	14
Conclusions	18
Recommendations	18
References	19
Appendix A: Field Notes	21
Appendix B: Photo Log	28
Appendix C: Quality Assurance and Control	33
Appendix D: Certificates of Analysis	36

Key Findings

- Wastewater from the exfiltration lagoon is unlikely to emerge in the surface depression west of the facility under current operating conditions;
- Wastewater from the lagoon is unlikely to be detectable in Judas Creek;
- At the time of the field visit, there remained considerable uncertainty as to the exact direction of groundwater flow around the facility. Additional information has now been gathered (AE, 2021) and depicts complex groundwater behavior around the facility;

Audit objectives

- 1. Determine whether there is a detectable presence of wastewater in Judas Creek or nearby ponds to inform future monitoring needs
- 2. Evaluate the direction of groundwater flow from the facility at the time of visit
- 3. Collect further data to inform the impact of the facility on the d/g well

Background

History

The Marsh Lake Wastewater Treatment Facility (MLWTF) was constructed in 1997 to receive raw septage trucked from local communities. The facility consists of a lined anaerobic lagoon to receive raw influent and settle solids, which then spills into an exfiltration lagoon where water evaporates and infiltrates to ground (ELR, 2020a).

The facility has not operated since September 2018. The anaerobic lagoon currently requires desludging and samples of the sludge have indicated levels exceeding the relevant Contaminated Sites Regulation (CSR) standards for hydrocarbons and zinc (ELR, 2020a). The previous water licence (MS97-076-2) expired June 1, 2020. A new water licence (MN20-058) was issued in June 2021, including authorization of sludge drying beds to facilitate desludging.

The expired licence required water monitoring from two groundwater wells (ML-3 and ML-4), a kettle pond 750m down slope of the facility (ML-7), two sites upstream and downstream on Judas Creek (ML-5 and ML-6) (Figure 1a), and two potential seep locations, which have never had any observed flow (ML-1 and ML-2). The new licence

removed the requirements for ongoing surface water sampling, and added additional groundwater sampling stations.

Hydrogeology

Hydrogeological interpretations were made as part of the original water licence application in 1997, based primarily on surface topography and the stratigraphy in three wells that did not reach the water table (NovaTec, 1997; EBA, 1997). These wells were completed in overburden of mostly sand and gravel to depths close to 30m. It was hypothesized that groundwater from the facility discharged to surface in one of three ways: 1) via seeps in a depression west of the facility; 2) via the kettle lake ~750m to the southwest; or 3) via Judas Creek ~1km to the southwest. A conservatively fast estimate of travel time predicted a minimum of 10 years to emerge on slope of the depression west of the facility (EBA, 1997).

Additional hydrogeology interpretations were made in 2012 based on three new wells (Golder, 2013), and again in 2020 (AE, 2021) based on four new boreholes installed after the WRB field visit. Both of these documents (Golder, 2013; AE, 2021) only became available in the final editing stages of this report; therefore, information from these studies was largely not considered in the subsequent analysis sections of this report.

The interpretations based on the 2020 field work concluded that there is a confined aquifer along the east side of the facility with groundwater flows generally towards the southwest at 0.01 to 1.5 m/day, and an unconfined aquifer along the west side of the facility with flows generally towards the west estimated at 8 m/day. This suggests considerably faster travel times then predicted by the 1997 work.

The wells that are currently monitored as ML-3 and ML-4 are not the same wells as were originally referenced by these codes in the original licence MS97-076 (Figure 1b). In the case of ML-3, the new well is only a few meters from the original well; however, ML-4 has been relocated by about 50 m, with the older ML-4 (aka BH119192-02) well situated west of the exfiltration lagoon about half way up the long side of the lagoon (EBA, 1997). Based on the original hypotheses for potential flow directions, we expect that both ML-3 and ML-4 were originally intended to monitor potential downgradient flow paths. Recent reporting has referred to ML-3 as the downgradient well, and the relocated ML-4 as the upgradient well (ELR, 2020b).

Figure 1c shows the 2012 wells (with observed well depths of 37 and 43 m) in comparison to the local topography. The surficial geology between the facility and Judas Creek is identified as glaciofluvial sands and gravels (sgFGhtrM) (Yukon Geological Survey, 2014). Several elongated steeply sloping ridges run parallel to Judas Creek in-

between the creek and the MLWTF. The pond to the east of the MLWTF (ML-8) is upslope of the facility (Figure 1c).

Figure 1: (A) Water monitoring locations sampled during audit around MLWTF with groundwater sampling locations in red, and surface water locations in blue; (B) surface elevation in the vicinity of the lagoons with 2m contours (red shading indicating higher ground); and (C) cross section of the profile identified by the orange line in figure 1A, elevation source: Yukon Government LiDAR.

Flow Volumes

The facility was designed for an influent of 35 m^3 /day over a five month period (ELR, 2020a), which is about 5,250 m³ total. Actual influent volumes have been well below that (see Figure 3) with the highest annual influent reported at 1,833 m³ (source: annual reports since 2012). For comparison purposes, Judas Creek at the point where it passes the MLWTF has a drainage area of roughly 200 km²; using a conservatively low end prediction for the mean annual runoff (73mm: Yukon Ecoregions, 2004), this equates to about $1.46 \times 10^7 \text{ m}^3$ of annual flow.

Site Visit

Water Resources Branch (WRB) conducted the field audit on July 13, 2020. The team split into two groups: one sampling the groundwater wells and ML-8, the second group conducting surface water sampling south and west of the highway (Table 1). Access to Judas Creek was difficult with thick bush and undulating terrain. Each team collected field parameters using separate YSI ProDSS multiparameter sondes and sent samples for analysis to CARO labs. Additionally, artificial sweetener samples were collected, frozen, and sent to ECCC labs. The sweetener samples were analysed on July 27, 2021.

Weather during the site visit was mostly overcast with a few sunny breaks in the afternoon. Air temperatures were around 15°C. Rainfall had generally been above normal in the region in the weeks leading up to the site visit; however, conditions had been relatively dry for the past few days. Flow in Judas Creek appeared to be moderate based on the size of the channel.

Table 1. Water Quality Sampling Locations

Groundwater	Alias	Site Description	
ML-3	MW12-02	2012 well south of anaerobic lagoon	
ML-4	MW12-01	2012 well northwest of infiltration lagoon	
MW12-03		2012 well southeast of anaerobic lagoon	
Surface Water		Site Description	
ML-5		Judas Creek upstream	
ML-6	Judas Creek downstream		
ML-7	Pond apx. 750 m south-southwest of the facility		
ML-8 *		Pond apx. 700 m east of the facility	
ML-9	F	Pond apx. 800 m southwest of the facility	

^{*}note: In the water licence issued in June 2021: ML-8 is identified as 'center of the anaerobic lagoon'. This has created a duplicate meaning for this code.

Results

Groundwater Chemistry

Past groundwater chemistry results from ML-3 and ML-4 have shown elevated concentrations of some parameters in the presumed downgradient well (ML-3) when compared with the presumed upgradient well (ML-4) (ELR, 2020b). This has occasionally included the presence of hydrocarbons (specifically EPH_{w10-19} and EPH_{w19-32}) in ML-3. However, further analysis of these EPH detections in May 2020 using silica-gel analysis found undetectable levels, and this was interpreted to mean the hydrocarbons were biogenic in origin (ELR, 2020b). Notably, silica-gel analysis is expected to reduce the concentration regardless of the origin compared to non-silica-gel analysis, and so a sufficiently high enough detectable result is needed to confirm a beiogenic origin. As the current interpretation, is based on a single sample with a fairly low EPH, it is difficult to make concrete conclusions at this time.

Samples from the July site visit were analyzed for aggregated hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs), with no detections in any of the three groundwater wells (Table 2 and Appendix D).

Table 2 shows that concentrations of some metals and nutrients in the presumed downgradient wells (ML-3 and MW12-03) are elevated relative to the presumed upgradient well (ML-4). In particular, relatively-elevated nitrate, ammonia, and phosphorus concentrations in the presumed downgradient wells are all probable effects from wastewater influence. However, the concentrations observed in these wells are not elevated in an absolute sense. All metals and nutrients with CSR standards are well below these standards in these wells (Table 2). For example, ammonia in the downgradient wells is approximately two orders of magnitude below the calculated CSR standard for ammonia (3.7 mg/L, in this case).

A Piper plot (Figure 2) shows that all of the water samples collected during this audit are of the same water type. No clear impact to the downgradient wells is observed. Although no sewage effluent chemistry is available, we would expect relatively-elevated sodium and chloride in the source wastewater (plotting further to the right on both the ternary plots and the diamond-shaped part of the diagram); however, the presumed downgradient wells remain calcium/magnesium-bicarbonate type water. Chloride concentrations in the presumed downgradient wells are elevated relative to the presumed upgradient well; however, they are less than 1 mg/L (Table 2).

Overall, the chemical data indicate that the presumed downgradient wells are influenced by wastewater, but not significantly.

Table 2: Groundwater chemistry results compared between the presumed upgradient well (ML-4) and two presumed downgradient wells (ML-3 and MW12-03). Percent differences are expressed between the upgradient and downgradient wells, with red shading indicating increasing concentrations downgradient, and blue shading indicating decreasing concentrations downgradient. Where detections downgradient are compared with non-detects upgradient, these are identified as "increase". CSR standards are presented as in Schedule 3 of the Contaminated Sites Regulations; proposed WQO's were obtained from values presented in the ongoing water licence process for MN20-058.

	Sta	ndards	Мо	Monitoring Data			Percent Difference *	
	CCD	Proposed	201.4		MW12-	ML-4 &	ML-4 &	
Dissolved Metals	CSR	WQO	ML-4	ML-3	03	ML-3	MW12-03	
Aluminum (mg/L)			**	<0.005	<0.005	ND	ND	
Antimony (mg/L)	0.2		<0.0002	0.00023	0.0002	Increase	Increase	
Arsenic (mg/L)	0.05		<0.0005	0.00086	0.00071	Increase	Increase	
Barium (mg/L)	10		0.0556	0.0175	0.0355	-104%	-44%	
Beryllium (mg/L)	0.053		<0.0001	<0.0001	<0.0001	ND	ND	
Bismuth (mg/L)			<0.0001	<0.0001	<0.0001	ND	ND	
Boron (mg/L)			<0.05	0.159	0.126	Increase	Increase	
Cadmium (mg/L)	calc.		<0.00001	0.000168	<0.00001	Increase	ND	
Calcium (mg/L)			67.6	58.3	53.9	-15%	-23%	
Chromium (mg/L)			0.00113	0.00682	0.00331	143%	98%	
Cobalt (mg/L)	0.009		<0.0001	<0.0001	<0.0001	ND	ND	
Copper (mg/L)	calc.		0.00117	0.00083	0.00071	-34%	-49%	
Iron (mg/L)			<0.01	<0.01	<0.01	ND	ND	
Lead (mg/L)	calc.		<0.0002	<0.0002	<0.0002	ND	ND	
Lithium (mg/L)			0.00218	0.00363	0.00328	50%	40%	
Magnesium (mg/L)			26.4	40.3	34.6	42%	27%	
Manganese (mg/L)			0.00025	0.00101	0.00037	121%	39%	
Molybdenum (mg/L)	10		0.00125	0.00816	0.00747	147%	143%	
Nickel (mg/L)	calc.		0.00205	0.00303	0.00171	39%	-18%	
Phosphorus (mg/L)			<0.05	<0.05	<0.05	ND	ND	
Potassium (mg/L)			1.87	2.47	2.27	28%	19%	
Selenium (mg/L)	0.01		<0.0005	0.0029	0.002	Increase	Increase	
Silicon (mg/L)			5	6	5.6	18%	11%	
Silver (mg/L)	calc.		<0.00005	<0.00005	<0.00005	ND	ND	
Sodium (mg/L)			4.95	6.2	4.74	22%	-4%	
Strontium (mg/L)			0.547	0.494	0.391	-10%	-33%	
Sulphur (mg/L)			21.4	23	19.2	7%	-11%	
Tellurium (mg/L)			<0.0005	<0.0005	<0.0005	ND	ND	
Thallium (mg/L)	0.003		<0.00002	<0.00002	<0.00002	ND	ND	
Thorium (mg/L)			<0.0001	<0.0001	<0.0001	ND	ND	
Tin (mg/L)			<0.0002	0.00024	0.00033	Increase	Increase	
Titanium (mg/L)	1		<0.005	<0.005	<0.005	ND	ND	

Tungsten (mg/L)			<0.001	<0.001	<0.001	ND	ND
Uranium (mg/L)	3		0.000621	0.000384	0.00111	-47%	56%
Vanadium (mg/L)			<0.001	<0.001	<0.001	ND	ND
Zinc (mg/L)	calc.		<0.004	<0.004	<0.004	ND	ND
Zirconium (mg/L)			<0.0001	<0.0001	<0.0001	ND	ND
Nutrients, Physical, Routin	ne						
Chloride (mg/L)			0.42	0.99	0.99	81%	81%
Sulphate (mg/L)	1000		65.5	65.6	61.1	0%	-7%
Bromide (mg/L)			<0.10	<0.10	<0.10	ND	ND
Ammonia (mg/L)	calc.	calc.	<0.050	0.092	0.055	Increase	Increase
Nitrate, as N (mg/L)	400		0.126	0.266	0.386	71%	102%
Nitrite, as N (mg/L)	calc.		<0.01	<0.01	<0.01	ND	ND
Phosphorus, Total Phospha	ate (mg/l	_)	0.0516	0.394	1.1	154%	182%
Dissolved Organic Carbon	(mg/L)		4.34	6.57	4.53	41%	4%
Total Inorganic Carbon (mg	g/L)		62.1	74.9	82.5	19%	28%
Total Organic Carbon (mg/	L)		4.49	7.01	5.43	44%	19%
Dissolved Inorganic Carbon							
(mg/L)			60.5	66.1	64.8	9%	7%
Alkalinity, Bicarbonate (mg	CaCO3/L	_)	272	278	273	2%	0%
Alkalinity, Carbonate (mgC	aCO3/L)		<1.0	<1.0	<1.0	ND	ND
Alkalinity, Hydroxide (mgC	aCO3/L)		<1.0	<1.0	<1.0	ND	ND
Alkalinity, Phenolphthaleir	(mgCaC	O3/L)	<1.0	<1.0	<1.0	ND	ND
Alkalinity, Total (mgCaCO3	/L)		272	278	273	2%	0%
pH, Field		6 to 9	7.59	7.88	7.71	4%	2%
pH, Lab		6 to 9	8.05	8.14	8.13	1%	1%
Hardness (mgCaCO3/L)			278	312	277	12%	0%
Specif Cond. = Field (uS/cm	n)		574	551	547	4%	3%
Specific Cond Lab (uS/cm	1)		530	558	551	5%	4%
TSS (mg/L)			44	680	4730	176%	196%
Hydrocarbons ***							
EPH10-19 - silica gel							
analysis (ug/L)			<250	<250	<250	ND	ND
EPH19-32 - silica gel			2250	-250	-250	ND	ND
analysis (ug/L)	F000	F000	<250	<250	<250	ND	ND ND
EPH10-19 (ug/L)	5000	5000	<250	<250	<250	ND	ND
EPH19-32 (ug/L)			<250	<250	<250	ND	ND
HEPH (ug/L)	500		<250	<250	<250	ND	ND
LEPH (ug/L)	500	4 -	<250	<250	<250	ND	ND
VH (mg/L)	15	1.5	<0.1	<0.1	<0.1	ND	ND
VPH (mg/L)	1.5	0.5	<0.1	<0.1	<0.1	ND	ND

^{*} Dark shading indicates percent differences >100%, light shading indicates differences of 30-100%.

^{**} Result for dissolved aluminum removed as believed to be erroneous based on difference from replicate sample (see Appendix C, Table C2)

^{***} Full hydrocarbons results available in Appendix D; all results non-detect.

Figure 2: Piper Plot showing major ion chemistry for samples collected during the audit. Green diamonds represent groundwater samples (ML-3, ML-4, and MW12-03); blue circles represent ponds (ML-7, ML-8, ML-9), and red crosses represent Judas Creek (ML-5 and ML-6). The two Judas Creek sites have effectively identical major ion chemistry and so plot on top of each other in each part of the plot.

Artificial Sweeteners

Table 4: Artificial sweetener results as analyzed by Environment and Climate Change Canada (ECCC) laboratory. mdl: minimum detection limit; pql: practical quantitation limit. Asterixes denote results greater than the mdl, but less than the pql.

	Acesulfame (ng/L)	Saccharin (ng/L)	Cyclamate (ng/L)	Sucralose (ng/L)
mdl	2	2	3	20
pql	6	6	8	60
Groundwater				
ML-4	<2	2 *	<3	<20
ML-4 (duplicate)	<2	4 *	<3	<20

ML-3	7 *	10	<3	<20
MW12-03	4 *	10	<3	<20
Judas Creek				
ML-5	<2	3 *	<3	<20
ML-6	<2	3 *	<3	<20
Ponds				
ML-7	<2	4 *	<3	<20
ML-8	<2	3 *	<3	<20
ML-9	<2	2 *	<3	<20

Studies over the past 10 years have demonstrated artificial sweeteners are an effective tracer of domestic wastewater (Spoelstra et al., 2017). Artificial sweeteners are widespread in products consumed by humans such as beverages, pharmaceuticals, and toothpaste; they are not found naturally in the environment; and they are relatively slow to degrade.

Although all sites had saccharin results greater than the minimum detection limit (mdl), only two sites (ML-3 and MW12-03) had results above the practical quantitation limit (pql). Those same two sites also had detectable (although below pql) acesulfame, which is notable because acesulfame is considered to be the most stable of the four sweeteners (Spoelstra et al., 2013). Additionally, of the batch of 56 WRB sweetener samples analyzed by the ECCC lab in July 2021, only 1 returned a result less than the mdl for Saccharin, whereas 50 samples returned a result less than the mdl for acesulfame, suggesting that the Saccharin results may be representative.

The sweetener concentrations detected at ML-3 and MW12-03 are low relative to what would be expected in source wastewater. For reference, acesulfame concentrations in other Yukon wastewater lagoons (Whitehorse, Haines Junction, Carcross) have been measured by WRB in thousands to tens-of-thousands of ng/L.

Overall, the artificial sweetener results support the interpretations from the chemistry data; i.e. that ML-3 and MW12-03 are minimally influenced by wastewater, and ML-4 is not influenced by wastewater.

Groundwater Level

Groundwater level data from the three wells during the July 2020 visit (Table 3), and from the historical record (Figure 3), demonstrate some unexpected results with respect to the presumed upgradient and downgradient wells. Despite the fact that ML-4 has been presumed to be the upgradient well, it currently has the lowest hydraulic head of the three wells and had a lower hydraulic head than ML-3 in all but two monitoring events (in 2013 and 2014). While ML-3 has very consistant water levels observed since 2012, ML-4 has had water levels drop by about 2m since 2015 (Figure 3). Additionally, the two 2020 measurements show a significantly higher water level at MW12-03 then either of the other two wells, despite the fact that MW12-03 and ML-3 are within about 50m and have similar well depths.

Explaining why these results appear to contradict the story provided by looking at the well chemistry is not straight forward; however, additional information recently made available (AE, 2021) suggests a complex dynamic with heterogenous groundwater conditions and multiple flow directions. The artificial sweetener results support the chemistry data that suggests wells ML-3 and MW12-03 are influenced by wastewater. Although the AE report (2021) suggests MW12-03 is completed in a confined aquifer, the presence of detectable acesulfame in this well is evidence of a hydraulic connection to wastewater, suggesting that the supposed confining layer is leaky or perhaps that MW12-03 is completed in an unconfined aquifer.

The water levels in the wells are still 16-25m below the elevation of the surface depression located to the WNW of the lagoon, which was identified in original groundwater reports as a potential receptor of lagoon water, and is at about 732 masl. These observations are consistent with the ML-1 and ML-2 seepage monitoring which has never observed any flowing seepage. It does not appear likely that wastewater would emerge in this depression under current operations.

All of the above inferences are based on water level data that relied on surface elevations derived from LiDAR sources (Table 3). All wells (except WL-4) were surveyed in late 2020 (AE, 2021); however, this information was not available at the time of this analysis. LiDAR data produces highly accurate elevations; however, identifying the x,y location of each well is based on navigation gps data that carries greater uncertainty. There are elevation data (presumably surveyed) reported for the older (dry and inactive) wells previously referred to as ML-3 and ML-4 that are located at similar elevations. These collar elevations were reported as 744.3 masl and 745.3 masl (respectively). For ML-3,

which has the new and old wells located very close together, this is within 0.2m of the LiDAR derived elevations, providing some confidence in the accuracy of these elevations.

Table 3: Groundwater levels observed during the July 2020 audit. Ground surface elevations are LiDAR derived elevations (source: Yukon Government) based on the location of each well as determined by a navigational GPS. Well depths and stick-ups are listed as observed in July 2020.

	Well Depth (mbtoc)	Ground Surface Elevation (masl)	Stick-Up (m)	Water Level (mbtoc)	Water Level (masl)
ML-4	43.46	746.8	0.55	40.522	706.8
ML-3	37.225	744.5	0.55	35.558	709.5
MW12-03	36.715	746.3	0.65	31.077	715.9

Figure 3: Water Level data expressed in meters above sea level (based on LiDAR derived surface elevations) using data obtained by WRB from water licence reporting, along with reported annual wastewater influent volumes (bar graph secondary axis).

Surface Water Quality

Nutrient sampling twice annually since 2012 in Judas Creek has shown no significant differences between upstream and downstream total nitrogen, total phosphorus,

ammonia, nitrite, or nitrate (Figure 4) (note: nitrite not displayed in figure as vast majority of samples are non-detect).

The audit sampling in Judas Creek occured for a wider range of paramaters than typically monitored, including total and dissolved metals and aggregate hydrocarbons. There were no substantial differences in chemistry between the upstream and downstream locations (Figure 5 and Figure 6) during this one sampling event. Additionally, there were no exceedences of CCME or BCMoE protection of aquatic life guidelines. A detectable EPH $_{\rm w19-32}$ of 597 ug/L was observed in the upstream Judas Creek (ML-5) with undetectable EPH (<250 ug/L) at the downstream site (ML-6).

Similarily, the small ponds showed no significant differences in water chemistry attributable to the wastewater facility (Figure 2). Chloride was slightly elevated in the ponds (3.3 mg/L at ML-7 and 3/1 mg/L at ML-9); however, this is likely enhanced due to evaporation of ponds that have no surface water connections.

Artificial sweetener results likewise showed no evidence of detectable wastewater in either Judas Creek or the downgradient ponds.

Figure 4: Box-Whisker plot of nutrient results in Judas Creek upstream (ML-5) and downstream (ML-6) of the MLWTF since 2012 (11-15 samples). Each box represents the inter-quartile range and whiskers represent the maximum and minimum samples excluding any outliers (depicted as solid circles) defined as being greater than $1.5*IQR \pm (Q1 \text{ or } Q3)$. There is a high occurrence of

non-detects in both ammonia and nitrate samples which have been presented in this plot at the detection level.

Figure 5: Total and Dissolved metals from one sample in Judas Creek in July 2020 expressed as a percentage difference between the upstream and downstream sites. Instances without results differences depicted are a result of non-detections from both sites.

Figure 6: Nutrients, ions, and physical parameters from one sample in Judas Creek in July 2020 expressed as a percentage difference between the upstream and downstream sites. Instances without results differences depicted are a result of non-detections from both sites.

Conclusions

Objective 1: Determine whether there is a detectable presence of wastewater in Judas Creek or nearby ponds to inform future monitoring needs

- The water chemistry and artificial sweetener data collected in July 2020 show no indication of impacts to Judas Creek.
- Given current operations, it is unlikely that there would be any detectable impacts in the surface water receiving environment (Judas Creek and ponds) from the wastewater facility.

Objective 2: Evaluate the direction of groundwater flow from the facility at the time of visit

- At the time of this study there remained considerable uncertainty in the direction of groundwater flow. Additional information has now been gathered (AE, 2021) and depicts complex groundwater behavior around the facility.
- Although the AE 2021 report identified MW12-03 as a confined aquifer; the chemistry and artificial sweetener results suggest a connection to source wastewater. Either the supposed confining layer is leaky or perhaps MW12-03 screens an unconfined aquifer.

Objective 3: Collect further data to inform the impact of the facility on the downgradient wells

- Sampling of MW12-03, which has not been a part of regular licencee sampling, showed similar chemistry in MW12-03 to ML-3.
- Because neither well returned any detectable hydrocarbons, no further information on the nature of previously detected hydrocarbons was able to be inferred.

Recommendations

- 1. In the future, well logs produced during the drilling of monitoring wells should be submitted to the Yukon Water Well Registry.
- 2. Avoid using duplicate site sampling codes to have more than one meaning. Specifically, rename the sampling code for 'center of the anerobic lagoon,' which the water board has referred to as 'ML-8' in MN20-058 because this code has already been used and could lead to future database confusion and uncertainty.

References

AE, 2021. Marsh Lake Hydrogeological Study. Produced by Associated Engineering for Government of Yukon Community Services. February 2021.

EBA, 1997. Report on Permeability and Infiltration Rates. Submitted to the Yukon Water Board as part of application MS97-076.

ELR, 2020a. Marsh Lake WTF Upgrades – YESAA Project Proposal. July 2020. YESAA File #2020-0126-0002.

ELR, 2020b. Application for Type B Miscellaneous Water Licence – Marsh Lake Wastewater Treatment Facility. September 2020.

Golder, 2013. Marsh Lake Sewage Lagoon Hydrogeological Assessment. Produced by Golder for Government of Yukon Community Services. February 2013. Report Number 1114360073-517-R-Rev0-3100.

NovaTec Consultants Inc., 1997. Assessment of Potential Environmental Impacts of the Proposed Marsh Lake Wastewater Treatment and Disposal System. For Yukon Engineering Services Ltd. MS97-062 exhibit 1.6.2 available from www.yukonwaterboard.ca/waterline/

Spoelstra, J, S.L. Schiff, and S.J. Brown. 2013. Artificial Sweeteners in a Large Canadian River Reflect Human Consumption in the Watershed. PLoS ONE 9(8): e106394. https://doi.org/10.1371/journal.pone.0106394.

Spoelstra, J., N.D. Senger, and S.L. Schiff. 2017. Artificial Sweeteners Reveal Septic System Effluent in Rural Groundwater. Journal of Environmental Quality. 46:1434-1443.

USGS. Nevada Excel for Hydrology Piper Plot retrieved from: https://nevada.usgs.gov/tech/excelforhydrology/WaterQualityTools/PiperPlot-QW.XLS.

Yukon Ecoregions Working Group, 2004. Yukon Southern Lakes. In: Ecoregions of the Yukon Territory: Biophysical properties of Yukon landscapes, C.A.S. Smith, J.C. Meikle and C.F. Roots (eds.), Agriculture and Agri-Food Canada, PARC Technical Bulletin No. 04-01, Summerland, British Columbia, p. 207-218.

Yukon Geological Survey, 2014. Surficial Geology Map Index. Yukon Geological Survey, http://data.geology.gov.yk.ca/Compilation/20; accessed September 23, 2020.

Appendix A: Field Notes

Yukon

Environment Yukon Water Resources Branch

Groundwater Well Purging and Sampling Record

	<u>ATION</u>							
Well Cover Type				Lock 🔀	Well Cas	sing Diam.: 6	6-inch (15 cm)	
,,	Stick-up 🔯 0	55m above g		- 12		_	2-inch (5 cm)	10/1-
	Active Drinking V	77.		-			Other:	
Screened Interv	al (m bTOC):	7. No	info		Say Dare			
PURGING INFO	RMATION AND O	BSERVATION	IS_	LO	GGER INF	ORMATION		
DGW m hTOC	(X) 40.522	m Time	0:31	LTC	Serial #:			
DTB m bTOC (Y) 43.460			BL S	Serial #:			
1 11 - 6344-4-	r Column (X-Y)	- 9			WLK		14 14 79	PE
	r Column (X-Y) er in 2" Well = (X - \					ded at: ed at:		
	er in 6" Well = (17.7				tes:			
Purging Meth	od							
Grundfos Pump	•			UTI	M coordina	ates		
Hydralift Pump	1	5 Bow		Zor	ne			
Peristaltic (Tubi	ng set to: <u>0.5</u> Flow-throu		[2]	E N				
HydraSleeve 2.	5 L (sampled at: _	•	_					
				DL.	stee Teken	. / V/i NI		
Other (specify)	the 8		_ 🗆	Pne	otos Taker	I W		
					e e			
	rc DO	SPC uS-mS/cm	_ ⊔ pH	Turbidity FNUNTU	ORP mV	Time	DTW m bTOC	Rate
Volume T urged (L)	DO MODE	SPC uS-mS/cm		Turbidity FNUNTU	ORP	Time	m bTOC	L/mir
Volume T urged (L)	.0 11.27	SPC uS-m(S/cm)	pH 7.82	Turbidity FNUNTU	ORP		m bTOC	L/mir
Volume Turged (L)	.0 11.27 11.15	SPC uS-m(s/cm) 578 543	pH 7.82 7.73	Turbidity FNUNTU	ORP	Time 10:40 10:43	m bTOC	L/mir
/olume Turged (L) // 6 // 6 20 6	.0 11.27 G-4 11.15	\$PC uS-m(\$/cm) 578 543	pH 7.82	Turbidity FNUNTU 11.52 12.61 24.03	ORP	Time	m bTOC	L/mir
Volume Turged (L) // 6 // 6 20 6	.0 11.27 11.15	SPC uS-m(s/cm) 578 543	pH 7.82 7.73	Turbidity FNUNTU	ORP	10:40 10:43 10:48 10:48	# bTOC 40.522	L/mir
/olume Turged (L) // 6 // 6 // 6	.0 11.27 G-4 11.15	\$PC uS-m(\$/cm) 578 543	pH 7.82 7.73	Turbidity FNUNTU 11.52 12.61 24.03	ORP	Time 10:40 10:43	# bTOC 40.522	L/mir
/olume Turged (L) // 6 // 6 20 6 21 6	.0 11.27 11.15 14 11.10 11.19	\$PC us-m\$/cm 578 543 540 540	pH 7.82 7.73	Turbidity FNUNTU 11.52 12.61 24.03 22.09	ORP mV	10:40 10:43 10:48 10:49	# bTOC 40.522	L/mir
/olume Turged (L) // 6 // 6 20 6 21 6	.0 11.27 11.15 14 11.10 11.19	\$PC us-m\$/cm 578 543 540 540	pH 7.82 7.73	Turbidity FNUNTU 11.52 12.61 24.03 22.09	ORP	10:40 10:43 10:48 10:49	# bTOC 40.522	L/mir
/olume Turged (L) // 6 // 6 20 6 21 6	.0 11.27 11.15 14 11.10 11.19	\$PC us-m\$/cm 578 543 540 540	pH 7.82 7.73	Turbidity FNUNTU 11.52 12.61 24.03 22.09 23.41	ORP mV	10:40 10:43 10:48 10:49 10:50	# bTOC 40.522	L/mir

Duplicate Sample ID:	Date and Time:				
Analytical Laboratory:			Duplicate Sample	e ID:	
Analysis Bottle Preserved Filtered					
BOD	Analytical Laboratory				
BOD	Analysis	Bottle	Preserved	Filtered	
TIC/DIC			no	no	
TOC 2x 40 mL vial H ₃ PO ₄ -precharged no Nutrients 125 mL plastic H2SO4-precharged no DOC 2x 40 mL vial H ₃ PO ₄ -precharged yes Diss. Metals 125 mL plastic HNO ₃ -precharged yes Diss. Mercury 40 mL vial H ₃ PO ₄ -precharged yes Sweetener plastic vial no yes VOCs (within city limits) 40 mL vial precharged no ho Notes from previous site visit:		-			
Nutrients					
DOC					
Diss. Metals					
Diss. Mercury			• •		
Sweetener					
VOCs (within city limits)					
Notes from previous site visit: Current site visit notes:		•			
Eurrent site visit notes:					
	current site visit note	es:			
	Current site visit note	9S:			
	Current site visit note	es:			
	Current site visit note	es:			
	Current site visit note	es:			
	Current site visit note	9S:			
	Current site visit note	98:			
	Current site visit note	98:			
	Current site visit note	9S:			
	Current site visit note	9S:			
	Current site visit note	9S:			
	Current site visit note	es:			
	Current site visit note	9S:			
	Current site visit note	98:			
	Current site visit note	98:			

Yukon

Environment Yukon Water Resources Branch

Groundwater Well Purging and Sampling Record

WELL INFORMATION Well Cover Type Flush □ Lock □ Well Casing Diam.: 6-inch (15 cm) □ Stick-up □ ②	IIID: MW 12-03 ML sation: March Lake Sunge Lapon	Date: Lo 07 /3 Weather: Overcart Sampler: NB:, LY
Well Cover Type Flush	ject Name:	Sampler: NB', NY
Stick-up	ELL INFORMATION	
Active Drinking Water Well Other: Screened Interval (m bTOC):	ell Cover Type Flush	Lock Well Casing Diam.: 6-inch (15 cm)
DGW m bTOC (X) 21 0 77 m Time: 11 30 LTC Serial #: BL Seri	Stick-up 🔀 <u>0 🕼</u> m above grade	No-lock 🔀 2-inch (5 cm)
DGGER INFORMATION DGGER INFORMATION		
DGW m bTOC (X) 21 0 77 m Time: 11 30 LTC Serial #: BL Serial #: LTC Serial #:	reened Interval (m bTOC):	
DTB m bTOC (Y) 36 - 715 m	JRGING INFORMATION AND OBSERVATIONS	LOGGER INFORMATION
DTB m bTOC (Y) 36 - 715 m	OGW m bTOC (X) 31 0 77 m Time: 11: 31	LTC Serial #:
Length of Water Column (X-Y) 5 (2.38 m) LTC downloaded at:		BL Serial #:
Volume of Water in 2" Well = (X - Y) x 2 1 2 2 4	angth of Water Column (V V) 5 / 33	
Purging Method Grundfos Pump	olume of Water in 2" Well = (X - Y) x 2 11 274 L	
Grundfos Pump	olume of Water in 6" Well = (17.7L/m) L	Notes:
Hydralift Pump	urging Method	
Peristaltic (Tubing set to:m bTOC)		UTM coordinates
HydraSleeve 2.5 L (sampled at: m bTOC)	ydralift Pump	
HydraSleeve 2.5 L (sampled at: m bTOC) □ Photos Taken		
Volume Purged (L) To DO mg/L SPC mg/L pH p	ydraSleeve 2.5 L (sampled at: m bTOC)	
Purged (L) mg/L uS-mS@n FNU(NTU) mV mbTOC L/r 13 SB 11.41 544 7.75 3482 12:20 14 4.4 11.63 557 7.70 3133 - 12:22 15 4.2 18.51 555 7.70 2981 - 12:24	ther (specify) BAILER	Photos Taken ℋ / N
Purged (L) mg/L uS-mS@n FNU(NTU) mV mbTOC L/r 13 SB 11.41 544 7.75 3482 12:20 14 4.4 11.63 557 7.70 3133 - 12:22 15 4.2 18.51 555 7.70 2981 - 12:24		
14 4.4 11.63 557 7.70 3133 - 12:22 15 4.2 11.51 555 7.70 2981 - 12:24		
14 4.4 11.63 557 7.70 3133 - 12:22 15 4.2 11.51 555 7.70 2981 - 12:24		
15 42 11.51 555 2.20 2981 - 12:24	3 58 11.41 544 75	75 3482 - 12:20
	4 4.4 11.63 557 7.5	70 3133 - 12:22
	4.2 1/51 555 2.8	2981 - 12:24
		H 2842 12:26 24/12
(12.22		12.22
		12:39
Odour Yes No Description: Colour (initial) 4 (Brown stable) 10 (lero		Colon Colon 4 (Boroug 2 10 Clarrough
		COLOUR CONTROL IN THE WAY (BRODIA)
		Colour (iriitiar)(stable)
NOTES: Field Parameter and Stability Guidance: pH (±0.2 standard units); Temperature (±0.2 °C); Specific Conductance (±3%); Oxidation-Reduction Potential (±20mV); and if applicable: Dissolved Oxygen (±10% or ±0.2 mg/L – whichever is greater) Recovery Estimate - Slow: greater than 10 cm drawdown Moderate: slightly lower than 10 cm drawdown Fast: within 10 cm drawd	covery* Slow ☐ Moderate ☐ Fast 🖄	

Duplicate Sample ID:	Date and Time:		8. 		
Analytical Laboratory: Analysis Bottle Preserved Filtered 30D. 11. plastic	0 W B			ole ID:	
Analysis Bottle Preserved Filtered				JIO 1D	
SOD	Analytical Laboratory:				
Indept			* 4		
TIC/DIC	<u>Analysis</u>	<u>Bottle</u>	<u>Preserved</u>	<u>Filtered</u>	
CC		•			
Autrients					
DOC					
Diss. Metals					
Diss. Mercury					
Sweetener					
very contract of the contract	100				
otes from previous site visit: urrent site visit notes:					
urrent site visit notes:	OCs (within city limits)	40mL viai	precnarged	no	
				21	
		n 11 meg			Company of the second
	urrent site visit note	es:	a , a	* *	
	urrent site visit note	es:			
	urrent site visit note)S:			
	urrent site visit note	es:			N.
	urrent site visit note	es:			4.
	urrent site visit note	es:			7.
	urrent site visit note	98 :			
	urrent site visit note	98 :	N.		74.
	urrent site visit note		NV.		. 4.
	urrent site visit note				7.
	urrent site visit note				7.7
	urrent site visit note				N.
	urrent site visit note		N.		
	urrent site visit note				
	urrent site visit note		NV .		

Environment Yukon Water Resources Branch

Groundwater Well Purging and Sampling Record

Well ID: 445-50	Date: 20 5 7 13
Project Name:	Weather: Overcart Sampler: NB, Ry
Troject Name.	
WELL INFORMATION	
Well Cover Type Flush	
Stick-up 🔯 <u>0.55</u> m above grade	No-lock 2-inch (5 cm) De Other:
Active Drinking Water Well Screened Interval (m bTOC):	Other.
	pot a stock makes
PURGING INFORMATION AND OBSERVATIONS	LOGGER INFORMATION
DGW m bTOC (X) 35.558 m Time: 13:17	LTC Serial #:
DTB m bTOC (Y) 37 225 m	BL Serial #: TYPE
Length of Water Column (X-Y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LTC downloaded at:
Volume of Water in 2" Well = (X - Y) x 2 <u>3・33 中</u> L Volume of Water in 6" Well = (17.7L/m) L	BL downloaded at:
Purging Method	LITM accordinates
Grundfos Pump	UTM coordinates Zone
Peristaltic (Tubing set to:m bTOC)	E
Flow-through cell HydraSleeve 2.5 L (sampled at: m bTOC)	N
Other (specify) BAILER 🔀	Photos Taken Y / N
With the second	
Volume T°C DO SPC pH Purged (L) mg/L u\$-mS/cm	Turbidity ORP Time DTW Rate FNUNTU mV m bTOC L/min
E 50 622 526 79	7 143.45 - 13:35
$\frac{5}{6} \frac{5.9}{5.0} \frac{9.77}{9.71} \frac{576}{575} \frac{7.98}{7.88}$	w Manager and Additional Control of the Control of
7 4.7 9.82 577 7.8	$\frac{4}{3}$ $\frac{63.39}{3}$ $\frac{13.39}{3}$
$\frac{0}{9} \frac{9.9}{4.7} \frac{7.74}{9.00} \frac{572}{514} \frac{4.8}{7.8}$	7 26.26 /3.42
1 4.7 1.80 271 4-8	6 377.20 - 13:44
200	
	_ (14:10/
Odour Yes 🗌 No 🔲 Description:	Colour (initial) 2 (brown, lable) 5 (brown)
Recovery* Slow Moderate Fast	Goldi (Illiai)
NOTES: Field Parameter and Stability Guidance: pH (±0.2 stand	lard units); Temperature (±0.2 °C); Specific Conductance (±3%);
Oxidation-Reduction Potential (±20mV); and if applicable: Dissolv *Recovery Estimate - Slow: greater than 10 cm drawdown Mod	ved Oxygen (±10% or ±0.2 mg/L – whichever is greater)

	_					
Date and Time:	-					
Sample ID:		Duplicate Sam	Duplicate Sample ID:			
Analytical Laboratory:						
Analysis	<u>Bottle</u>	Preserved	Filtered			
OD	1	no				
		no				
OC						
lutrients						
OOC						
Diss. Metals						
Diss. Mercury	•		•			
Sweetener	plastic vial	no	yes			
OCs (within city limits)	40mL vial	precharged	no			
otes from previous s	ite visit:					
otes from previous s	ite visit:					
otes from previous s	ite visit:					
otes from previous s	ite visit:					
urrent site visit notes						

Appendix B - Photo Log

Figure B1: Exfiltration Lagoon, looking north.

Figure B2: Primary Lagoon, looking southwest.

Figure B3: Monitoring well ML-4.

Figure B4: Monitoring well ML-3.

Figure B5: Monitoring well MW12-03.

Figure B6: Pond south-southwest of the MLWTF (ML-7).

Figure B7: Pond east of the MLWTF (ML-8).

Figure B8: Pond west of the MLWTF (ML-9).

Figure B9: Judas Creek upstream sampling location (ML-5).

Figure B10: Judas Creek downstream sampling location (ML-6).

Appendix C: Quality Assurance and Control

Hold Time Exceedances

Nitrate and Nitrite

Hold Time: 3 days

Sampled: July 13, 2020 (11:00-15:30) Lab Received: July 16, 2020 (08:00)

Lab Analysed: July 17th

Lab pH

Hold Time: 15 minutes

Sampled: July 13, 2020 (11:00-15:30) Lab Received: July 16, 2020 (08:00)

Lab Analysed: July 16th

Table C1. QAQC field and laboratory results

	рН			Specific Conductance (µS/cm)		
Station	Field	Lab	RPD	Field	Lab	RPD
ML-3	7.88	8.14	3%	574	558	3%
ML-4	7.59	8.05	6%	541	530	2%
ML-5	8.37	8.3	1%	-	318	
ML-6	7.98	8.29	4%	-	321	
MW12-03	7.71	8.13	5%	557	551	1%
ML-7	7.27	8.17	12%	-	287	
ML-8	8.63	8.44	2%	386	363	6%
ML-9	8.3	8.43	2%	-	271	

Note: Relative percent difference (RPD) calculated using the formula: Relative difference $(x,y) = [|x-y| \div |(x+y)/2|] * 100$

Table C2. QAQC results for replicate sample from groundwater well ML-4

Parameter	Units	ML-4	ML-4 Replicate	RPD		
Dissolved Metals						
Aluminum	mg/L	0.107	<0.0050	ND		
Antimony	mg/L	<0.0002	<0.0002	-		
Arsenic	mg/L	<0.0005	0.00051	ND		
Barium	mg/L	0.0556	0.0608	9%		

Beryllium	mg/L	<0.0001	<0.0001	-
Bismuth	mg/L	<0.0001	<0.0001	-
Boron	mg/L	<0.0500	<0.0500	-
Cadmium	mg/L	<0.00001	<0.00001	-
Calcium	mg/L	67.6	72.3	7%
Chromium	mg/L	0.00113	0.0012	6%
Cobalt	mg/L	<0.0001	<0.0001	
Copper	mg/L	0.00117	0.00122	4%
Iron	mg/L	<0.010	<0.010	
Lead	mg/L	<0.0002	<0.0002	
Lithium	mg/L	0.00218	0.00229	5%
Magnesium	mg/L	26.4	27.6	4%
Manganese	mg/L	0.00025	<0.00020	ND
Molybdenum	mg/L	0.00125	0.00143	13%
Nickel	mg/L	0.00205	0.00206	0.5%
Phosphorus	mg/L	<0.05	<0.05	
Potassium	mg/L	1.87	1.99	6%
Selenium	mg/L	<0.0005	<0.0005	
Silicon	mg/L	5	5.3	6%
Silver	mg/L	<0.00005	<0.00005	
Sodium	mg/L	4.95	5.24	6%
Strontium	mg/L	0.547	0.594	8%
Sulphur	mg/L	21.4	21.9	2%
Tellurium	mg/L	<0.0005	<0.0005	
Thallium	mg/L	<0.00002	<0.00002	
Thorium	mg/L	<0.0001	<0.0001	
Tin	mg/L	<0.0002	<0.0002	
Titanium	mg/L	<0.005	<0.005	
Tungsten	mg/L	<0.001	<0.001	
Uranium	mg/L	0.000621	0.000633	2%
Vanadium	mg/L	<0.001	<0.001	
Zinc	mg/L	<0.004	<0.004	
Zirconium	mg/L	<0.0001	<0.0001	
Nutrients, Anions, Physical				
Chloride	mg/L	0.42	0.42	0%
Sulphate, Dissolved	mg/L	65.5	65.5	0%
Bromide	mg/L	<0.1	<0.1	
Ammonium Nitrogen, as N	mg/L	<0.05	<0.05	
Nitrate Nitrogen, as N	mg/L	0.126	0.152	19%
Nitrite Nitrogen, as N	mg/L	< 0.01	< 0.01	

Phosphorus, Total Phosphate as P	mg/L	0.0516	0.0491	5%
Carbon, Dissolved Organic	mg/L	4.34	4.63	6%
Carbon, Total Inorganic	mg/L	62.1	62.8	1%
Carbon, Total Organic	mg/L	4.49	4.63	3%
Carbon, Dissolved Inorganic	mg/L	60.5	61.7	2%
Alkalinity, Bicarbonate HCO3	mgCaCO3/L	272	252	8%
Alkalinity, Carbonate CO3	mgCaCO3/L	<1.0	<1.0	
Alkalinity, Hydroxide OH	mgCaCO3/L	<1.0	<1.0	
Alkalinity, Phenolphthalein	mgCaCO3/L	<1.0	<1.0	
Alkalinity, Total	mgCaCO3/L	272	252	8%
pH, Laboratory	-	8.05	8.05	0%
Specific Conductance - Lab	μS/cm	530	530	0%

Appendix D: Certificates of Analysis

CERTIFICATE OF ANALYSIS

REPORTED TO Yukon Government - Water Resources

Suite 210, 419 Range Road Whitehorse, YT Y1A 3V1

ATTENTION Norbert Botca WORK ORDER 0071316

PO NUMBER C00043458 RECEIVED / TEMP 2020-07-15 08:00 / 4°C

PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22PROJECT INFOCOC NUMBERNo #

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

Work Order Comments:

This is a revised report; please refer to Appendix 3 for details.

You know that the sample you collected after

snowshoeing to site, digging 5 meters, and

racing to get it on a plane so you can submit it

to the lab for time sensitive results needed to

make important and expensive decisions

(whew) is VERY important. We know that too.

If you have any questions or concerns, please contact me at tmaxwell@caro.ca

Authorized By:

Taylor Maxwell
Junior Account Manager

J. Majula

1-888-311-8846 | www.caro.ca

	Government - Water Resources Lake Sewage Lagoon Audit		WORK ORDER REPORTED	0071316 2020-08-0	05 13:22
Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-01 (0071316-01)	Matrix: Water Sampled: 2020-07-13 11:00)			
Anions					
Bromide	< 0.10	0.10	mg/L	2020-07-17	
Chloride	0.42	0.10	mg/L	2020-07-17	
Nitrate (as N)	0.126	0.010	mg/L	2020-07-17	HT1
Nitrite (as N)	< 0.010	0.010	mg/L	2020-07-17	HT1
Sulfate	65.5	1.0	mg/L	2020-07-17	
BCMOE Aggregate Hydrocar	rbons				
VHw (6-10)	< 100	100	μg/L	2020-07-20	
VPHw	< 100	100		N/A	
EPHw10-19	< 250	250		2020-07-17	
EPHw19-32	< 250	250		2020-07-17	
EPHw10-19(sg)	< 250	250		2020-07-19	
EPHw19-32(sg)	< 250	250	µg/L	2020-07-19	
LEPHw	< 250	250	µg/L	N/A	
HEPHw	< 250	250	µg/L	N/A	
Surrogate: 2-Methylnonane		60-126	%	2020-07-17	
Dissolved Metals					
Lithium, dissolved	0.00218	0.00010	mg/L	2020-07-22	
Aluminum, dissolved	0.107	0.0050	mg/L	2020-07-22	
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Arsenic, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Barium, dissolved	0.0556	0.0050	mg/L	2020-07-22	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Boron, dissolved	< 0.0500	0.0500	mg/L	2020-07-22	
Cadmium, dissolved	< 0.000010	0.000010		2020-07-22	
Calcium, dissolved	67.6		mg/L	2020-07-22	
Chromium, dissolved	0.00113	0.00050		2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Copper, dissolved	0.00117	0.00040	mg/L	2020-07-22	
Iron, dissolved	< 0.010	0.010		2020-07-22	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Magnesium, dissolved	26.4	0.010		2020-07-22	
Manganese, dissolved	0.00025	0.00020		2020-07-22	
Molybdenum, dissolved	0.00125	0.00010		2020-07-22	
Nickel, dissolved	0.00205	0.00040		2020-07-22	
Phosphorus, dissolved	< 0.050	0.050		2020-07-22	
Potassium, dissolved	1.87		mg/L	2020-07-22	
Selenium, dissolved	< 0.00050	0.00050		2020-07-22	
Silicon, dissolved	5.0	1.0	mg/L	2020-07-22	

	Yukon Government - Water Resources Marsh Lake Sewage Lagoon Audit						WORK ORDER REPORTED		
Analyte	Result	RL	Units	Analyzed	Qualifier				
2020T16-01 (0071316-01) Matrix: Water	r Sampled: 2020-07-13 11:	00, Continued							
Dissolved Metals, Continued									
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-07-22					
Sodium, dissolved	4.95	0.10	mg/L	2020-07-22					
Strontium, dissolved	0.547	0.0010	mg/L	2020-07-22					
Sulfur, dissolved	21.4	3.0	mg/L	2020-07-22					
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22					
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-07-22					
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22					
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-07-22					
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-07-22					
Tungsten, dissolved	< 0.0010	0.0010		2020-07-22					
Uranium, dissolved	0.000621	0.000020	mg/L	2020-07-22					
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-07-22					
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-07-22					
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22					
General Parameters									
Alkalinity, Total (as CaCO3)	272	1.0	mg/L	2020-07-16					
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-07-16					
Alkalinity, Bicarbonate (as CaCO3)	272		mg/L	2020-07-16					
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0		2020-07-16					
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0		2020-07-16					
Ammonia, Total (as N)	< 0.050	0.050		2020-07-16					
Carbon, Total Inorganic	62.1	0.50	mg/L	2020-07-20					
Carbon, Total Organic	4.49		mg/L	2020-07-17					
Carbon, Dissolved Inorganic	60.5		mg/L	2020-07-20					
Carbon, Dissolved Organic	4.34		mg/L	2020-07-17					
Conductivity (EC)	530		μS/cm	2020-07-16					
pH	8.05		pH units	2020-07-16	HT2				
Phosphorus, Total (as P)	0.0516	0.0050	mg/L	2020-07-16					
Solids, Total Suspended	44.0	2.0	mg/L	2020-07-20					
Polycyclic Aromatic Hydrocarbons (PAH)									
Acenaphthene	< 0.050	0.050	μg/L	2020-07-17					
Acenaphthylene	< 0.200	0.200	· -	2020-07-17					
Acridine	< 0.050	0.050	· -	2020-07-17					
Anthracene	< 0.010	0.010	· -	2020-07-17					
Benz(a)anthracene	< 0.010	0.010		2020-07-17					
Benzo(a)pyrene	< 0.010	0.010		2020-07-17					
Benzo(b+j)fluoranthene	< 0.050	0.050		2020-07-17					
Benzo(g,h,i)perylene	< 0.050	0.050		2020-07-17					
Benzo(k)fluoranthene	< 0.050	0.050		2020-07-17					
2-Chloronaphthalene	< 0.100	0.100		2020-07-17					
Chrysene	< 0.050	0.050		2020-07-17					
Dibenz(a,h)anthracene	< 0.010	0.010		2020-07-17					

		Yukon Government - Water Resources Marsh Lake Sewage Lagoon Audit				WORK ORDER REPORTED		
Analyte		Result	RL	Units	Analyzed	Qualifier		
2020T16-01 (0071:	316-01) Matrix: Water	Sampled: 2020-07-13 1	1:00, Continued					
Polycyclic Aromatic	: Hydrocarbons (PAH), Co	ntinued						
Fluoranthene		< 0.030	0.030	μg/L	2020-07-17			
Fluorene		< 0.050	0.050	· -	2020-07-17			
Indeno(1,2,3-cd)py	rene	< 0.050	0.050	· -	2020-07-17			
1-Methylnaphthalei	ne	< 0.100	0.100		2020-07-17			
2-Methylnaphthalei		< 0.100	0.100		2020-07-17			
Naphthalene		< 0.200	0.200	· -	2020-07-17			
Phenanthrene		< 0.100	0.100	· -	2020-07-17			
Pyrene		< 0.020	0.020	· -	2020-07-17			
Quinoline		< 0.050	0.050		2020-07-17			
Surrogate: Acridine	e-d9	84	50-140	%	2020-07-17			
Surrogate: Naphtha		85	50-140	%	2020-07-17			
Surrogate: Perylen		60		%	2020-07-17			
Volatile Organic Co			00 770		2020 07 77			
Benzene	P	< 0.5	0.5	μg/L	2020-07-20			
Ethylbenzene		< 1.0		μg/L	2020-07-20			
Methyl tert-butyl etl	her	< 1.0		μg/L	2020-07-20			
Styrene	····	< 1.0		μg/L	2020-07-20			
Toluene		< 1.0		μg/L	2020-07-20			
Xylenes (total)		< 2.0		µg/L	2020-07-20			
Surrogate: Toluene	e-d8	89	70-130	%	2020-07-20			
Surrogate: 4-Brome		95	70-130		2020-07-20			
2020T16-02 (0071:	316-02) Matrix: Water	Sampled: 2020-07-13 1	1:00					
Anions								
Bromide		< 0.10		mg/L	2020-07-16			
Chloride		0.42		mg/L	2020-07-16			
		0.152	0.010		2020-07-16			
Nitrate (as N)		< 0.010	0.010	mg/L	2020-07-16			
Nitrite (as N)		- 0.010						
, ,		65.5	1.0	mg/L	2020-07-16			
Nitrite (as N) Sulfate	Hydrocarbons		1.0	mg/L	2020-07-16			
Nitrite (as N) Sulfate	Hydrocarbons			mg/L μg/L	2020-07-16			
Nitrite (as N) Sulfate BCMOE Aggregate	Hydrocarbons	65.5	100					
Nitrite (as N) Sulfate BCMOE Aggregate A VHw (6-10)	Hydrocarbons	65.5 < 100	100 100	μg/L	2020-07-20			
Nitrite (as N) Sulfate BCMOE Aggregate (VHw (6-10) VPHw	Hydrocarbons	65.5< 100< 100	100 100 250	μg/L μg/L	2020-07-20 N/A			
Nitrite (as N) Sulfate BCMOE Aggregate I VHw (6-10) VPHw EPHw10-19	Hydrocarbons	65.5< 100< 100< 250	100 100 250 250	µg/L µg/L	2020-07-20 N/A 2020-07-17			
Nitrite (as N) Sulfate BCMOE Aggregate A VHw (6-10) VPHw EPHw10-19 EPHw19-32	Hydrocarbons	65.5< 100< 100< 250< 250	100 100 250 250 250	µg/L µg/L µg/L µg/L	2020-07-20 N/A 2020-07-17 2020-07-17			
Nitrite (as N) Sulfate BCMOE Aggregate A VHw (6-10) VPHw EPHw10-19 EPHw19-32 LEPHw HEPHw	Hydrocarbons /Inonane (EPH/F2-4)	<pre>< 100 < 100 < 100 < 250 < 250 < 250 < 250</pre>	100 100 250 250 250 250	μg/L μg/L μg/L μg/L μg/L μg/L	2020-07-20 N/A 2020-07-17 2020-07-17 N/A			
Nitrite (as N) Sulfate BCMOE Aggregate A VHw (6-10) VPHw EPHw10-19 EPHw19-32 LEPHw HEPHw	/Inonane (EPH/F2-4)	<pre>< 100 < 100 < 100 < 250 < 250 < 250 < 250 < 250 < 250</pre>	100 100 250 250 250	μg/L μg/L μg/L μg/L μg/L μg/L	2020-07-20 N/A 2020-07-17 2020-07-17 N/A N/A			

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifie
2020T16-02 (0071316-02) Matrix: Water	Sampled: 2020-07-13 11	:00, Continued			
Dissolved Metals					
Lithium, dissolved	0.00229	0.00010	mg/L	2020-07-22	
Aluminum, dissolved	< 0.0050	0.0050		2020-07-22	
Antimony, dissolved	< 0.00020	0.00020		2020-07-22	
Arsenic, dissolved	0.00051	0.00050		2020-07-22	
Barium, dissolved	0.0608	0.0050	mg/L	2020-07-22	
Beryllium, dissolved	< 0.00010	0.00010		2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010		2020-07-22	
Boron, dissolved	< 0.0500	0.0500		2020-07-22	
Cadmium, dissolved	< 0.000010	0.000010		2020-07-22	
Calcium, dissolved	72.3	0.20	mg/L	2020-07-22	
Chromium, dissolved	0.00120	0.00050		2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010		2020-07-22	
Copper, dissolved	0.00122	0.00040	mg/L	2020-07-22	
Iron, dissolved	< 0.010	0.010	mg/L	2020-07-22	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Magnesium, dissolved	27.6	0.010	mg/L	2020-07-22	
Manganese, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Molybdenum, dissolved	0.00143	0.00010	mg/L	2020-07-22	
Nickel, dissolved	0.00206	0.00040	mg/L	2020-07-22	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-07-22	
Potassium, dissolved	1.99	0.10	mg/L	2020-07-22	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Silicon, dissolved	5.3	1.0	mg/L	2020-07-22	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-07-22	
Sodium, dissolved	5.24	0.10	mg/L	2020-07-22	
Strontium, dissolved	0.594	0.0010	mg/L	2020-07-22	
Sulfur, dissolved	21.9	3.0	mg/L	2020-07-22	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-07-22	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-07-22	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-07-22	
Uranium, dissolved	0.000633	0.000020	mg/L	2020-07-22	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-07-22	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-07-22	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
General Parameters					
Alkalinity, Total (as CaCO3)	252	1.0	mg/L	2020-07-16	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-07-16	
Alkalinity, Bicarbonate (as CaCO3)	252		mg/L	2020-07-16	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-07-16	

REPORTED TO PROJECT	_			Yukon Government - Water Resources Marsh Lake Sewage Lagoon Audit		WORK ORDER REPORTED	0071316 2020-08-0	05 13:22
Analyte		Result	RL	Units	Analyzed	Qualifier		
2020T16-02 (0071	316-02) Matrix: W	ater Sampled: 2020-07-13 11:0	00, Continued					
General Parameters	s, Continued							
Alkalinity, Hydroxid	le (as CaCO3)	< 1.0	1.0	mg/L	2020-07-16			
Ammonia, Total (as	s N)	< 0.050	0.050	mg/L	2020-07-16			
Carbon, Total Inorg	ganic	62.8	0.50	mg/L	2020-07-20			
Carbon, Total Orga	nic	4.63	0.50	mg/L	2020-07-17			
Carbon, Dissolved	Inorganic	61.7	0.5	mg/L	2020-07-20			
Carbon, Dissolved	Organic	4.63	0.50	mg/L	2020-07-17			
Conductivity (EC)		530	2.0	μS/cm	2020-07-16			
рН		8.05	0.10	pH units	2020-07-16	HT2		
Phosphorus, Total	(as P)	0.0491	0.0050	mg/L	2020-07-16			
Solids, Total Suspe	ended	69.6	2.0	mg/L	2020-07-19			
Polycyclic Aromatic	: Hydrocarbons (PAF	1)						
Acenaphthene		< 0.050	0.050	μg/L	2020-07-17			
Acenaphthylene		< 0.200	0.200	μg/L	2020-07-17			
Acridine		< 0.050	0.050	μg/L	2020-07-17			
Anthracene		< 0.010	0.010	μg/L	2020-07-17			
Benz(a)anthracene)	< 0.010	0.010	μg/L	2020-07-17			
Benzo(a)pyrene		< 0.010	0.010	μg/L	2020-07-17			
Benzo(b+j)fluorant	hene	< 0.050	0.050	μg/L	2020-07-17			
Benzo(g,h,i)perylei	ne	< 0.050	0.050	μg/L	2020-07-17			
Benzo(k)fluoranthe	ene	< 0.050	0.050	μg/L	2020-07-17			
2-Chloronaphthale	ne	< 0.100	0.100	μg/L	2020-07-17			
Chrysene		< 0.050	0.050	μg/L	2020-07-17			
Dibenz(a,h)anthrac	cene	< 0.010	0.010	· -	2020-07-17			
Fluoranthene		< 0.030	0.030	μg/L	2020-07-17			
Fluorene		< 0.050	0.050	μg/L	2020-07-17			
Indeno(1,2,3-cd)py	rene	< 0.050	0.050	μg/L	2020-07-17			
1-Methylnaphthale		< 0.100	0.100		2020-07-17			
2-Methylnaphthale	ne	< 0.100	0.100		2020-07-17			
Naphthalene		< 0.200	0.200		2020-07-17			
Phenanthrene		< 0.100	0.100		2020-07-17			
Pyrene		< 0.020	0.020	· -	2020-07-17			
Quinoline		< 0.050	0.050		2020-07-17			
Surrogate: Acridine		92	50-140		2020-07-17			
Surrogate: Naphth		92	50-140		2020-07-17			
Surrogate: Perylen	e-d12	74	50-140	%	2020-07-17			
Volatile Organic Co	mpounds (VOC)							
Benzene		< 0.5		μg/L	2020-07-20			
Ethylbenzene		< 1.0	1.0	μg/L	2020-07-20			
Methyl tert-butyl et	her	< 1.0	1.0	μg/L	2020-07-20			
Styrene		< 1.0	1.0	μg/L	2020-07-20			
Toluene		< 1.0	1.0	μg/L	2020-07-20			
Xylenes (total)		< 2.0	2.0	μg/L	2020-07-20	Page 6 of 43		

	Yukon Government - Water Resources Marsh Lake Sewage Lagoon Audit		WORK ORDER REPORTED		
Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-02 (0071316-02) Matrix: Wat	er Sampled: 2020-07-13 11:	00, Continued			
Volatile Organic Compounds (VOC), Conti	nued				
Surrogate: Toluene-d8	90	70-130	%	2020-07-20	
Surrogate: 4-Bromofluorobenzene	95	70-130	%	2020-07-20	
2020T16-03 (0071316-03) Matrix: Wat	er Sampled: 2020-07-13 12:	30			
Anions					
Bromide	< 0.10	0.10	mg/L	2020-07-16	
Chloride	0.99		mg/L	2020-07-16	
Nitrate (as N)	0.386	0.010		2020-07-16	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-07-16	
Sulfate	61.1	1.0	mg/L	2020-07-16	
BCMOE Aggregate Hydrocarbons					
VHw (6-10)	< 100	100	μg/L	2020-07-20	
VPHw	< 100		μg/L	N/A	
EPHw10-19	< 250		μg/L	2020-07-17	
EPHw19-32	< 250		μg/L	2020-07-17	
EPHw10-19(sg)	< 250	250	μg/L	2020-07-19	
EPHw19-32(sg)	< 250	250	μg/L	2020-07-19	
LEPHw	< 250	250	μg/L	N/A	
HEPHw	< 250	250	μg/L	N/A	
Surrogate: 2-Methylnonane (EPH/F2-4)	88	60-126	%	2020-07-17	
Calculated Parameters					
Hardness, Total (as CaCO3)	277	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.00328	0.00010	mg/L	2020-07-22	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-07-22	
Antimony, dissolved	0.00020	0.00020	mg/L	2020-07-22	
Arsenic, dissolved	0.00071	0.00050	mg/L	2020-07-22	
Barium, dissolved	0.0355	0.0050	mg/L	2020-07-22	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Boron, dissolved	0.126	0.0500		2020-07-22	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-07-22	
Calcium, dissolved	53.9		mg/L	2020-07-22	
Chromium, dissolved	0.00331	0.00050		2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010		2020-07-22	
Copper, dissolved	0.00071	0.00040	mg/L	2020-07-22	
Iron, dissolved	< 0.010	0.010		2020-07-22	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Magnesium, dissolved	34.6		mg/L	2020-07-22	
Manganese, dissolved	0.00037	0.00020	mg/L	2020-07-22	Paga 7 of

				WORK ORDER REPORTED	0071316 2020-08-0	5 13:22
Analyte		Result	RL	Units	Analyzed	Qualifier
2020T16-03 (0071310	6-03) Matrix: Water	Sampled: 2020-07-13	12:30, Continued			
Dissolved Metals, Con	tinued					
Molybdenum, dissolve	ed	0.00747	0.00010	mg/L	2020-07-22	
Nickel, dissolved		0.00171	0.00040		2020-07-22	
Phosphorus, dissolve	d	< 0.050	0.050	mg/L	2020-07-22	
Potassium, dissolved		2.27	0.10	mg/L	2020-07-22	
Selenium, dissolved		0.00200	0.00050	mg/L	2020-07-22	
Silicon, dissolved		5.6	1.0	mg/L	2020-07-22	
Silver, dissolved		< 0.000050	0.000050		2020-07-22	
Sodium, dissolved		4.74		mg/L	2020-07-22	
Strontium, dissolved		0.391	0.0010		2020-07-22	
Sulfur, dissolved		19.2		mg/L	2020-07-22	
Tellurium, dissolved		< 0.00050	0.00050		2020-07-22	
Thallium, dissolved		< 0.000020	0.000020		2020-07-22	
Thorium, dissolved		< 0.00010	0.00010		2020-07-22	
Tin, dissolved		0.00033	0.00020		2020-07-22	
Titanium, dissolved		< 0.0050	0.0050		2020-07-22	
Tungsten, dissolved		< 0.0010	0.0010		2020-07-22	
Uranium, dissolved		0.00111	0.000020		2020-07-22	
Vanadium, dissolved		< 0.0010	0.0010		2020-07-22	
Zinc, dissolved		< 0.0040	0.0040		2020-07-22	
Zirconium, dissolved		< 0.00010	0.00010		2020-07-22	
General Parameters		0.000.0	0.00010			
	.003)	070	1.0	m a/l	2020 07 16	
Alkalinity, Total (as Ca	· · · · · · · · · · · · · · · · · · ·	273		mg/L	2020-07-16	
Alkalinity, Phenolphth		< 1.0	1.0	mg/L	2020-07-16	
Alkalinity, Bicarbonate	, ,	273		mg/L	2020-07-16	
Alkalinity, Carbonate		< 1.0		mg/L	2020-07-16	
Alkalinity, Hydroxide (· · · · · · · · · · · · · · · · · · ·	< 1.0		mg/L	2020-07-16	
Ammonia, Total (as N		0.055	0.050		2020-07-16	
Carbon, Total Inorgan		82.5		mg/L	2020-07-20	
Carbon, Total Organic		5.43		mg/L	2020-07-17	
Carbon, Dissolved Inc		64.8		mg/L	2020-07-20	
Carbon, Dissolved Or	ganic	4.53		mg/L	2020-07-17	
Conductivity (EC)		551		μS/cm	2020-07-16	
pH T. I.	D)	8.13		pH units	2020-07-16	HT2
Phosphorus, Total (as	· · · · · · · · · · · · · · · · · · ·	1.10	0.0050		2020-07-16	
Solids, Total Suspend		4730	2.0	mg/L	2020-07-19	
Polycyclic Aromatic H	ydrocarbons (PAH)					
Acenaphthene		< 0.050	0.050	μg/L	2020-07-17	
Acenaphthylene		< 0.200	0.200	μg/L	2020-07-17	
Acridine		< 0.050	0.050	μg/L	2020-07-17	
Anthracene		< 0.010	0.010	μg/L	2020-07-17	
Benz(a)anthracene		< 0.010	0.010	μg/L	2020-07-17	
Benzo(a)pyrene		< 0.010	0.010	μg/L	2020-07-17	

PROJECT Yukon Government - Marsh Lake Sewage			WORK ORDER REPORTED	0071316 2020-08-0	05 13:22
Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-03 (0071316-03) Matrix: Wate	r Sampled: 2020-07-13 12:30), Continued			
Polycyclic Aromatic Hydrocarbons (PAH),	Continued				
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L	2020-07-17	
Benzo(g,h,i)perylene	< 0.050	0.050	μg/L	2020-07-17	
Benzo(k)fluoranthene	< 0.050	0.050	μg/L	2020-07-17	
2-Chloronaphthalene	< 0.100	0.100	μg/L	2020-07-17	
Chrysene	< 0.050	0.050	μg/L	2020-07-17	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L	2020-07-17	
Fluoranthene	< 0.030	0.030	μg/L	2020-07-17	
Fluorene	< 0.050	0.050	μg/L	2020-07-17	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L	2020-07-17	
1-Methylnaphthalene	< 0.100	0.100	μg/L	2020-07-17	
2-Methylnaphthalene	< 0.100	0.100	μg/L	2020-07-17	
Naphthalene	< 0.200	0.200		2020-07-17	
Phenanthrene	< 0.100	0.100	μg/L	2020-07-17	
Pyrene	< 0.020	0.020		2020-07-17	
Quinoline	< 0.050	0.050		2020-07-17	
Surrogate: Acridine-d9	84	50-140	%	2020-07-17	
Surrogate: Naphthalene-d8	93	50-140	%	2020-07-17	
Surrogate: Perylene-d12	63	50-140	%	2020-07-17	
Benzene Ethylbenzene	< 0.5 < 1.0		μg/L μg/L	2020-07-20 2020-07-20	
Methyl tert-butyl ether	< 1.0		μg/L	2020-07-20	
Styrene	< 1.0	1.0		2020-07-20	
Toluene	< 1.0	1.0		2020-07-20	
Xylenes (total)	< 2.0		μg/L	2020-07-20	
Surrogate: Toluene-d8	91	70-130	%	2020-07-20	
Surrogate: 4-Bromofluorobenzene	97	70-130	%	2020-07-20	
2020T16-04 (0071316-04) Matrix: Wate	r Sampled: 2020-07-13 12:30) To 2020-07-13 15:00			
Anions					
Bromide	< 0.10		mg/L	2020-07-16	
Chloride	0.46		mg/L	2020-07-16	
Nitrate (as N)	< 0.010	0.010		2020-07-16	
Nitrite (as N)	< 0.010	0.010		2020-07-16	
Sulfate	62.4	1.0	mg/L	2020-07-16	
Calculated Parameters					
Hardness, Total (as CaCO3)	203	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.00220	0.00010	mg/L	2020-07-22	
Aluminum, dissolved	< 0.0050	0.0050		2020-07-22	
			<u>.</u>		Page 9 of

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifie
2020T16-04 (0071316-04) Matrix: Water	Sampled: 2020-07-13 12	:30 To 2020-07-13 15:00	, Continued		
Dissolved Metals, Continued					
Antimony, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Arsenic, dissolved	0.00051	0.00050	mg/L	2020-07-22	
Barium, dissolved	0.0261	0.0050	mg/L	2020-07-22	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Boron, dissolved	< 0.0500	0.0500	mg/L	2020-07-22	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-07-22	
Calcium, dissolved	32.7	0.20	mg/L	2020-07-22	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-07-22	
Iron, dissolved	< 0.010	0.010	mg/L	2020-07-22	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Magnesium, dissolved	29.3	0.010	mg/L	2020-07-22	
Manganese, dissolved	0.00173	0.00020	mg/L	2020-07-22	
Molybdenum, dissolved	0.00083	0.00010	mg/L	2020-07-22	
Nickel, dissolved	0.00055	0.00040	mg/L	2020-07-22	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-07-22	
Potassium, dissolved	2.11	0.10	mg/L	2020-07-22	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Silicon, dissolved	4.8	1.0	mg/L	2020-07-22	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-07-22	
Sodium, dissolved	5.58	0.10	mg/L	2020-07-22	
Strontium, dissolved	0.403	0.0010	mg/L	2020-07-22	
Sulfur, dissolved	22.8	3.0	mg/L	2020-07-22	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-07-22	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-07-22	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-07-22	
Uranium, dissolved	0.000313	0.000020		2020-07-22	
Vanadium, dissolved	< 0.0010	0.0010		2020-07-22	
Zinc, dissolved	< 0.0040	0.0040		2020-07-22	
Zirconium, dissolved	< 0.00010	0.00010		2020-07-22	
General Parameters					
Alkalinity, Total (as CaCO3)	160	1.0	mg/L	2020-07-16	
Alkalinity, Phenolphthalein (as CaCO3)	4.7	1.0	mg/L	2020-07-16	
Alkalinity, Bicarbonate (as CaCO3)	151	1.0	mg/L	2020-07-16	
Alkalinity, Carbonate (as CaCO3)	9.3	1.0	mg/L	2020-07-16	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-07-16	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2020-07-16	

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifie
2020T16-04 (0071316-04) Matrix: V	/ater Sampled: 2020-07-13 12:	30 To 2020-07-13 15:00	, Continued		
General Parameters, Continued					
Carbon, Total Inorganic	37.9	0.50	mg/L	2020-07-20	
Carbon, Total Organic	9.71	0.50	mg/L	2020-07-17	
Carbon, Dissolved Inorganic	37.2	0.5	mg/L	2020-07-20	
Carbon, Dissolved Organic	9.16	0.50	mg/L	2020-07-17	
Conductivity (EC)	363	2.0	μS/cm	2020-07-16	
pH	8.44	0.10	pH units	2020-07-16	HT2
Phosphorus, Total (as P)	0.0118	0.0050	mg/L	2020-07-16	
Solids, Total Suspended	6.0	2.0	mg/L	2020-07-19	
Fotal Metals					
Aluminum, total	< 0.0050	0.0050	mg/L	2020-07-20	
Antimony, total	< 0.00020	0.00020		2020-07-20	
Arsenic, total	< 0.00050	0.00050		2020-07-20	
Barium, total	0.0270	0.0050		2020-07-20	
Beryllium, total	< 0.00010	0.00010	mg/L	2020-07-20	
Bismuth, total	< 0.00010	0.00010	mg/L	2020-07-20	
Boron, total	< 0.0500	0.0500	mg/L	2020-07-20	
Cadmium, total	< 0.000010	0.000010	mg/L	2020-07-20	
Calcium, total	33.7		mg/L	2020-07-20	
Chromium, total	< 0.00050	0.00050		2020-07-20	
Cobalt, total	< 0.00010	0.00010		2020-07-20	
Copper, total	< 0.00040	0.00040	mg/L	2020-07-20	
Iron, total	< 0.010	0.010		2020-07-20	
Lead, total	< 0.00020	0.00020		2020-07-20	
Lithium, total	0.00227	0.00010	mg/L	2020-07-20	
Magnesium, total	31.1	0.010		2020-07-20	
Manganese, total	0.00977	0.00020	mg/L	2020-07-20	
Molybdenum, total	0.00085	0.00010	mg/L	2020-07-20	
Nickel, total	0.00057	0.00040	mg/L	2020-07-20	
Phosphorus, total	< 0.050	0.050	mg/L	2020-07-20	
Potassium, total	2.09	0.10	mg/L	2020-07-20	
Selenium, total	< 0.00050	0.00050		2020-07-20	
Silicon, total	5.0		mg/L	2020-07-20	
Silver, total	< 0.000050	0.000050		2020-07-20	
Sodium, total	5.72		mg/L	2020-07-20	
Strontium, total	0.382	0.0010		2020-07-20	
Sulfur, total	23.0		mg/L	2020-07-20	
Tellurium, total	< 0.00050	0.00050		2020-07-20	
Thallium, total	< 0.000020	0.000020		2020-07-20	
Thorium, total	< 0.00010	0.00010		2020-07-20	
Tin, total	< 0.00020	0.00020		2020-07-20	
Titanium, total	< 0.0050	0.0050		2020-07-20	
Tungsten, total	< 0.0010	0.0010		2020-07-20	

	kon Government - Water Resources rsh Lake Sewage Lagoon Audit		WORK ORDER 00713 REPORTED 2020-0		1316 0-08-05 13:22	
Analyte	Result	RL	Units	Analyzed	Qualifier	
2020T16-04 (0071316-0	04) Matrix: Water Sampled: 2020-07-13 12:3	30 To 2020-07-13 15:00	, Continued			
Total Metals, Continued						
Uranium, total	0.000314	0.000020	mg/L	2020-07-20		
Vanadium, total	< 0.0010	0.0010	mg/L	2020-07-20		
Zinc, total	< 0.0040	0.0040	mg/L	2020-07-20		
Zirconium, total	< 0.00010	0.00010	mg/L	2020-07-20		
2020T16-05 (0071316-0	05) Matrix: Water Sampled: 2020-07-13 11:0	00 To 2020-07-13 14:30				
Anions						
Bromide	< 0.10	0.10	mg/L	2020-07-17		
Chloride	0.99	0.10	mg/L	2020-07-17		
Nitrate (as N)	0.266	0.010	mg/L	2020-07-17	HT1	
Nitrite (as N)	< 0.010	0.010	mg/L	2020-07-17	HT1	
Sulfate	65.6	1.0	mg/L	2020-07-17		
BCMOE Aggregate Hydr	rocarbons					
VHw (6-10)	< 100	100	μg/L	2020-07-20		
VPHw	< 100		μg/L	N/A		
EPHw10-19	< 250		μg/L	2020-07-17		
EPHw19-32	< 250		μg/L	2020-07-17		
EPHw10-19(sg)	< 250		μg/L	2020-07-19		
EPHw19-32(sg)	< 250		μg/L	2020-07-19		
LEPHw	< 250		μg/L	N/A		
HEPHw	< 250		μg/L	N/A		
Surrogate: 2-Methylnon	ane (EPH/F2-4) 79	60-126		2020-07-17		
Calculated Parameters						
Hardness, Total (as CaC	CO3) 312	0.500	mg/L	N/A		
Dissolved Metals						
Lithium, dissolved	0.00363	0.00010		2020-07-22		
Aluminum, dissolved	< 0.0050	0.0050		2020-07-22		
Antimony, dissolved	0.00023	0.00020		2020-07-22		
Arsenic, dissolved	0.00086	0.00050		2020-07-22		
Barium, dissolved	0.0175	0.0050		2020-07-22		
Beryllium, dissolved	< 0.00010	0.00010		2020-07-22		
Bismuth, dissolved	< 0.00010	0.00010		2020-07-22		
Boron, dissolved	0.159	0.0500		2020-07-22		
Cadmium, dissolved	0.000168	0.000010		2020-07-22		
Calcium, dissolved	58.3		mg/L	2020-07-22		
Chromium, dissolved	0.00682	0.00050		2020-07-22		
Cobalt, dissolved	< 0.00010	0.00010		2020-07-22		
Copper, dissolved	0.00083	0.00040		2020-07-22		
Iron, dissolved	< 0.010		mg/L	2020-07-22		
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	ane 12 n	

REPORTED TO	Yukon Government - Water Resources	WORK ORDER	0071316
PROJECT	Marsh Lake Sewage Lagoon Audit	REPORTED	2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualific
2020T16-05 (0071316-05) Matrix: Water	Sampled: 2020-07-13 11	:00 To 2020-07-13 14:30	, Continued		
Dissolved Metals, Continued					
Magnesium, dissolved	40.3	0.010	mg/L	2020-07-22	
Manganese, dissolved	0.00101	0.00020	mg/L	2020-07-22	
Molybdenum, dissolved	0.00816	0.00010	mg/L	2020-07-22	
Nickel, dissolved	0.00303	0.00040	mg/L	2020-07-22	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-07-22	
Potassium, dissolved	2.47	0.10	mg/L	2020-07-22	
Selenium, dissolved	0.00290	0.00050	mg/L	2020-07-22	
Silicon, dissolved	6.0	1.0	mg/L	2020-07-22	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-07-22	
Sodium, dissolved	6.20	0.10	mg/L	2020-07-22	
Strontium, dissolved	0.494	0.0010	mg/L	2020-07-22	
Sulfur, dissolved	23.0	3.0	mg/L	2020-07-22	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Thallium, dissolved	< 0.000020	0.000020		2020-07-22	
Thorium, dissolved	< 0.00010	0.00010		2020-07-22	
Tin, dissolved	0.00024	0.00020		2020-07-22	
Titanium, dissolved	< 0.0050	0.0050		2020-07-22	
Tungsten, dissolved	< 0.0010	0.0010		2020-07-22	
Uranium, dissolved	0.000384	0.000020		2020-07-22	
Vanadium, dissolved	< 0.0010	0.0010		2020-07-22	
Zinc, dissolved	< 0.0040	0.0040		2020-07-22	
Zirconium, dissolved	< 0.00010	0.00010		2020-07-22	
eneral Parameters	0.000.0	0.000.10	9/=		
Alkalinity, Total (as CaCO3)	278	1.0	mg/L	2020-07-16	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-07-16	
Alkalinity, Bicarbonate (as CaCO3)	278		mg/L	2020-07-16	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-07-16	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-07-16	
Ammonia, Total (as N)	0.092	0.050		2020-07-16	
Carbon, Total Inorganic	74.9		mg/L	2020-07-10	
Carbon, Total Organic					
	7.01		mg/L mg/L	2020-07-17	
Carbon, Dissolved Inorganic	66.1			2020-07-20	
Carbon, Dissolved Organic	6.57		mg/L	2020-07-17	
Conductivity (EC)	558		µS/cm	2020-07-16	ЦΤΩ
pH	8.14		pH units	2020-07-16	HT2
Phosphorus, Total (as P)	0.394	0.0050		2020-07-16	
Solids, Total Suspended	680	2.0	mg/L	2020-07-19	
Polycyclic Aromatic Hydrocarbons (PAH)	0.6	.		000	
Acenaphthene	< 0.050	0.050		2020-07-17	
Acenaphthylene	< 0.200	0.200		2020-07-17	
Acridine	< 0.050	0.050		2020-07-17	
Anthracene	< 0.010	0.010	μg/L	2020-07-17	age 13

REPORTED TO	Yukon Government - Water Resources	WORK ORDER	0071316
PROJECT	Marsh Lake Sewage Lagoon Audit	REPORTED	2020-08-05 13:22

Sampled: 2020-07-13 11:00 Sampled: 2020-07-13 11:00 < 0.010 < 0.050 < 0.050 < 0.100 < 0.050 < 0.050 < 0.010	0.010 0.010 0.050 0.050 0.050 0.100	μg/L μg/L μg/L μg/L μg/L	2020-07-17 2020-07-17 2020-07-17 2020-07-17 2020-07-17	
< 0.010 < 0.010 < 0.050 < 0.050 < 0.050 < 0.100 < 0.050	0.010 0.050 0.050 0.050 0.100	μg/L μg/L μg/L μg/L	2020-07-17 2020-07-17 2020-07-17 2020-07-17	
< 0.010 < 0.050 < 0.050 < 0.050 < 0.100 < 0.050	0.010 0.050 0.050 0.050 0.100	μg/L μg/L μg/L μg/L	2020-07-17 2020-07-17 2020-07-17 2020-07-17	
< 0.050 < 0.050 < 0.050 < 0.100 < 0.050	0.050 0.050 0.050 0.100	μg/L μg/L μg/L	2020-07-17 2020-07-17 2020-07-17	
< 0.050 < 0.050 < 0.100 < 0.050	0.050 0.050 0.100	μg/L μg/L	2020-07-17 2020-07-17	
< 0.050 < 0.100 < 0.050	0.050 0.100	μg/L	2020-07-17	
< 0.100 < 0.050	0.100			
< 0.050		μg/L	2020 07 17	
	0.050		2020-07-17	
< 0.010	0.030	μg/L	2020-07-17	
	0.010	μg/L	2020-07-17	
< 0.030	0.030	μg/L	2020-07-17	
< 0.050	0.050	μg/L	2020-07-17	
< 0.050	0.050	μg/L	2020-07-17	
< 0.100	0.100	μg/L	2020-07-17	
< 0.100	0.100	μg/L	2020-07-17	
< 0.200	0.200	μg/L	2020-07-17	
< 0.100			2020-07-17	
< 0.020			2020-07-17	
< 0.050			2020-07-17	
74	50-140	%	2020-07-17	
80	50-140	%	2020-07-17	
69	50-140	%	2020-07-17	
< 0.5	0.5	ua/L	2020-07-20	
< 1.0			2020-07-20	
		· -		
< 2.0			2020-07-20	
90			2020-07-20	
	< 0.050 < 0.100 < 0.100 < 0.200 < 0.100 < 0.020 < 0.050 74 80 69 < 0.5 < 1.0 < 1.0 < 1.0 < 1.0	< 0.050	< 0.050	< 0.050

Hardness, Total (as CaCO3)

N/A

0.500 mg/L

168

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifie
2020T16-06 (0071316-06) Matrix: Water	Sampled: 2020-07-13 13	:10, Continued			
Dissolved Metals, Continued					
Lithium, dissolved	0.00230	0.00010	mg/L	2020-07-22	
Aluminum, dissolved	< 0.0050	0.0050		2020-07-22	
Antimony, dissolved	< 0.00020	0.00020		2020-07-22	
Arsenic, dissolved	0.00055	0.00050		2020-07-22	
Barium, dissolved	0.0260	0.0050	mg/L	2020-07-22	
Beryllium, dissolved	< 0.00010	0.00010		2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010		2020-07-22	
Boron, dissolved	0.0958	0.0500		2020-07-22	
Cadmium, dissolved	< 0.000010	0.000010		2020-07-22	
Calcium, dissolved	33.5		mg/L	2020-07-22	
Chromium, dissolved	< 0.00050	0.00050		2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010		2020-07-22	
Copper, dissolved	< 0.00040	0.00040	mg/L	2020-07-22	
Iron, dissolved	0.019	0.010	mg/L	2020-07-22	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Magnesium, dissolved	20.4	0.010	mg/L	2020-07-22	
Manganese, dissolved	0.0367	0.00020	mg/L	2020-07-22	
Molybdenum, dissolved	0.00390	0.00010	mg/L	2020-07-22	
Nickel, dissolved	0.00049	0.00040	mg/L	2020-07-22	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-07-22	
Potassium, dissolved	4.12	0.10	mg/L	2020-07-22	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Silicon, dissolved	1.4	1.0	mg/L	2020-07-22	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-07-22	
Sodium, dissolved	2.53	0.10	mg/L	2020-07-22	
Strontium, dissolved	0.354	0.0010	mg/L	2020-07-22	
Sulfur, dissolved	5.6	3.0	mg/L	2020-07-22	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-07-22	
Thorium, dissolved	< 0.00010	0.00010		2020-07-22	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-07-22	
Tungsten, dissolved	< 0.0010	0.0010		2020-07-22	
Uranium, dissolved	0.000528	0.000020		2020-07-22	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-07-22	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-07-22	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
General Parameters					
Alkalinity, Total (as CaCO3)	158	1.0	mg/L	2020-07-16	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-07-16	
Alkalinity, Bicarbonate (as CaCO3)	158		mg/L	2020-07-16	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-07-16	

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifie
2020T16-06 (0071316-06) Matrix: Wat	er Sampled: 2020-07-13 13	:10, Continued			
General Parameters, Continued					
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-07-16	
Ammonia, Total (as N)	0.060	0.050		2020-07-16	
Carbon, Total Inorganic	38.8		mg/L	2020-07-20	
Carbon, Total Organic	17.1	0.50	mg/L	2020-07-17	
Carbon, Dissolved Inorganic	37.3	0.5	mg/L	2020-07-20	
Carbon, Dissolved Organic	16.5	0.50	mg/L	2020-07-17	
Conductivity (EC)	287	2.0	μS/cm	2020-07-16	
pH	8.17	0.10	pH units	2020-07-16	HT2
Phosphorus, Total (as P)	0.0224	0.0050	mg/L	2020-07-16	
Solids, Total Suspended	5.4	2.0	mg/L	2020-07-19	
Total Metals					
Aluminum, total	< 0.0050	0.0050	mg/L	2020-07-20	
Antimony, total	< 0.00020	0.00020		2020-07-20	
Arsenic, total	< 0.00050	0.00050		2020-07-20	
Barium, total	0.0274	0.0050		2020-07-20	
Beryllium, total	< 0.00010	0.00010		2020-07-20	
Bismuth, total	< 0.00010	0.00010		2020-07-20	
Boron, total	0.0950	0.0500		2020-07-20	
Cadmium, total	< 0.000010	0.000010		2020-07-20	
Calcium, total	34.9		mg/L	2020-07-20	
Chromium, total	< 0.00050	0.00050		2020-07-20	
Cobalt, total	< 0.00010	0.00010		2020-07-20	
Copper, total	< 0.00040	0.00040	mg/L	2020-07-20	
Iron, total	0.030	0.010		2020-07-20	
Lead, total	< 0.00020	0.00020		2020-07-20	
Lithium, total	0.00237	0.00010		2020-07-20	
Magnesium, total	22.1	0.010		2020-07-20	
Manganese, total	0.0560	0.00020		2020-07-20	
Molybdenum, total	0.00425	0.00010		2020-07-20	
Nickel, total	0.00053	0.00040		2020-07-20	
Phosphorus, total	< 0.050	0.050		2020-07-20	
Potassium, total	4.15		mg/L	2020-07-20	
Selenium, total	< 0.00050	0.00050		2020-07-20	
Silicon, total	1.3		mg/L	2020-07-20	
Silver, total	< 0.000050	0.000050		2020-07-20	
Sodium, total	2.53		mg/L	2020-07-20	
Strontium, total	0.341	0.0010		2020-07-20	
Sulfur, total	3.8		mg/L	2020-07-20	
Tellurium, total	< 0.00050	0.00050	mg/L	2020-07-20	
Thallium, total	< 0.000020	0.000020		2020-07-20	
Thorium, total	< 0.00010	0.00010		2020-07-20	
Tin, total	< 0.00020	0.00020		2020-07-20	

	on Government - Water Resources sh Lake Sewage Lagoon Audit		WORK ORDER REPORTED	0071316 2020-08-05 13:22	
Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-06 (0071316-0	6) Matrix: Water Sampled: 2020-07-13 13:1	0, Continued			
Total Metals, Continued					
Titanium, total	< 0.0050	0.0050	mg/L	2020-07-20	
Tungsten, total	< 0.0010	0.0010	mg/L	2020-07-20	
Uranium, total	0.000534	0.000020	mg/L	2020-07-20	
Vanadium, total	< 0.0010	0.0010		2020-07-20	
Zinc, total	< 0.0040	0.0040	mg/L	2020-07-20	
Zirconium, total	< 0.00010	0.00010	mg/L	2020-07-20	
2020T16-06 (0071316-0	6RE1) Matrix: Water Sampled: 2020-07-13	13:10			
Anions					
Chloride	3.34	0.10	mg/L	2020-07-21	
Nitrate (as N)	< 0.010	0.010	mg/L	2020-07-21	HT1
Nitrite (as N)	< 0.010	0.010	mg/L	2020-07-21	HT1
Sulfate	10.0	1.0	mg/L	2020-07-21	
General Parameters					
Conductivity (EC)	301	2.0	μS/cm	2020-07-20	
pH	8.04		pH units	2020-07-20	HT2
2020T16-07 (0071316-0 Anions	7) Matrix: Water Sampled: 2020-07-13 12:1	5			
Bromide	< 0.10	0.10	mg/L	2020-07-17	
Chloride	0.36	0.10	mg/L	2020-07-17	
Nitrate (as N)	< 0.010	0.010	mg/L	2020-07-17	HT1
Nitrite (as N)	< 0.010	0.010	mg/L	2020-07-17	HT1
Sulfate	12.2	1.0	mg/L	2020-07-17	
BCMOE Aggregate Hydro	carbons				
EPHw10-19	< 250	250	μg/L	2020-07-17	
EPHw19-32	< 250		μg/L	2020-07-17	
Surrogate: 2-Methylnona	ne (EPH/F2-4) 91	60-126		2020-07-17	
Calculated Parameters					
Hardness, Total (as CaC	O3) 194	0.500	mg/L	N/A	
Dissolved Metals					
Lithium, dissolved	0.00099	0.00010	mg/L	2020-07-22	
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2020-07-22	
Antimony, dissolved	< 0.00020	0.00020		2020-07-22	
Arsenic, dissolved	0.00146	0.00050	mg/L	2020-07-22	
Barium, dissolved	0.0545	0.0050		2020-07-22	
Beryllium, dissolved	< 0.00010	0.00010		2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualific
2020T16-07 (0071316-07) Matrix: Water	Sampled: 2020-07-13 12	:15, Continued			
Dissolved Metals, Continued					
Boron, dissolved	< 0.0500	0.0500	mg/L	2020-07-22	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2020-07-22	
Calcium, dissolved	40.2	0.20	mg/L	2020-07-22	
Chromium, dissolved	0.00085	0.00050	mg/L	2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
Copper, dissolved	0.00085	0.00040	mg/L	2020-07-22	
Iron, dissolved	0.077	0.010	mg/L	2020-07-22	
Lead, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Magnesium, dissolved	22.8	0.010	mg/L	2020-07-22	
Manganese, dissolved	0.0211	0.00020	mg/L	2020-07-22	
Molybdenum, dissolved	0.00149	0.00010	mg/L	2020-07-22	
Nickel, dissolved	0.00623	0.00040		2020-07-22	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2020-07-22	
Potassium, dissolved	0.45		mg/L	2020-07-22	
Selenium, dissolved	< 0.00050	0.00050		2020-07-22	
Silicon, dissolved	5.4	1.0	mg/L	2020-07-22	
Silver, dissolved	< 0.000050	0.000050		2020-07-22	
Sodium, dissolved	2.76		mg/L	2020-07-22	
Strontium, dissolved	0.179	0.0010		2020-07-22	
Sulfur, dissolved	5.1		mg/L	2020-07-22	
Tellurium, dissolved	< 0.00050	0.00050		2020-07-22	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2020-07-22	
Thorium, dissolved	< 0.00010	0.00010		2020-07-22	
Tin, dissolved	< 0.00020	0.00020		2020-07-22	
Titanium, dissolved	< 0.0050	0.0050		2020-07-22	
Tungsten, dissolved	< 0.0010	0.0010		2020-07-22	
Uranium, dissolved	0.000344	0.000020		2020-07-22	
Vanadium, dissolved	< 0.0010	0.0010		2020-07-22	
Zinc, dissolved	< 0.0040	0.0040		2020-07-22	
Zirconium, dissolved	< 0.00010	0.00010		2020-07-22	
Seneral Parameters					
Alkalinity, Total (as CaCO3)	192	1.0	mg/L	2020-07-16	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-07-16	
Alkalinity, Bicarbonate (as CaCO3)	192		mg/L	2020-07-16	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2020-07-16	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2020-07-16	
Ammonia, Total (as N)	< 0.050	0.050		2020-07-16	
Carbon, Total Inorganic	46.7	0.50	mg/L	2020-07-20	
Carbon, Total Organic	9.15		mg/L	2020-07-17	
Carbon, Dissolved Inorganic	45.6		mg/L	2020-07-20	
Carbon, Dissolved Organic	8.87		mg/L	2020-07-17	
Conductivity (EC)	321		μS/cm	2020-07-16	

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-07 (0071316-07) Matrix:	: Water Sampled: 2020-07-13 12:	15, Continued			
General Parameters, Continued					
рН	8.29	0.10	pH units	2020-07-16	HT2
Phosphorus, Total (as P)	0.0179	0.0050	mg/L	2020-07-16	
Solids, Total Suspended	6.8	2.0	mg/L	2020-07-19	
Total Metals					
Aluminum, total	0.0203	0.0050	mg/L	2020-07-20	
Antimony, total	< 0.00020	0.00020	mg/L	2020-07-20	
Arsenic, total	0.00138	0.00050	mg/L	2020-07-20	
Barium, total	0.0600	0.0050	mg/L	2020-07-20	
Beryllium, total	< 0.00010	0.00010	mg/L	2020-07-20	
Bismuth, total	< 0.00010	0.00010	mg/L	2020-07-20	
Boron, total	< 0.0500	0.0500	mg/L	2020-07-20	
Cadmium, total	< 0.000010	0.000010	mg/L	2020-07-20	
Calcium, total	44.2		mg/L	2020-07-20	
Chromium, total	0.00109	0.00050		2020-07-20	
Cobalt, total	< 0.00010	0.00010		2020-07-20	
Copper, total	0.00101	0.00040		2020-07-20	
Iron, total	0.132	0.010		2020-07-20	
Lead, total	< 0.00020	0.00020		2020-07-20	
Lithium, total	0.00102	0.00010		2020-07-20	
Magnesium, total	25.4	0.010		2020-07-20	
Manganese, total Molybdenum, total	0.0285	0.00020		2020-07-20	
Nickel, total	0.00157 0.00711	0.00010 0.00040		2020-07-20	
Phosphorus, total	< 0.050	0.050		2020-07-20	
Potassium, total	0.44		mg/L	2020-07-20	
Selenium, total	< 0.00050	0.00050		2020-07-20	
Silicon, total	5.9		mg/L	2020-07-20	
Silver, total	< 0.000050	0.000050		2020-07-20	
Sodium, total	2.89		mg/L	2020-07-20	
Strontium, total	0.182	0.0010		2020-07-20	
Sulfur, total	4.4		mg/L	2020-07-20	
Tellurium, total	< 0.00050	0.00050	mg/L	2020-07-20	
Thallium, total	< 0.000020	0.000020	mg/L	2020-07-20	
Thorium, total	< 0.00010	0.00010	mg/L	2020-07-20	
Tin, total	< 0.00020	0.00020	mg/L	2020-07-20	
Titanium, total	< 0.0050	0.0050		2020-07-20	
Tungsten, total	< 0.0010	0.0010		2020-07-20	
Uranium, total	0.000369	0.000020		2020-07-20	
Vanadium, total	0.0017	0.0010		2020-07-20	
Zinc, total	< 0.0040	0.0040		2020-07-20	
Zirconium, total	< 0.00010	0.00010	mg/L	2020-07-20	

	on Government - Water Resources rsh Lake Sewage Lagoon Audit		WORK ORDER REPORTED	0071316 2020-08-05 13:22	
Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-07 (0071316-	07RE1) Matrix: Water Sampled: 2020-07	7-13 12:15			
Anions					
Chloride	0.36	0.10	mg/L	2020-07-21	
Nitrate (as N)	< 0.010	0.010	mg/L	2020-07-21	HT1
Nitrite (as N)	< 0.010	0.010	mg/L	2020-07-21	HT1
Sulfate	12.2	1.0	mg/L	2020-07-21	
General Parameters					
Conductivity (EC)	344	2.0	μS/cm	2020-07-20	
pH	8.30		pH units	2020-07-20	HT2
2020T16-08 (0071316-0	08) Matrix: Water Sampled: 2020-07-13	11:11			
Bromide	< 0.10	0.10	mg/L	2020-07-17	
Chloride	3.10		mg/L	2020-07-17	
Nitrate (as N)	< 0.010	0.010		2020-07-17	HT1
Nitrite (as N)	< 0.010	0.010		2020-07-17	HT1
Sulfate	34.0		mg/L	2020-07-17	
Hardness, Total (as Cac	CO3) 147	0.500	mg/L	N/A	
		0.00040		0000 07 00	
Lithium, dissolved	0.00240	0.00010		2020-07-22	
Aluminum, dissolved	0.0075	0.0050		2020-07-22	
Antimony, dissolved	< 0.00020	0.00020 0.00050		2020-07-22	
Arsenic, dissolved Barium, dissolved	0.00063 0.0212	0.0050		2020-07-22	
Beryllium, dissolved	< 0.0010	0.00010		2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010		2020-07-22	
Boron, dissolved	0.0674	0.0500		2020-07-22	
Cadmium, dissolved	< 0.00010	0.000010		2020-07-22	
Calcium, dissolved	21.9		mg/L	2020-07-22	
Chromium, dissolved	< 0.00050	0.00050		2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010		2020-07-22	
Copper, dissolved	< 0.00040	0.00040		2020-07-22	
Iron, dissolved	0.012	0.010		2020-07-22	
Lead, dissolved	< 0.00020	0.00020		2020-07-22	
Magnesium, dissolved	22.5	0.010		2020-07-22	
Manganese, dissolved	0.00198	0.00020		2020-07-22	
Molybdenum, dissolved		0.00010		2020-07-22	
Nickel, dissolved	< 0.00040	0.00040		2020-07-22	
Phosphorus, dissolved	< 0.050	0.050		2020-07-22	
Potassium, dissolved	2.28		mg/L	2020-07-22	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	

	on Government - Water Resources sh Lake Sewage Lagoon Audit		WORK ORDER REPORTED	0071316 2020-08-05 13:22	
Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-08 (0071316-08	8) Matrix: Water Sampled: 2020-07-13 11:1	1, Continued			
Dissolved Metals, Continu	ued				
Silicon, dissolved	< 1.0	1.0	mg/L	2020-07-22	
Silver, dissolved	< 0.000050	0.000050	mg/L	2020-07-22	
Sodium, dissolved	2.81	0.10	mg/L	2020-07-22	
Strontium, dissolved	0.199	0.0010	mg/L	2020-07-22	
Sulfur, dissolved	14.2	3.0	mg/L	2020-07-22	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2020-07-22	
Thallium, dissolved	< 0.000020	0.000020		2020-07-22	
Thorium, dissolved	< 0.00010	0.00010		2020-07-22	
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Titanium, dissolved	< 0.0050	0.0050		2020-07-22	
Tungsten, dissolved	< 0.0010	0.0010		2020-07-22	
Uranium, dissolved	0.000704	0.000020		2020-07-22	
Vanadium, dissolved	< 0.0010	0.0010		2020-07-22	
Zinc, dissolved	< 0.0040	0.0040		2020-07-22	
Zirconium, dissolved	< 0.00010	0.00010		2020-07-22	
General Parameters	* * * * *				
	12)	1.0	m a /l	2020 07 16	
Alkalinity, Total (as CaCC	·		mg/L	2020-07-16	
Alkalinity, Phenolphthalei			mg/L	2020-07-16	
Alkalinity, Bicarbonate (as			mg/L	2020-07-16	
Alkalinity, Carbonate (as			mg/L	2020-07-16	
Alkalinity, Hydroxide (as 0			mg/L	2020-07-16	
Ammonia, Total (as N)	< 0.050	0.050		2020-07-16	
Carbon, Total Inorganic	30.8		mg/L	2020-07-20	
Carbon, Total Organic	11.8		mg/L	2020-07-17	
Carbon, Dissolved Inorga			mg/L	2020-07-20	
Carbon, Dissolved Organ		0.50		2020-07-17	
Conductivity (EC)	271		μS/cm	2020-07-16	
pH	8.43		pH units	2020-07-16	HT2
Phosphorus, Total (as P)	0.0131	0.0050		2020-07-16	
Solids, Total Suspended	< 2.0	2.0	mg/L	2020-07-19	
Total Metals					
Aluminum, total	0.0084	0.0050	mg/L	2020-07-20	
Antimony, total	< 0.00020	0.00020	mg/L	2020-07-20	
Arsenic, total	< 0.00050	0.00050	mg/L	2020-07-20	
Barium, total	0.0228	0.0050	mg/L	2020-07-20	
Beryllium, total	< 0.00010	0.00010	mg/L	2020-07-20	
Bismuth, total	< 0.00010	0.00010	mg/L	2020-07-20	
Boron, total	0.0697	0.0500	mg/L	2020-07-20	
Cadmium, total	< 0.000010	0.000010	mg/L	2020-07-20	
Calcium, total	23.5	0.20	mg/L	2020-07-20	
Chromium, total	< 0.00050	0.00050	mg/L	2020-07-20	
Cobalt, total	< 0.00010	0.00010		2020-07-20	

REPORTED TOYukon Government - Water ResourcesWORK ORDER0071316PROJECTMarsh Lake Sewage Lagoon AuditREPORTED2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-08 (0071316-08) Matrix	: Water Sampled: 2020-07-13 11:1	1, Continued			
Total Metals, Continued					
Copper, total	< 0.00040	0.00040	mg/L	2020-07-20	
Iron, total	0.017	0.010	mg/L	2020-07-20	
Lead, total	< 0.00020	0.00020	mg/L	2020-07-20	
Lithium, total	0.00250	0.00010	mg/L	2020-07-20	
Magnesium, total	24.8	0.010	mg/L	2020-07-20	
Manganese, total	0.00389	0.00020	mg/L	2020-07-20	
Molybdenum, total	0.00406	0.00010	mg/L	2020-07-20	
Nickel, total	< 0.00040	0.00040	mg/L	2020-07-20	
Phosphorus, total	< 0.050	0.050	mg/L	2020-07-20	
Potassium, total	2.29	0.10	mg/L	2020-07-20	
Selenium, total	< 0.00050	0.00050	mg/L	2020-07-20	
Silicon, total	< 1.0	1.0	mg/L	2020-07-20	
Silver, total	< 0.000050	0.000050	mg/L	2020-07-20	
Sodium, total	2.88	0.10	mg/L	2020-07-20	
Strontium, total	0.200	0.0010	mg/L	2020-07-20	
Sulfur, total	11.4	3.0	mg/L	2020-07-20	
Tellurium, total	< 0.00050	0.00050	mg/L	2020-07-20	
Thallium, total	< 0.000020	0.000020	mg/L	2020-07-20	
Thorium, total	< 0.00010	0.00010	mg/L	2020-07-20	
Tin, total	< 0.00020	0.00020	mg/L	2020-07-20	
Titanium, total	< 0.0050	0.0050	mg/L	2020-07-20	
Tungsten, total	< 0.0010	0.0010	mg/L	2020-07-20	
Uranium, total	0.000723	0.000020	mg/L	2020-07-20	
Vanadium, total	< 0.0010	0.0010	mg/L	2020-07-20	
Zinc, total	< 0.0040	0.0040	mg/L	2020-07-20	
Zirconium, total	< 0.00010	0.00010	mg/L	2020-07-20	

2020T16-08 (0071316-08RE1) | Matrix: Water | Sampled: 2020-07-13 11:11

Anions					
Chloride	3.10	0.10 m	ng/L	2020-07-21	
Nitrate (as N)	< 0.010	0.010 m	ng/L	2020-07-21	HT1
Nitrite (as N)	< 0.010	0.010 m	ng/L	2020-07-21	HT1
Sulfate	34.0	1.0 m	ng/L	2020-07-21	
General Parameters					
Conductivity (EC)	285	2.0 μ	S/cm	2020-07-20	
pH	8.39	0.10 p	H units	2020-07-20	HT2

2020T16-09 (0071316-09) | Matrix: Water | Sampled: 2020-07-13 15:30

n		

Bromide < 0.10 0.10 mg/L 2020-07-17

REPORTED TO	Yukon Government - Water Resources	WORK ORDER	0071316
PROJECT	Marsh Lake Sewage Lagoon Audit	REPORTED	2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-09 (0071316-09) Matrix: Water	Sampled: 2020-07-13 1	5:30, Continued			
Anions, Continued					
Chloride	0.34	0.10	mg/L	2020-07-17	
Nitrate (as N)	< 0.010	0.010		2020-07-17	HT1
Nitrite (as N)	< 0.010	0.010	mg/L	2020-07-17	HT1
Sulfate	12.1	1.0	mg/L	2020-07-17	
BCMOE Aggregate Hydrocarbons					
EPHw10-19	< 250	250	μg/L	2020-07-18	
EPHw19-32	597	250		2020-07-18	
Surrogate: 2-Methylnonane (EPH/F2-4)	77	60-126		2020-07-18	
Calculated Parameters		**			
Hardness, Total (as CaCO3)	197	0.500	ma/L	N/A	
Dissolved Metals				<u>.</u>	
Lithium, dissolved	0.00094	0.00010	ma/l	2020-07-22	
Aluminum, dissolved	< 0.0050	0.0050		2020-07-22	
Antimony, dissolved	< 0.00020	0.00020		2020-07-22	
Arsenic, dissolved	0.00147	0.00050		2020-07-22	
Barium, dissolved	0.0524	0.0050		2020-07-22	
Beryllium, dissolved	< 0.00010	0.00010		2020-07-22	
Bismuth, dissolved	< 0.00010	0.00010		2020-07-22	
Boron, dissolved	< 0.0500	0.0500		2020-07-22	
Cadmium, dissolved	< 0.000010	0.000010		2020-07-22	
Calcium, dissolved	40.3		mg/L	2020-07-22	
Chromium, dissolved	0.00095	0.00050		2020-07-22	
Cobalt, dissolved	< 0.00010	0.00010		2020-07-22	
Copper, dissolved	0.00085	0.00040		2020-07-22	
Iron, dissolved	0.0003	0.010		2020-07-22	
Lead, dissolved	< 0.00020	0.00020		2020-07-22	
Magnesium, dissolved	23.4	0.010		2020-07-22	
Manganese, dissolved	0.0197	0.00020		2020-07-22	
Molybdenum, dissolved	0.00134	0.00010		2020-07-22	
Nickel, dissolved	0.00638	0.00040		2020-07-22	
Phosphorus, dissolved	< 0.050		mg/L	2020-07-22	
Potassium, dissolved	0.41		mg/L	2020-07-22	
Selenium, dissolved	< 0.00050	0.00050		2020-07-22	
Silicon, dissolved	5.5		mg/L	2020-07-22	
Silver, dissolved	< 0.000050	0.000050		2020-07-22	
Sodium, dissolved	2.78		mg/L	2020-07-22	
Strontium, dissolved	0.179	0.0010		2020-07-22	
Sulfur, dissolved	5.2		mg/L	2020-07-22	
Tellurium, dissolved	< 0.00050	0.00050		2020-07-22	
Thallium, dissolved	< 0.00030	0.00030		2020-07-22	
Thorium, dissolved	< 0.00010	0.00010		2020-07-22	
monum, dissolved	~ U.UUU IU	0.00010	mg/L		age 23 of

PROJECT Yukon Government - Marsh Lake Sewage			WORK ORDER REPORTED	0071316 2020-08-0	5 13:22
Analyte	Result	RL	Units	Analyzed	Qualifier
2020T16-09 (0071316-09) Matrix: Wate	r Sampled: 2020-07-13 15	:30, Continued			
Dissolved Metals, Continued					
Tin, dissolved	< 0.00020	0.00020	mg/L	2020-07-22	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2020-07-22	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2020-07-22	
Uranium, dissolved	0.000345	0.000020	mg/L	2020-07-22	
Vanadium, dissolved	< 0.0010	0.0010	mg/L	2020-07-22	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2020-07-22	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2020-07-22	
General Parameters					
Alkalinity, Total (as CaCO3)	191	1.0	mg/L	2020-07-16	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2020-07-16	
Alkalinity, Bicarbonate (as CaCO3)	191			2020-07-16	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0		2020-07-16	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2020-07-16	
Ammonia, Total (as N)	< 0.050	0.050		2020-07-16	
Carbon, Total Inorganic	45.7		mg/L	2020-07-20	
Carbon, Total Organic	8.69		mg/L	2020-07-17	
Carbon, Dissolved Inorganic	45.5		mg/L	2020-07-20	
Carbon, Dissolved Organic	8.30	0.50		2020-07-17	
Conductivity (EC)	318	2.0	μS/cm	2020-07-16	
pH	8.30	0.10	•	2020-07-16	HT2
Phosphorus, Total (as P)	0.0195	0.0050	•	2020-07-16	
Solids, Total Suspended	6.4		mg/L	2020-07-19	
Total Metals					
Aluminum, total	0.0650	0.0050	mg/L	2020-07-20	
Antimony, total	< 0.00020	0.00020		2020-07-20	
Arsenic, total	0.00125	0.00050		2020-07-20	
Barium, total	0.0550	0.0050		2020-07-20	
Beryllium, total	< 0.00010	0.00010		2020-07-20	
Bismuth, total	< 0.00010	0.00010		2020-07-20	
Boron, total	< 0.0500	0.0500		2020-07-20	
Cadmium, total	< 0.000010	0.000010		2020-07-20	
Calcium, total	40.9		mg/L	2020-07-20	
Chromium, total	0.00130	0.00050		2020-07-20	
Cobalt, total	0.00015	0.00010		2020-07-20	
Copper, total	0.00097	0.00040		2020-07-20	
Iron, total	0.218	0.010		2020-07-20	
Lead, total	< 0.00020	0.00020		2020-07-20	
Lithium, total	0.00096	0.00010		2020-07-20	
Magnesium, total	23.9	0.010		2020-07-20	
Manganese, total	0.0326	0.00020		2020-07-20	
Molybdenum, total	0.00136	0.00010		2020-07-20	
Nickel, total	0.00732	0.00040		2020-07-20	

REPORTED TO Yukon Government - Water Resources
PROJECT Marsh Lake Sewage Lagoon Audit

WORK ORDER REPORTED

0071316 2020-08-05 13:22

Analyte	Result	RL	Units	Analyzed	Qualifie
2020T16-09 (0071316-09) Matr	ix: Water Sampled: 2020-07-13 15:	30, Continued			
Fotal Metals, Continued					
Phosphorus, total	< 0.050	0.050	mg/L	2020-07-20	
Potassium, total	0.36	0.10	mg/L	2020-07-20	
Selenium, total	< 0.00050	0.00050	mg/L	2020-07-20	
Silicon, total	5.5	1.0	mg/L	2020-07-20	
Silver, total	< 0.00050	0.000050	mg/L	2020-07-20	
Sodium, total	2.67	0.10	mg/L	2020-07-20	
Strontium, total	0.167	0.0010	mg/L	2020-07-20	
Sulfur, total	< 3.0	3.0	mg/L	2020-07-20	
Tellurium, total	< 0.00050	0.00050	mg/L	2020-07-20	
Thallium, total	< 0.000020	0.000020	mg/L	2020-07-20	
Thorium, total	< 0.00010	0.00010	mg/L	2020-07-20	
Tin, total	< 0.00020	0.00020	mg/L	2020-07-20	
Titanium, total	< 0.0050	0.0050	mg/L	2020-07-20	
Tungsten, total	< 0.0010	0.0010	mg/L	2020-07-20	
Uranium, total	0.000342	0.000020	mg/L	2020-07-20	
Vanadium, total	0.0017	0.0010	mg/L	2020-07-20	
Zinc, total	< 0.0040	0.0040	mg/L	2020-07-20	
Zirconium, total	< 0.00010	0.00010	mg/L	2020-07-20	

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Yukon Government - Water Resources
PROJECT Marsh Lake Sewage Lagoon Audit

WORK ORDER REPORTED 0071316 2020-08-05 13:22

Analysis Description	Method Ref.	Technique A	ccredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
BTEX in Water	EPA 5030B / EPA 8260D	Purge&Trap / GC-MSD (SIM)	✓	Richmond
Carbon, Dissolved Inorganic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection		Kelowna
Carbon, Dissolved Organic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection	✓	Kelowna
Carbon, Total Inorganic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection		Kelowna
Carbon, Total Organic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection	✓	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
EPH in Water	EPA 3511* / BCMOE EPHw	Hexane MicroExtraction (Base/Neutral) / Gas Chromatography (GC-FID)	✓	Richmond
EPH, SG in Water	EPA 3511* / BCMOE EPHw	Hexane MicroExtraction (Base/Neutral) / Gas Chromatography (GC-FID)	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
HEPHw in Water	BCMOE LEPH/HEPH	Calculation		N/A
LEPHw in Water	BCMOE LEPH/HEPH	Calculation		N/A
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Kelowna
Phosphorus, Total in Water	SM 4500-P B.5* (2011) / SM 4500-P F (2017)	Persulfate Digestion / Automated Colorimetry (Ascorbic Ac	sid) ✓	Kelowna
Polycyclic Aromatic Hydrocarbons in Water	EPA 3511* / EPA 8270D	Hexane MicroExtraction (Base/Neutral) / GC-MSD (SIM)	✓	Richmond
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Total Metals in Water	EPA 200.2* / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
VH in Water	EPA 5030B / BCMOE VHw	Purge&Trap / Gas Chromatography (GC-FID)	✓	Richmond
VPHw in Water	BCMOE VPH	Calculation: VH - (Benzene + Toluene + Ethylbenzene + Xylenes + Styrene)		N/A

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

OG Operational Guideline (treated water) pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Yukon Government - Water Resources
PROJECT Marsh Lake Sewage Lagoon Audit

WORK ORDER REPORTED

0071316 2020-08-05 13:22

BCMOE British Columbia Environmental Laboratory Manual, British Columbia Ministry of Environment

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:tmaxwell@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO Yukon Government - Water Resources
PROJECT Marsh Lake Sewage Lagoon Audit

WORK ORDER REPORTED

0071316 2020-08-05 13:22

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk)**: A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples,
 also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B0G1299									
Blank (B0G1299-BLK1)			Prepared	l: 2020-07-1	l6, Analyze	d: 2020-0	07-16		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0G1299-BLK2)			Prepared	l: 2020-07-1	7, Analyze	d: 2020-0	07-17		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0G1299-BLK3)			Prepared	l: 2020-07-1	17, Analyze	d: 2020-0	07-17		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B0G1299-BS1)			Prepared	l: 2020-07-1	6, Analyze	d: 2020-0	07-16		
Bromide	4.06	0.10 mg/L	4.00		101	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.06	0.010 mg/L	4.00		101	90-110			
Nitrite (as N)	1.98	0.010 mg/L	2.00		99	85-115			
Sulfate	16.0	1.0 mg/L	16.0		100	90-110			
LCS (B0G1299-BS2)			Prepared	l: 2020-07-1	7, Analyze	d: 2020-0	07-17		
Bromide	4.20	0.10 mg/L	4.00		105	85-115			
Chloride	16.1	0.10 mg/L	16.0		101	90-110			
Nitrate (as N)	4.07	0.010 mg/L	4.00		102	90-110			
Nitrite (as N)	1.99	0.010 mg/L	2.00		100	85-115			
Sulfate	16.1	1.0 mg/L	16.0		100	90-110			
LCS (B0G1299-BS3)			Prepared	l: 2020-07-1	7, Analyze	d: 2020-0	07-17		
Bromide	4.02	0.10 mg/L	4.00		101	85-115			
Chloride	16.2	0.10 mg/L	16.0		101	90-110			

EPHw10-19

EPHw19-32

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO Yukon Government PROJECT Marsh Lake Sewa					WORK REPOR	ORDER	0071 2020	316 -08-05	13:22
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Anions, Batch B0G1299, Continued									
LCS (B0G1299-BS3), Continued			Prepared	: 2020-07-1	7, Analyze	d: 2020-0	7-17		
Nitrate (as N)	4.26	0.010 mg/L	4.00		107	90-110			
Nitrite (as N)	1.99	0.010 mg/L	2.00		99	85-115			
Sulfate	16.1	1.0 mg/L	16.0		101	90-110			
Anions, Batch B0G1413									
Blank (B0G1413-BLK1)			Prepared	: 2020-07-1	7, Analyze	d: 2020-0	7-17		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B0G1413-BLK2)			Prepared	: 2020-07-1	8, Analyze	d: 2020-0	7-18		
Bromide	< 0.10	0.10 mg/L							
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B0G1413-BS1)			Prepared	: 2020-07-1	7, Analyze	d: 2020-0	7-17		
Bromide	4.06	0.10 mg/L	4.00		101	85-115			
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.12	0.010 mg/L	4.00		103	90-110			
Nitrite (as N)	1.99	0.010 mg/L	2.00		100	85-115			
Sulfate	16.0	1.0 mg/L	16.0		100	90-110			
LCS (B0G1413-BS2)			Prepared	: 2020-07-1	8, Analyze	d: 2020-0	7-18		
Bromide	4.13	0.10 mg/L	4.00		103	85-115			
Chloride	16.1	0.10 mg/L	16.0		101	90-110			
Nitrate (as N)	4.12	0.010 mg/L	4.00		103	90-110			
Nitrite (as N)	2.00	0.010 mg/L	2.00		100	85-115			
Sulfate BCMOE Aggregate Hydrocarbons, Bato	16.0 ch B0G1402	1.0 mg/L	16.0		100	90-110			
Blank (B0G1402-BLK1)			Prepared	: 2020-07-1	6, Analyze	d: 2020-0	7-17		
EPHw10-19	< 250	250 μg/L							
EPHw19-32	< 250	250 μg/L							
EPHw10-19(sg)	< 250	250 μg/L							
EPHw19-32(sg)	< 250	250 µg/L				00 : 5 5			
Surrogate: 2-Methylnonane (EPH/F2-4)	320	μg/L	444		72	60-126			
LCS (B0G1402-BS2)			Prepared	: 2020-07-1	6, Analyze	d: 2020-0	7-17		
EPHw10-19	14100	250 μg/L	15500		91	70-117			
EPHw19-32	20100	250 μg/L	22200		90	70-113			
EPHw10-19(sg)	13900	250 μg/L	15500		90	60-130			
EPHw19-32(sg)	19500	250 μg/L	22200		88	60-130			
Surrogate: 2-Methylnonane (EPH/F2-4)	424	μg/L	444		95	60-126			
BCMOE Aggregate Hydrocarbons, Bato	ch B0G1552								
Blank (B0G1552-BLK1)			Prepared	: 2020-07-1	8, Analyze	d: 2020-0	7-18		
EDU ₁₁ 10 10	< 250	250 ug/l							

250 μg/L

250 µg/L

< 250

< 250

PROJECT Marsh Lake Sewa	ige Lagoon Au	ources dit			WORK REPOI	ORDER RTED		316 -08-05	13:22
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
BCMOE Aggregate Hydrocarbons, Batc	ch B0G1552, Co	ntinued							
Blank (B0G1552-BLK1), Continued			Prepared	: 2020-07-1	8, Analyz	ed: 2020-0	7-18		
Surrogate: 2-Methylnonane (EPH/F2-4)	342	μg/L	444		77	60-126			
LCS (B0G1552-BS2)			Prepared	: 2020-07-1	8. Analyz	ed: 2020-0	7-18		
EPHw10-19	11100	250 µg/L	15500		72	70-117			
EPHw19-32	17600	250 µg/L	22200		79	70-113			
Surrogate: 2-Methylnonane (EPH/F2-4)	406	μg/L	444		91	60-126			
LCS Dup (B0G1552-BSD2)			Prepared	: 2020-07-1	8 Analyz	ed: 2020-0	7-18		
EPHw10-19	13300	250 µg/L	15500	. 2020 07 1	86	70-117	18	20	
EPHw19-32	18400	250 μg/L	22200		83	70-117	5	20	
Surrogate: 2-Methylnonane (EPH/F2-4)	518	μg/L	444		117	60-126			
BCMOE Aggregate Hydrocarbons, Bato	ch B0G1616								
Blank (B0G1616-BLK1)			Prepared	: 2020-07-2	20, Analyz	ed: 2020-0)7-20		
VHw (6-10)	< 100	100 μg/L							
LCS (B0G1616-BS2)			Prepared	: 2020-07-2	0. Analyz	ed: 2020-0	7-20		
VHw (6-10)	2440	100 µg/L	2690		91	70-130			
Blank (B0G1879-BLK1)			Prepared	: 2020-07-2	22, Analyz	ed: 2020-0	7-22		
Blank (B0G1879-BLK1)			Prepared	: 2020-07-2	2, Analyz	ed: 2020-0	7-22		
Lithium, dissolved	< 0.00010	0.00010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-0)7-22		
Lithium, dissolved Aluminum, dissolved	< 0.0050	0.0050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-0)7-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved	< 0.0050 < 0.00020	0.0050 mg/L 0.00020 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-()7-22		
Lithium, dissolved Aluminum, dissolved	< 0.0050	0.0050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-()7-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	< 0.0050 < 0.00020 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.0050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L	Prepared	: 2020-07-2	2, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.0050 < 0.00010 < 0.00010 < 0.0500	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L	Prepared	: 2020-07-2	2, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.0050 < 0.00010 < 0.00010 < 0.0500 < 0.00010	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.0500 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-()7-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.00010 < 0.0500 < 0.00010 < 0.0500	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-()7-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.00010 < 0.0500 < 0.00050 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-()7-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-()7-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.00010 < 0.0500 < 0.00050 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.20 mg/L 0.00050 mg/L 0.00050 mg/L 0.00040 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Iron, dissolved Lead, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.000010 < 0.000010 < 0.00050 < 0.00050 < 0.00010 < 0.00040 < 0.0010 < 0.00020	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Lead, dissolved Magnesium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.000010 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00020 < 0.00020 < 0.0010	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00040 mg/L 0.010 mg/L 0.010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Iron, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.00010 < 0.00010 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00020 < 0.00020 < 0.00020	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.0050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.000010 mg/L 0.000010 mg/L 0.000010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00020 mg/L 0.00020 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Iron, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.20 < 0.00050 < 0.00010 < 0.00020 < 0.00020 < 0.00020 < 0.00010	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00040 mg/L 0.010 mg/L 0.010 mg/L 0.010 mg/L 0.010 mg/L 0.010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Iron, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.0500 < 0.0500 < 0.00010 < 0.0500 < 0.00010 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00040 < 0.00020 < 0.00020 < 0.00020 < 0.00010 < 0.00020 < 0.00010 < 0.00040	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00040 mg/L 0.010 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Copper, dissolved Copper, dissolved Lead, dissolved Lead, dissolved Magnesium, dissolved Molybdenum, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.000010 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00040 < 0.00020 < 0.00020 < 0.00020 < 0.00010 < 0.00020 < 0.00010 < 0.00020 < 0.00010 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00040 mg/L 0.010 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Iron, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.0500 < 0.0500 < 0.00010 < 0.0500 < 0.00010 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00040 < 0.00020 < 0.00020 < 0.00020 < 0.00010 < 0.00020 < 0.00010 < 0.00040	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00040 mg/L 0.00020 mg/L 0.00030 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L 0.0050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Copper, dissolved Copper, dissolved Iron, dissolved Magnesium, dissolved Magnesium, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.20 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00020 < 0.00020 < 0.00020 < 0.00020 < 0.00010 < 0.00020 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.0050 < 0.0050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00040 mg/L 0.010 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Copper, dissolved Copper, dissolved Iron, dissolved Lead, dissolved Magnesium, dissolved Magnesium, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00040 < 0.00020 < 0.00020 < 0.00010 < 0.00040 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.000010 mg/L 0.000010 mg/L 0.00050 mg/L 0.00010 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.00050 mg/L 0.000050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Cobalt, dissolved Copper, dissolved Copper, dissolved Lead, dissolved Magnesium, dissolved Magnesium, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved Sodium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.000010 < 0.000010 < 0.00050 < 0.000010 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00040 < 0.00020 < 0.00020 < 0.00010 < 0.00040 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.10 < 0.00050 < 0.10 < 0.00050 < 0.10 < 0.00050 < 0.10 < 0.00050 < 0.10	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00010 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00010 mg/L 0.00040 mg/L 0.00040 mg/L 0.00010 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Cobalt, dissolved Copper, dissolved Copper, dissolved Iron, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Mickel, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved Sodium, dissolved Sodium, dissolved Sodium, dissolved Sodium, dissolved Strontium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00040 < 0.00020 < 0.00050 < 0.00010 < 0.00040 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.10 < 0.00050 < 0.10 < 0.00050 < 0.00050 < 0.10 < 0.00050 < 0.10 < 0.00050 < 0.10 < 0.00050 < 0.10 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00020 mg/L 0.010 mg/L 0.00020 mg/L 0.010 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L 0.00040 mg/L 0.00050 mg/L 0.10 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Cobalt, dissolved Copper, dissolved Copper, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved Sodium, dissolved Strontium, dissolved Strontium, dissolved Strontium, dissolved Sulfur, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.00050 < 0.00050 < 0.000050 < 0.00010 < 0.00020 < 0.00020 < 0.00020 < 0.00010 < 0.00020 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00010	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00040 mg/L 0.00020 mg/L 0.00040 mg/L 0.00040 mg/L 0.00050 mg/L 0.00050 mg/L 0.10 mg/L 0.00050 mg/L 0.10 mg/L 0.00050 mg/L 0.00050 mg/L 0.000050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Cobalt, dissolved Cobalt, dissolved Copper, dissolved Iron, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved Phosphorus, dissolved Photassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved Strontium, dissolved Strontium, dissolved Sulfur, dissolved Sulfur, dissolved Sulfur, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.000010 < 0.00050 < 0.00050 < 0.000010 < 0.00040 < 0.00020 < 0.00020 < 0.00010 < 0.00020 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.000010 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00020 mg/L 0.0010 mg/L 0.00020 mg/L 0.010 mg/L 0.00020 mg/L 0.00000 mg/L 0.000000 mg/L 0.0000000 mg/L 0.0000000 mg/L 0.00000000 mg/L 0.0000000 mg/L 0.000000000 mg/L 0.00000000 mg/L 0.00000000 mg/L 0.000000000 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Cobalt, dissolved Copper, dissolved Copper, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved Sodium, dissolved Strontium, dissolved Strontium, dissolved Strontium, dissolved Sulfur, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.00050 < 0.00050 < 0.000050 < 0.00010 < 0.00020 < 0.00020 < 0.00020 < 0.00010 < 0.00020 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00010	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00020 mg/L 0.00020 mg/L 0.00020 mg/L 0.00040 mg/L 0.00020 mg/L 0.00040 mg/L 0.00040 mg/L 0.00050 mg/L 0.00050 mg/L 0.10 mg/L 0.00050 mg/L 0.10 mg/L 0.00050 mg/L 0.00050 mg/L 0.000050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Iron, dissolved Iron, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved Strontium, dissolved Sulfur, dissolved Sulfur, dissolved Tellurium, dissolved Tellurium, dissolved Thallium, dissolved Thallium, dissolved	< 0.0050 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00040 < 0.00020 < 0.00020 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.00050 < 0.0010 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.0500 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00020 mg/L 0.010 mg/L 0.00020 mg/L 0.00000 mg/L 0.000000 mg/L 0.000000 mg/L 0.000000 mg/L 0.000000 mg/L 0.000000 mg/L 0.000050 mg/L 0.000050 mg/L 0.000050 mg/L 0.000050 mg/L 0.000050 mg/L 0.000050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		
Lithium, dissolved Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved Copper, dissolved Iron, dissolved Iron, dissolved Magnesium, dissolved Manganese, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Silver, dissolved Strontium, dissolved Sulfur, dissolved Tellurium, dissolved Thallium, dissolved Thorium, dissolved Thorium, dissolved Thorium, dissolved Thorium, dissolved Thorium, dissolved	< 0.0050 < 0.00050 < 0.00050 < 0.00050 < 0.00010 < 0.00010 < 0.000010 < 0.00050 < 0.00010 < 0.00050 < 0.00010 < 0.00020 < 0.00020 < 0.00020 < 0.00010 < 0.00040 < 0.00050 < 0.00050 < 0.00010 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050	0.0050 mg/L 0.00020 mg/L 0.00050 mg/L 0.00050 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.00010 mg/L 0.000010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00020 mg/L 0.00020 mg/L 0.00040 mg/L 0.00040 mg/L 0.010 mg/L 0.00020 mg/L 0.00040 mg/L 0.00050 mg/L 0.000050 mg/L	Prepared	: 2020-07-2	22, Analyz	ed: 2020-(07-22		

REPORTED TO Yukon Governme PROJECT Marsh Lake Sewa					WORK REPOR	ORDER TED	0071 2020	316 -08-05	13:22
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B0G1879, Cor	ntinued								
Blank (B0G1879-BLK1), Continued			Prepared	: 2020-07-2	2, Analyze	d: 2020-0	7-22		
Uranium, dissolved	< 0.000020	0.000020 mg/L							
Vanadium, dissolved	< 0.0010	0.0010 mg/L							
Zinc, dissolved	< 0.0040	0.0040 mg/L							
Zirconium, dissolved	< 0.00010	0.00010 mg/L							
LCS (B0G1879-BS1)			Prepared	: 2020-07-2	2, Analyze	d: 2020-0	7-22		
Lithium, dissolved	0.0201	0.00010 mg/L	0.0200		101	80-120			
Aluminum, dissolved	0.0234	0.0050 mg/L	0.0199		117	80-120			
Antimony, dissolved	0.0193	0.00020 mg/L	0.0200		97	80-120			
Arsenic, dissolved	0.0202	0.00050 mg/L	0.0200		101	80-120			
Barium, dissolved	0.0191	0.0050 mg/L	0.0198		97	80-120			
Beryllium, dissolved	0.0209	0.00010 mg/L	0.0198		105	80-120			
Bismuth, dissolved	0.0206	0.00010 mg/L	0.0200		103	80-120			
Boron, dissolved	< 0.0500	0.0500 mg/L	0.0200		101	80-120			
Cadmium, dissolved	0.0195	0.000010 mg/L	0.0199		98	80-120			
Calcium, dissolved	2.25	0.20 mg/L	2.02		111	80-120			
Chromium, dissolved	0.0201	0.00050 mg/L	0.0198		102	80-120			
Cobalt, dissolved	0.0201	0.00010 mg/L	0.0199		101	80-120			
Copper, dissolved ron, dissolved	0.0219 1.99	0.00040 mg/L	0.0200 2.02		110 99	80-120 80-120			
Lead, dissolved	0.0206	0.010 mg/L 0.00020 mg/L	0.0199		103	80-120			
Magnesium, dissolved	2.34	0.00020 mg/L	2.02		116	80-120			
Manganese, dissolved	0.0201	0.00020 mg/L	0.0199		101	80-120			
Molybdenum, dissolved	0.0197	0.00020 mg/L	0.0200		99	80-120			
Nickel, dissolved	0.0203	0.00040 mg/L	0.0200		102	80-120			
Phosphorus, dissolved	2.02	0.050 mg/L	2.00		101	80-120			
Potassium, dissolved	2.13	0.10 mg/L	2.02		105	80-120			
Selenium, dissolved	0.0199	0.00050 mg/L	0.0200		100	80-120			
Silicon, dissolved	2.3	1.0 mg/L	2.00		113	80-120			
Silver, dissolved	0.0186	0.000050 mg/L	0.0200		93	80-120			
Sodium, dissolved	2.21	0.10 mg/L	2.02		110	80-120			
Strontium, dissolved	0.0202	0.0010 mg/L	0.0200		101	80-120			
Sulfur, dissolved	4.6	3.0 mg/L	5.00		91	80-120			
Tellurium, dissolved	0.0208	0.00050 mg/L	0.0200		104	80-120			
Fhallium, dissolved	0.0201	0.000020 mg/L	0.0199		101	80-120			
Thorium, dissolved	0.0195	0.00010 mg/L	0.0200		98	80-120			
Fitanium dissolved	0.0207 0.0194	0.00020 mg/L	0.0200		103 97	80-120			
Titanium, dissolved Tungsten, dissolved	0.0194	0.0050 mg/L 0.0010 mg/L	0.0200		96	80-120 80-120			
Uranium, dissolved	0.0208	0.000020 mg/L	0.0200		104	80-120			
Vanadium, dissolved	0.0208	0.00020 mg/L	0.0200		110	80-120			
Zinc, dissolved	0.0223	0.0040 mg/L	0.0200		112	80-120			
Zirconium, dissolved	0.0201	0.00010 mg/L	0.0200		100	80-120			
Duplicate (B0G1879-DUP1)	Sc	ource: 0071316-05	Prepared	: 2020-07-2	2, Analyze	d: 2020-0	7-22		
Lithium, dissolved	0.00347	0.00010 mg/L		0.00363	, , ,		5	20	
Aluminum, dissolved	< 0.0050	0.0050 mg/L		< 0.0050				20	
Antimony, dissolved	0.00021	0.00020 mg/L		0.00023				20	
Arsenic, dissolved	0.00087	0.00050 mg/L		0.00086				20	
Barium, dissolved	0.0172	0.0050 mg/L		0.0175				20	
Beryllium, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Bismuth, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Boron, dissolved	0.151	0.0500 mg/L		0.159				20	
Cadmium, dissolved	0.000172	0.000010 mg/L		0.000168			2	20	
Calcium, dissolved	55.5	0.20 mg/L		58.3			5	20	
Chromium, dissolved	0.00651	0.00050 mg/L		0.00682			5	20	
Cobalt, dissolved	< 0.00010	0.00010 mg/L		< 0.00010					ge 31 of

REPORTED TO Yukon Governmen PROJECT Marsh Lake Sewag					WORK REPOR	ORDER TED		316 0-08-05	13:22
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B0G1879, Cont	inued								
Duplicate (B0G1879-DUP1), Continued	So	ource: 0071316-05	Prepared	: 2020-07-2	2, Analyze	d: 2020-0	07-22		
Copper, dissolved	0.00079	0.00040 mg/L		0.00083				20	
Iron, dissolved	< 0.010	0.010 mg/L		< 0.010				20	
Lead, dissolved	< 0.00020	0.00020 mg/L		< 0.00020				20	
Magnesium, dissolved	38.9	0.010 mg/L		40.3			4	20	
Manganese, dissolved	0.00098	0.00020 mg/L		0.00101			2	20	
Molybdenum, dissolved	0.00776	0.00010 mg/L		0.00816			5	20	
Nickel, dissolved	0.00295	0.00040 mg/L		0.00303			3	20	
Phosphorus, dissolved	< 0.050	0.050 mg/L		< 0.050				20	
Potassium, dissolved	2.37	0.10 mg/L		2.47			4	20	
Selenium, dissolved	0.00283	0.00050 mg/L		0.00290			2	20	
Silicon, dissolved	5.8	1.0 mg/L		6.0			4	20	
Silver, dissolved	< 0.000050	0.000050 mg/L		< 0.000050				20	
Sodium, dissolved	6.45	0.10 mg/L		6.20			4	20	
Strontium, dissolved	0.478	0.0010 mg/L		0.494			3	20	
Sulfur, dissolved	22.7	3.0 mg/L		23.0			1	20	
Tellurium, dissolved	< 0.00050	0.00050 mg/L		< 0.00050				20	
Thallium, dissolved	< 0.000020	0.000020 mg/L		< 0.000020				20	
Thorium, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Tin, dissolved	0.00024	0.00020 mg/L		0.00024				20	
Titanium, dissolved	< 0.0050	0.0050 mg/L		< 0.0050				20	
Tungsten, dissolved	< 0.0010	0.0010 mg/L		< 0.0010				20	
Uranium, dissolved	0.000374	0.000020 mg/L		0.000384			3	20	
Vanadium, dissolved	< 0.0010	0.0010 mg/L		< 0.0010				20	
Zinc, dissolved	< 0.0040	0.0040 mg/L		< 0.0040				20	
Zirconium, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Reference (B0G1879-SRM1)			Prepared	: 2020-07-2	2, Analyze	d: 2020-0	07-22		
Lithium, dissolved	0.0977	0.00010 mg/L	0.100		98	77-127			
Aluminum, dissolved	0.236	0.0050 mg/L	0.235		100	79-114			
Antimony, dissolved	0.0433	0.00020 mg/L	0.0431		101	89-123			
Arsenic, dissolved	0.421	0.00050 mg/L	0.423		100	87-113			
Barium, dissolved	2.82	0.0050 mg/L	3.30		85	85-114			
Beryllium, dissolved	0.214	0.00010 mg/L	0.209		102	79-122			
Boron, dissolved	1.67	0.0500 mg/L	1.65		101	79-117			
Cadmium, dissolved	0.205	0.000010 mg/L	0.221		93	89-112			
Calcium, dissolved	8.27	0.20 mg/L	7.72		107	85-120			
Chromium, dissolved	0.420	0.00050 mg/L	0.434		97	87-113			
Cobalt, dissolved	0.120	0.00010 mg/L	0.124		97	90-117			
Copper, dissolved	0.791	0.00040 mg/L	0.815		97	90-115			
Iron, dissolved	1.22	0.010 mg/L	1.27		96	86-112			
Lead, dissolved	0.104	0.00020 mg/L	0.110		95	90-113			
Magnesium, dissolved	7.36	0.010 mg/L	6.59		112	84-116			
Manganese, dissolved	0.326	0.00020 mg/L	0.342		95	85-113			
Molybdenum, dissolved	0.394	0.00010 mg/L	0.404		97	87-112			
Nickel, dissolved	0.812	0.00040 mg/L	0.835		97	90-114			
Phosphorus, dissolved	0.474	0.050 mg/L	0.499		95	74-119			
Potassium, dissolved	3.08	0.10 mg/L	2.88		107	78-119			
Selenium, dissolved	0.0335	0.00050 mg/L	0.0324		103	89-123			
Sodium, dissolved	16.8	0.10 mg/L	18.0		93	81-117			
Strontium, dissolved	0.889	0.0010 mg/L	0.935		95	82-111			
Thallium, dissolved	0.0363	0.000020 mg/L	0.0385		94	90-113			
Uranium, dissolved	0.231	0.000020 mg/L	0.258		90	87-113			
Vanadium, dissolved	0.850	0.0010 mg/L	0.873		97	85-110			
Zinc, dissolved	0.839	0.0040 mg/L	0.848		99	88-114			

REPORTED TO PROJECT	Yukon Government Marsh Lake Sewage					WORK REPOR	ORDER RTED		1316 0-08-05	13:22
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
General Parameters	s, Batch B0G1339, Co	ntinued								
Blank (B0G1339-Bl	LK1)			Prepared	2020-07-16	6, Analyze	d: 2020-0	7-16		
Ammonia, Total (as N)	< 0.050	0.050 mg/L							
Blank (B0G1339-B	I K2)		-	Prenared	2020-07-17	7 Analyze	4· 3030-0	7-17		
Ammonia, Total (as N		< 0.050	0.050 mg/L	Порагоа	2020-07-11	, Allaly20	. 2020-c	77-17		
Blank (B0G1339-B	,			Prenared	2020-07-17	7 Analyze	.d. 2020-0	7-17		
Ammonia, Total (as N		< 0.050	0.050 mg/L	Tropulou	2020 07 17	, , , illuly 20	.a. 2020 (,, ,,		
LCS (B0G1339-BS	,		<u> </u>	Prenared	2020-07-16	6 Analyze	.d. 2020 - 0	7-16		
Ammonia, Total (as N	·	1.06	0.050 mg/L	1.00	2020 07 10	106	90-115	77 10		
LCS (B0G1339-BS					2020-07-16			17-16		
Ammonia, Total (as N	,	1.06	0.050 mg/L	1.00	2020-07-10	106	90-115	77-10		
LCS (B0G1339-BS	,				2020-07-16			7-16		
Ammonia, Total (as N	<i>'</i>	1.04	0.050 mg/L	1.00	2020-07-10	104	90-115	77-10		
					2020 07 1			7 17		
Duplicate (B0G133 Ammonia, Total (as N	•	< 0.050	0.050 mg/L	riepaieu	< 0.050	, Allalyze	:u. 2020-()/-1/	15	
				D		7	-l. 0000 (7.47	10	
Matrix Spike (B0G ² Ammonia, Total (as N	·	0.298	0.050 mg/L	0.250	< 0.050	7, Analyze	75-125)/-1/		
Blank (B0G1370-Bl	I K 1 \				7070-07-16	i Analyze				
	•	< 0.0020	0.0020 mg/l	Prepared	2020 07 10	5, 7 ti laiy20	u. 2020-0	77-10		
Phosphorus, Total (as	: P)	< 0.0020	0.0020 mg/L	· ·						
Phosphorus, Total (as	P)		Ţ,	Prepared	2020-07-16		ed: 2020-(
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters	1) P) s, Batch B0G1381	< 0.0020	0.0020 mg/L 0.0020 mg/L	Prepared 0.100	: 2020-07-16	6, Analyze	ed: 2020-(85-115)7-16		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-B	1) P) s, Batch B0G1381	0.102	0.0020 mg/L	Prepared 0.100		6, Analyze	ed: 2020-(85-115)7-16		
Phosphorus, Total (as LCS (B0G1370-BS- Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic	(P) 1) (P) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	0.102 < 0.50	0.0020 mg/L 0.50 mg/L	Prepared 0.100	: 2020-07-16	6, Analyze	ed: 2020-(85-115)7-16		
Phosphorus, Total (as LCS (B0G1370-BS ²) Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or	(P) (1) (P) (S, Batch B0G1381 LK1) (S) (S) (S) (S)	0.102	0.0020 mg/L	Prepared 0.100 Prepared	2020-07-16	5, Analyze 102 7, Analyze	ed: 2020-(85-115 ed: 2020-(07-16 07-17		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl	(P) (1) (F) (S, Batch B0G1381 LK1) (S) (S) (S) (S) (LK2)	0.102< 0.50< 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L	Prepared 0.100 Prepared	: 2020-07-16	5, Analyze 102 7, Analyze	ed: 2020-(85-115 ed: 2020-(07-16 07-17		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic	(P) (1) (P) (S, Batch B0G1381 LK1) (S) (S) (S) (S) (LK2)	< 0.50 < 0.50 < 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L	Prepared 0.100 Prepared	2020-07-16	5, Analyze 102 7, Analyze	ed: 2020-(85-115 ed: 2020-(07-16 07-17		
Phosphorus, Total (as LCS (B0G1370-BS- Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Total Organic Carbon, Dissolved Or	P) S, Batch B0G1381 LK1) ganic LK2) ganic	0.102< 0.50< 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L	Prepared 0.100 Prepared Prepared	2020-07-17	7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-()7-16)7-17)7-17		
Phosphorus, Total (as LCS (B0G1370-BS ²) Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl	P) I) P) s, Batch B0G1381 LK1) ganic LK2) ganic LK3)	< 0.50 < 0.50 < 0.50 < 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L	Prepared 0.100 Prepared Prepared	2020-07-16	7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-()7-16)7-17)7-17		
Phosphorus, Total (as LCS (B0G1370-BS- Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Total Organic Carbon, Dissolved Or	(P) (1) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N	< 0.50 < 0.50 < 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L	Prepared 0.100 Prepared Prepared	2020-07-17	7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-()7-16)7-17)7-17		
Phosphorus, Total (as LCS (B0G1370-BS- Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Total Organic	s, Batch B0G1381 LK1) ganic LK2) ganic LK3) ganic	< 0.50 < 0.50 < 0.50 < 0.50 < 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L	Prepared O.100 Prepared Prepared Prepared	2020-07-17	7, Analyze 7, Analyze 7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-()7-16)7-17)7-17		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Carbon, Total Organic Carbon, Total Organic Carbon, Total Organic Carbon, Total Organic	s, Batch B0G1381 LK1) ganic LK2) ganic LK3) ganic	< 0.50 < 0.50 < 0.50 < 0.50 < 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L	Prepared O.100 Prepared Prepared Prepared	2020-07-17	7, Analyze 7, Analyze 7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-()7-16)7-17)7-17		
Phosphorus, Total (as LCS (B0G1370-BS) Phosphorus, Total (as General Parameters Blank (B0G1381-B) Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-B) Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-B) Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS)	s, Batch B0G1381 LK1) ganic LK2) ganic LK3) ganic	< 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50	0.0020 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L	Prepared Prepared Prepared Prepared Prepared	2020-07-17	7, Analyze 7, Analyze 7, Analyze 7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-(ed: 2020-()7-16)7-17)7-17		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS: Carbon, Total Organic	h P) 1) P) s, Batch B0G1381 LK1) ganic LK2) ganic LK3) ganic 1) ganic	< 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 9.66	0.0020 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L	Prepared Prepared Prepared Prepared Prepared 10.0 10.0	2020-07-17	7, Analyze 7, Analyze 7, Analyze 7, Analyze 97 97	ed: 2020-(85-115 ed: 2020-(ed: 2020-(ed: 2020-(78-116 78-116	07-16 07-17 07-17 07-17		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-BI: Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-BI: Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-BI: Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS: Carbon, Total Organic Carbon, Total Organic Carbon, Dissolved Or	h P) 11) IP) IS, Batch B0G1381 LK1) IS ganic LK2) IS ganic LK3) IS ganic 1) IS ganic 2)	< 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 9.66	0.0020 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L 0.50 mg/L	Prepared Prepared Prepared Prepared Prepared 10.0 10.0	2020-07-17 2020-07-17 2020-07-17 2020-07-17	7, Analyze 7, Analyze 7, Analyze 7, Analyze 97 97	ed: 2020-(85-115 ed: 2020-(ed: 2020-(ed: 2020-(78-116 78-116	07-16 07-17 07-17 07-17		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-BI: Carbon, Total Organic Carbon, Total Organic Carbon, Total Organic Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-BI: Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS: Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS:	P) 1) F) s, Batch B0G1381 LK1) ganic LK2) ganic LK3) ganic 1) ganic 2)	< 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.60 < 0.60 < 0.60	0.0020 mg/L 0.50 mg/L	Prepared Prepared Prepared Prepared Prepared Prepared Prepared 10.0 10.0 Prepared	2020-07-17 2020-07-17 2020-07-17 2020-07-17	7, Analyze 7, Analyze 7, Analyze 97 97 7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-(rd: 2020-(78-116 78-116 ed: 2020-(07-16 07-17 07-17 07-17		
Phosphorus, Total (as LCS (B0G1370-BS: Phosphorus, Total (as General Parameters Blank (B0G1381-BI Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-BI Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-BI Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS: Carbon, Total Organic	P) 1) S, Batch B0G1381 LK1) G ganic LK2) G ganic LK3) G ganic 2) G ganic 2)	 0.102 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 9.66 9.66 9.44 	0.0020 mg/L 0.50 mg/L	Prepared O.100 Prepared Prepared 10.0 10.0 Prepared 10.0 10.0	2020-07-17 2020-07-17 2020-07-17 2020-07-17	7, Analyze 7, Analyze 97 97 7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-(78-116 78-116 78-116 78-116)7-16)7-17)7-17)7-17		
Phosphorus, Total (as LCS (B0G1370-BS) Phosphorus, Total (as General Parameters Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or Blank (B0G1381-Bl Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS) Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS) Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS) Carbon, Total Organic Carbon, Total Organic Carbon, Dissolved Or LCS (B0G1381-BS)	h P) 11) 12 P) 13	 0.102 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 9.66 9.66 9.44 	0.0020 mg/L 0.50 mg/L	Prepared O.100 Prepared Prepared 10.0 10.0 Prepared 10.0 10.0	2020-07-17 2020-07-17 2020-07-17 2020-07-17 2020-07-17	7, Analyze 7, Analyze 97 97 7, Analyze	ed: 2020-(85-115 ed: 2020-(ed: 2020-(78-116 78-116 78-116 78-116)7-16)7-17)7-17)7-17		

REPORTED TO Yukon Governmen PROJECT Yukon Governmen Marsh Lake Sewa		ces			WORK REPOR	ORDER RTED		1316 0-08-05	13:22
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B0G1421									
Blank (B0G1421-BLK1)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
Conductivity (EC)	< 2.0	2.0 μS/cm							
Blank (B0G1421-BLK2)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
Conductivity (EC)	< 2.0	2.0 µS/cm							
Blank (B0G1421-BLK3)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
Conductivity (EC)	< 2.0	2.0 µS/cm							
LCS (B0G1421-BS1)			Prepared	: 2020-07-1	6. Analyze	ed: 2020-0	07-16		
Alkalinity, Total (as CaCO3)	104	1.0 mg/L	100		104	80-120			
LCS (B0G1421-BS2)	-			: 2020-07-1	6 Analyze		17-16		
Alkalinity, Total (as CaCO3)	103	1.0 mg/L	100	. 2020 01	103	80-120	37 10		
	100	1.0 mg/L		. 2020 07 4			7.40		
LCS (B0G1421-BS3)			•	: 2020-07-1			01-10		
Alkalinity, Total (as CaCO3)	105	1.0 mg/L	100		105	80-120			
LCS (B0G1421-BS4)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
Conductivity (EC)	1370	2.0 µS/cm	1410		97	95-104			
LCS (B0G1421-BS5)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
Conductivity (EC)	1360	2.0 μS/cm	1410		96	95-104			
LCS (B0G1421-BS6)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
Conductivity (EC)	1360	2.0 μS/cm	1410		97	95-104			
Duplicate (B0G1421-DUP2)	Sour	ce: 0071316-01	Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
Alkalinity, Total (as CaCO3)	251	1.0 mg/L	· · · · · · · · · · · · · · · · · · ·	272			8	10	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L		< 1.0				10	
Alkalinity, Bicarbonate (as CaCO3)	251	1.0 mg/L		272			8	10	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L		< 1.0				10	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L		< 1.0				10	
Conductivity (EC)	529	2.0 μS/cm		530			< 1	5	
рН	8.08	0.10 pH units		8.05			< 1	4	
Reference (B0G1421-SRM1)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
рН	6.98	0.10 pH units	7.01		100	98-102			
Reference (B0G1421-SRM2)			Prepared	: 2020-07-1	6, Analyze	ed: 2020-0	07-16		
рН	6.98	0.10 pH units	7.01		100	98-102			
Reference (B0G1421-SRM3)		-		: 2020-07-1	6 Analyza		77-16		
pH	6.99	0.10 pH units	7.01	. 2020-01-	100, Allalyze	98-102	, IO		
F	0.00	o pri dilito			.00	33 10Z		Pa	ge 34 of 4

PROJECT Marsh Lake Sewag	t - Water Resou ge Lagoon Audit				WORK REPOR		0071316 2020-08-05 1				
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie		
General Parameters, Batch B0G1467											
Blank (B0G1467-BLK1)			Prepared	: 2020-07-2	0, Analyze	d: 2020-0	7-20				
Carbon, Total Inorganic	< 0.50	0.50 mg/L									
Carbon, Dissolved Inorganic	< 0.5	0.5 mg/L									
LCS (B0G1467-BS1)			Prepared	: 2020-07-2	0, Analyze	d: 2020-0	7-20				
Carbon, Total Inorganic	97.5	5.00 mg/L	100		98	80-120					
Carbon, Dissolved Inorganic	98.8	5.0 mg/L	100		99	80-120					
Duplicate (B0G1467-DUP1)	Sour	rce: 0071316-01	Prepared	: 2020-07-2	0, Analyze	d: 2020-0	7-20				
Carbon, Total Inorganic	61.9	0.50 mg/L		62.1			< 1	15			
Carbon, Dissolved Inorganic	60.5	0.5 mg/L		60.5			< 1	20			
Matrix Spike (B0G1467-MS1)		rce: 0071316-01	Prepared	: 2020-07-2	0, Analyze	d: 2020-0	7-20				
Carbon, Total Inorganic	69.9	5.00 mg/L	10.0	62.1	78	70-130					
Carbon, Dissolved Inorganic	68.2	5.0 mg/L	10.0	60.5	77	30-130					
Blank (B0G1593-BLK1) Solids, Total Suspended	< 1.0	1.0 ma//	Prepared	: 2020-07-1	9, Analyze	ed: 2020-0	7-19				
Solids, Total Suspended	< 1.0	1.0 mg/L									
LCS (B0G1593-BS1)			Prepared	: 2020-07-1	9, Analyze		7-19				
Solids, Total Suspended	99.0	10.0 mg/L	100		99	85-115					
Solids, Total Suspended Duplicate (B0G1593-DUP1)		10.0 mg/L rce: 0071316-03		: 2020-07-1			7-19				
· •				: 2020-07-1 4730			7-19 15	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended	Sour	rce: 0071316-03						20			
Duplicate (B0G1593-DUP1)	Sour	rce: 0071316-03						20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended	Sour	rce: 0071316-03	Prepared		9, Analyze	ed: 2020-0	15	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636	Sour	rce: 0071316-03	Prepared	4730	9, Analyze	ed: 2020-0	15	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1)	Sour 5510	rce: 0071316-03 2.0 mg/L	Prepared Prepared	4730	9, Analyze	d: 2020-0	15 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended	Sour 5510	rce: 0071316-03 2.0 mg/L	Prepared Prepared	4730 : 2020-07-2	9, Analyze	d: 2020-0	15 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2)	Sour 5510 < 2.0	2.0 mg/L	Prepared Prepared	4730 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze	ed: 2020-0	7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended	Sour 5510 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L	Prepared Prepared	4730 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze	ed: 2020-0	7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended	Sour 5510 < 2.0 < 2.0	2.0 mg/L	Prepared Prepared Prepared 100	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110	ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115	7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2)	< 2.0 < 2.0 110	2.0 mg/L 2.0 mg/L 2.0 mg/L	Prepared Prepared Prepared 100 Prepared	4730 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0	7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended	Sour 5510 < 2.0 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L	Prepared Prepared Prepared 100	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110	ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115	7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2)	< 2.0 < 2.0 110	2.0 mg/L 2.0 mg/L 2.0 mg/L	Prepared Prepared Prepared 100 Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0	7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682	< 2.0 < 2.0 110	2.0 mg/L 2.0 mg/L 2.0 mg/L	Prepared Prepared 100 Prepared 100	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110 0, Analyze 100	ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115	7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended	< 2.0 < 2.0 110	2.0 mg/L 2.0 mg/L 2.0 mg/L	Prepared Prepared 100 Prepared 100	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110 0, Analyze 100	ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115	7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC)	Sour5510< 2.0< 2.0110100	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L	Prepared Prepared 100 Prepared 100 Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110 0, Analyze 100 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115	7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC) Blank (B0G1682-BLK2)	\$out 5510 < 2.0 < 2.0 110 100 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L 2.0 µS/cm	Prepared Prepared 100 Prepared 100 Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 0, Analyze 110 0, Analyze 100 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115	7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC) Blank (B0G1682-BLK2) Conductivity (EC)	Sour5510< 2.0< 2.0110100	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L	Prepared Prepared 100 Prepared 100 Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 110 0, Analyze 110 0, Analyze 100 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115 ed: 2020-0 ed: 2020-0	7-20 7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC) Blank (B0G1682-BLK2) Conductivity (EC)	\$out 5510 < 2.0 < 2.0 110 100 < 2.0 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L 2.0 µS/cm	Prepared Prepared 100 Prepared 100 Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 110 0, Analyze 110 0, Analyze 100 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115 ed: 2020-0 ed: 2020-0	7-20 7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC) Blank (B0G1682-BLK2) Conductivity (EC)	\$out 5510 < 2.0 < 2.0 110 100 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L 2.0 µS/cm	Prepared Prepared 100 Prepared 100 Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 110 0, Analyze 110 0, Analyze 100 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115 ed: 2020-0 ed: 2020-0	7-20 7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC) Blank (B0G1682-BLK2) Conductivity (EC)	\$out 5510 < 2.0 < 2.0 110 100 < 2.0 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L 2.0 µS/cm	Prepared Prepared 100 Prepared 100 Prepared Prepared Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 110 0, Analyze 100 0, Analyze 0, Analyze 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115 ed: 2020-0 ed: 2020-0 ed: 2020-0	7-20 7-20 7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended CS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC) Blank (B0G1682-BLK2) Conductivity (EC)	\$out 5510 < 2.0 < 2.0 110 100 < 2.0 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L 2.0 µS/cm	Prepared Prepared 100 Prepared 100 Prepared Prepared Prepared	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 110 0, Analyze 100 0, Analyze 0, Analyze 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 85-115 ed: 2020-0 ed: 2020-0 ed: 2020-0	7-20 7-20 7-20 7-20 7-20 7-20	20			
Duplicate (B0G1593-DUP1) Solids, Total Suspended General Parameters, Batch B0G1636 Blank (B0G1636-BLK1) Solids, Total Suspended Blank (B0G1636-BLK2) Solids, Total Suspended LCS (B0G1636-BS1) Solids, Total Suspended LCS (B0G1636-BS2) Solids, Total Suspended CS (B0G1636-BS2) Solids, Total Suspended General Parameters, Batch B0G1682 Blank (B0G1682-BLK1) Conductivity (EC) Blank (B0G1682-BLK3) Conductivity (EC) LCS (B0G1682-BS4)	\$out 5510 < 2.0 < 2.0 110 100 < 2.0 < 2.0 < 2.0	2.0 mg/L 2.0 mg/L 2.0 mg/L 10.0 mg/L 10.0 mg/L 2.0 µS/cm	Prepared Prepared 100 Prepared 100 Prepared Prepared Prepared Prepared Prepared Prepared 1410	4730 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2 : 2020-07-2	9, Analyze 0, Analyze 110 0, Analyze 110 0, Analyze 100 0, Analyze 0, Analyze 0, Analyze	ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 85-115 ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0 ed: 2020-0	7-20 7-20 7-20 7-20 7-20 7-20 7-20	20			

6.99

REPORTED TO PROJECT	Yukon Governmer Marsh Lake Sewa					WORK REPOR	ORDER TED	0071 2020	316 -08-05	13:22
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameter	rs, Batch B0G1682, C	ontinued								
LCS (B0G1682-BS	66)			Prepared	: 2020-07-2	0, Analyze	d: 2020-0	7-20		
Conductivity (EC)		1440	2.0 μS/cm	1410		102	95-104			
Reference (B0G16	82-SRM1)			Prepared	: 2020-07-2	0, Analyze	d: 2020-0	7-20		
pH		6.99	0.10 pH units	7.01		100	98-102			
Reference (B0G16	82-SRM2)			Prepared	: 2020-07-2	0, Analyze	d: 2020-0	7-20		
рН		6.99	0.10 pH units	7.01		100	98-102			

0.10 pH units

7.01

Prepared: 2020-07-20, Analyzed: 2020-07-20

100

98-102

Polycyclic Aromatic Hydrocarbons (PAH), Batch B0G1402

Reference (B0G1682-SRM3)

		1 Toparca. 2020	7 07 10,7 thaty2	04. 2020 07 17	
< 0.050	0.050 μg/L				
< 0.200	0.200 µg/L				
< 0.050	0.050 µg/L				
< 0.010					
< 0.010	0.010 µg/L				
< 0.010	0.010 µg/L				
< 0.050	0.050 µg/L				
< 0.050	0.050 µg/L				
< 0.050	0.050 µg/L				
< 0.100	0.100 µg/L				
< 0.050	0.050 µg/L				
< 0.010	0.010 µg/L				
< 0.030	0.030 µg/L				
< 0.050	0.050 µg/L				
< 0.050	0.050 µg/L				
< 0.100					
< 0.100					
< 0.100					
< 0.020					
< 0.050					
<		4 47	2	50-140	S02
3.48					
	μ9, =				
7.70	0.050	•			
					0.51//
					SPK1
7.72		8.89	87		
	0.010 µg/L	8.89	87	53-136	
7.53		8.89	85	67-135	
6.94	0.050 μg/L	8.89	78	57-134	
7.70	0.050 µg/L	8.89	87	52-129	
7.70	0.030 μg/L	8.89	85	32-129	
	< 0.200 < 0.050 < 0.010 < 0.010 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.050 < 0.050 < 0.050 < 0.100 < 0.200 < 0.100 < 0.200 < 0.100 < 0.220 < 0.050 < 0.400 < 0.702 < 0.702 < 0.702 < 0.703 < 0.702 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.703 < 0.70	 < 0.200 0.200 µg/L < 0.050 0.050 µg/L < 0.010 0.010 µg/L < 0.010 0.010 µg/L < 0.050 0.050 µg/L < 0.050 0.050 µg/L < 0.050 0.050 µg/L < 0.050 µg/L < 0.100 0.100 µg/L < 0.100 µg/L < 0.200 µg/L < 0.200 µg/L < 0.100 µg/L < 0.020 µg/L < 0.020 µg/L < 0.050 µg/L < 1.050 µg/	< 0.050	< 0.050	 < 0.200

REPORTED TO PROJECT		ent - Water Resou age Lagoon Audit				WORK REPOR	ORDER TED	0071 2020		05 13:22	
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie	
Polycyclic Aromati	c Hydrocarbons (PA	H), Batch B0G140	2, Continued								
LCS (B0G1402-BS	1), Continued			Prepared	l: 2020-07-1	6, Analyze	d: 2020-0	7-16			
2-Methylnaphthalene	,,	7.66	0.100 µg/L	8.89		86	50-140				
Naphthalene		7.50	0.200 µg/L	8.89		84	50-140				
Phenanthrene		7.34	0.100 µg/L	8.89		83	61-134				
Pyrene		7.89	0.020 µg/L	8.89		89	66-131				
Quinoline		9.05	0.050 µg/L	8.89		102	50-140				
Surrogate: Acridine-d	19	0.708	μg/L	8.93		8	50-140			SPK1	
Surrogate: Naphthale	ene-d8	7.77	μg/L	8.93		87	50-140				
Surrogate: Perylene-		7.43	μg/L	8.93		83	50-140				
LCS Dup (B0G140	2-BSD1)			Prepared	l: 2020-07-1	6, Analyze	d: 2020-0	7-17			
Acenaphthene		7.35	0.050 µg/L	8.89		83	55-137	5	18		
Acenaphthylene		7.53	0.200 µg/L	8.89		85	53-140	5	20		
Acridine		0.140	0.050 µg/L	8.89		2	50-120	102	30	SPK1	
Anthracene		7.11	0.010 µg/L	8.89		80	64-130	5	15		
Benz(a)anthracene		7.36	0.010 µg/L	8.89		83	57-140	6	25		
Benzo(a)pyrene		7.28	0.010 µg/L	8.89		82	63-133	6	18		
Benzo(b+j)fluoranthe	ne	14.8	0.050 µg/L	17.8		83	60-129	6	17		
Benzo(g,h,i)perylene		7.66	0.050 µg/L	8.89		86	52-139	9	22		
Benzo(k)fluoranthene)	5.61	0.050 µg/L	8.89		63	50-138	16	26		
2-Chloronaphthalene		6.56	0.100 µg/L	8.76		75	50-139	7	23		
Chrysene		7.37	0.050 µg/L	8.89		83	59-140	5	23		
Dibenz(a,h)anthracer	ne	6.99	0.010 µg/L	8.89		79	53-136	10	21		
Fluoranthene		6.96	0.030 µg/L	8.89		78	67-135	8	18		
Fluorene		6.64	0.050 µg/L	8.89		75	57-134	4	18		
Indeno(1,2,3-cd)pyre	ne	7.05	0.050 µg/L	8.89		79	52-129	9	21		
1-Methylnaphthalene		7.20	0.100 µg/L	8.89		81	50-140	5	20		
2-Methylnaphthalene		6.96	0.100 µg/L	8.89		78	50-140	10	21		
Naphthalene		7.05	0.200 µg/L	8.89		79	50-140	6	22		
Phenanthrene		7.04	0.100 μg/L	8.89		79	61-134	4	17		
Pyrene		7.32	0.020 μg/L	8.89		82	66-131	7	19		
Quinoline		5.04	0.050 μg/L	8.89		57	50-140	57	14	RPD	
Surrogate: Acridine-d		0.193	μg/L	8.93		2	50-140			SPK1	
Surrogate: Naphthale	ene-d8	7.26	μg/L	8.93		81	50-140				
Surrogate: Perylene-		6.89	μg/L	8.93		77	50-140				

Total Metals, Batch B0G1649

Blank (B0G1649-BLK1)			Prepared: 2020-07-20, Analyzed: 2020-07-20
Aluminum, total	< 0.0050	0.0050 mg/L	
Antimony, total	< 0.00020	0.00020 mg/L	
Arsenic, total	< 0.00050	0.00050 mg/L	
Barium, total	< 0.0050	0.0050 mg/L	
Beryllium, total	< 0.00010	0.00010 mg/L	
Bismuth, total	< 0.00010	0.00010 mg/L	
Boron, total	< 0.0500	0.0500 mg/L	
Cadmium, total	< 0.000010	0.000010 mg/L	
Calcium, total	< 0.20	0.20 mg/L	
Chromium, total	< 0.00050	0.00050 mg/L	
Cobalt, total	< 0.00010	0.00010 mg/L	
Copper, total	< 0.00040	0.00040 mg/L	
Iron, total	< 0.010	0.010 mg/L	
Lead, total	< 0.00020	0.00020 mg/L	
Lithium, total	< 0.00010	0.00010 mg/L	
Magnesium, total	< 0.010	0.010 mg/L	
Manganese, total	< 0.00020	0.00020 mg/L	
Molybdenum, total	< 0.00010	0.00010 mg/L	

REPORTED TO PROJECT	Yukon Government - Water Res Marsh Lake Sewage Lagoon Au				WORK REPOR		0071316 2020-08-05 13:22			
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Total Metals, Batch	B0G1649, Continued									
Blank (B0G1649-Bl	_K1), Continued		Prepared	: 2020-07-2	20, Analyze	d: 2020-0	07-20			
Nickel, total	< 0.00040	0.00040 mg/L								
Phosphorus, total	< 0.050	0.050 mg/L								
Potassium, total	< 0.10	0.10 mg/L								
Selenium, total	< 0.00050	0.00050 mg/L								
Silicon, total	< 1.0	1.0 mg/L								
Silver, total	< 0.000050	0.000050 mg/L								
Sodium, total	< 0.10	0.10 mg/L								
Strontium, total	< 0.0010	0.0010 mg/L								
Sulfur, total	< 3.0	3.0 mg/L								
Tellurium, total	< 0.00050	0.00050 mg/L								
Thallium, total	< 0.000020	0.000020 mg/L								
Thorium, total	< 0.00010	0.00010 mg/L								
Tin, total Titanium, total	< 0.00020 < 0.0050	0.00020 mg/L 0.0050 mg/L								
<u> </u>	< 0.0030	0.0050 Hig/L 0.0010 mg/L								
Tungsten, total Uranium, total	< 0.00020	0.00000 mg/L								
Vanadium, total	< 0.000020	0.000020 mg/L								
Zinc, total	< 0.0040	0.0040 mg/L								
Zirconium, total	< 0.00010	0.00010 mg/L								
LCS (B0G1649-BS1			Prepared	: 2020-07-2	20, Analyze	d: 2020-0	07-20			
Aluminum, total	0.0191	0.0050 mg/L	0.0199		96	80-120				
Antimony, total	0.0216	0.00020 mg/L	0.0200		108	80-120				
Arsenic, total	0.0208	0.00050 mg/L	0.0200		104	80-120				
Barium, total	0.0195	0.0050 mg/L	0.0198		98	80-120				
Beryllium, total	0.0214	0.00010 mg/L	0.0198		108	80-120				
Bismuth, total	0.0203	0.00010 mg/L	0.0200		101	80-120				
Boron, total	< 0.0500	0.0500 mg/L	0.0200		97	80-120				
Cadmium, total	0.0198	0.000010 mg/L	0.0199		100	80-120				
Calcium, total	2.31	0.20 mg/L	2.02		114	80-120				
Chromium, total	0.0196	0.00050 mg/L	0.0198		99	80-120				
Cobalt, total	0.0199	0.00010 mg/L	0.0199		100	80-120				
Copper, total Iron, total	0.0207 1.96	0.00040 mg/L 0.010 mg/L	0.0200 2.02		104 97	80-120 80-120				
Lead, total	0.0204	0.00020 mg/L	0.0199		102	80-120				
Lithium, total	0.0204	0.00020 mg/L	0.0200		88	80-120				
Magnesium, total	1.99	0.010 mg/L	2.02		99	80-120				
Manganese, total	0.0189	0.00020 mg/L	0.0199		95	80-120				
Molybdenum, total	0.0196	0.00010 mg/L	0.0200		98	80-120				
Nickel, total	0.0205	0.00040 mg/L	0.0200		102	80-120				
Phosphorus, total	2.13	0.050 mg/L	2.00		106	80-120				
Potassium, total	2.07	0.10 mg/L	2.02		103	80-120				
Selenium, total	0.0197	0.00050 mg/L	0.0200		99	80-120				
Silicon, total	2.2	1.0 mg/L	2.00		109	80-120				
Silver, total	0.0195	0.000050 mg/L	0.0200		97	80-120				
Sodium, total	2.07	0.10 mg/L	2.02		102	80-120				
Strontium, total	0.0186	0.0010 mg/L	0.0200		93	80-120				
Sulfur, total	4.3	3.0 mg/L	5.00		86	80-120				
Tellurium, total	0.0229	0.00050 mg/L	0.0200		114	80-120				
Thallium, total	0.0201	0.000020 mg/L	0.0199		101	80-120				
Thorium, total	0.0189	0.00010 mg/L	0.0200		95	80-120				
Tin, total	0.0197	0.00020 mg/L	0.0200		99	80-120				
Titanium, total	0.0185	0.0050 mg/L	0.0200		93	80-120				
Tungsten, total	0.0203	0.0010 mg/L	0.0200		102	80-120				
Uranium, total	0.0193	0.000020 mg/L	0.0200		97	80-120				
Vanadium, total	0.0209	0.0010 mg/L	0.0200		105	80-120				

REPORTED TO PROJECT	Yukon Government - Marsh Lake Sewage				WORK REPOR	ORDER TED	0071316 2020-08-05 13:22				
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Total Metals, Batc	h B0G1649, Continued										
LCS (B0G1649-BS	S1), Continued			Prepared	l: 2020-07-2	20, Analyze	d: 2020-0	7-20			
Zinc, total		0.0212	0.0040 mg/L	0.0200		106	80-120				
Zirconium, total		0.0197	0.00010 mg/L	0.0200		98	80-120				
Reference (B0G16	649-SRM1)			Prepared	l: 2020-07-2	20, Analyze	ed: 2020-0	7-20			
Aluminum, total	•	0.287	0.0050 mg/L	0.303		95	82-114				
Antimony, total		0.0541	0.00020 mg/L	0.0511		106	88-115				
Arsenic, total		0.126	0.00050 mg/L	0.118		107	88-111				
Barium, total		0.787	0.0050 mg/L	0.823		96	83-110				
Beryllium, total		0.0525	0.00010 mg/L	0.0496		106	80-119				
Boron, total		4.08	0.0500 mg/L	3.45		118	80-118				
Cadmium, total		0.0496	0.000010 mg/L	0.0495		100	90-110				
Calcium, total		10.4	0.20 mg/L	11.6		90	85-113				
Chromium, total		0.249	0.00050 mg/L	0.250		100	88-111				
Cobalt, total		0.0390	0.00010 mg/L	0.0377		103	90-114				
Copper, total		0.520	0.00040 mg/L	0.486		107	90-117				
Iron, total		0.492	0.010 mg/L	0.488		101	90-116				
Lead, total		0.225	0.00020 mg/L	0.204		110	90-110				
Lithium, total		0.356	0.00010 mg/L	0.403		88	79-118				
Magnesium, total		3.68	0.010 mg/L	3.79		97	88-116				
Manganese, total		0.104	0.00020 mg/L	0.109		96	88-108				
Molybdenum, total		0.199	0.00010 mg/L	0.198		100	88-110				
Nickel, total		0.255	0.00040 mg/L	0.249		102	90-112				
Phosphorus, total		0.246	0.050 mg/L	0.227		109	72-118				
Potassium, total		6.27	0.10 mg/L	7.21		87	87-116				
Selenium, total		0.125	0.00050 mg/L	0.121		103	90-122				
Sodium, total		7.82	0.10 mg/L	7.54		104	86-118				
Strontium, total		0.372	0.0010 mg/L	0.375		99	86-110				

Volatile Organic Compounds (VOC), Batch B0G1616

Thallium, total Uranium, total

Vanadium, total

Zinc, total

0.0820

0.0294

0.382

2.66

0.000020 mg/L

0.000020 mg/L

0.0010 mg/L

0.0040 mg/L

0.0805

0.0306

0.386

2.49

102

96

107

90-113

88-112

87-110

90-113

Blank (B0G1616-BLK1)			Prepared: 2020	0-07-20, Analyze	ed: 2020-07-20	
Benzene	< 0.5	0.5 µg/L				
Ethylbenzene	< 1.0	1.0 µg/L				
Methyl tert-butyl ether	< 1.0	1.0 µg/L				
Styrene	< 1.0	1.0 µg/L				
Toluene	< 1.0	1.0 µg/L				
Xylenes (total)	< 2.0	2.0 µg/L				
Surrogate: Toluene-d8	25.5	μg/L	26.5	96	70-130	
Surrogate: 4-Bromofluorobenzene	26.6	μg/L	24.9	107	70-130	
LCS (B0G1616-BS1)			Prepared: 2020	0-07-20, Analyze	ed: 2020-07-20	
Benzene	19.7	0.5 µg/L	20.0	98	70-130	
Ethylbenzene	20.3	1.0 µg/L	20.0	102	70-130	
Methyl tert-butyl ether	19.2	1.0 µg/L	20.0	96	70-130	
Styrene	19.0	1.0 µg/L	20.1	95	70-130	
Toluene	20.5	1.0 µg/L	20.0	103	70-130	
Xylenes (total)	58.0	2.0 µg/L	60.3	96	70-130	
Surrogate: Toluene-d8	24.5	μg/L	26.5	92	70-130	
Surrogate: 4-Bromofluorobenzene	24.1	μg/L	24.9	97	70-130	

REPORTED TO Yukon Government - Water Resources
PROJECT Marsh Lake Sewage Lagoon Audit

WORK ORDER REPORTED 0071316 2020-08-05 13:22

QC Qualifiers:

RPD Relative percent difference (RPD) of duplicate analysis are outside of control limits for unknown reason(s).

Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

SPK1 The recovery of this analyte was outside of established control limits. The data was accepted based on

performance of other batch QC.

REPORTED TO

0071316-06RE1

0071316-06RE1

0071316-07RE1

0071316-07RE1

0071316-07RE1

0071316-07RE1

0071316-08RE1

0071316-08RE1

0071316-08RE1

0071316-08RE1

APPENDIX 3: REVISION HISTORY

2020-07-21

2020-07-21

2020-07-21

2020-07-21

2020-07-21

2020-07-21

2020-07-21

2020-07-21

2020-07-21

2020-07-21

Yukon Government - Water Resources

Added

PROJECT	Marsh Lake	e Sewage Lagoon	Audit	REPORTED 2020-08-05 13:22
Sample ID	Changed	Change	Analysis	Analyte(s)
0071316-06RE1	2020-07-20	Added	Conductivity	Conductivity (EC)
0071316-06RE1	2020-07-20	Added	рН	рН
0071316-07RE1	2020-07-20	Added	Conductivity	Conductivity (EC)
0071316-07RE1	2020-07-20	Added	рН	рН
0071316-08RE1	2020-07-20	Added	Conductivity	Conductivity (EC)
0071316-08RE1	2020-07-20	Added	рН	рН
0071316-06RE1	2020-07-21	Added	Chloride by IC	Chloride
0071316-06RE1	2020-07-21	Added	Nitrate by IC	Nitrate (as N)

Nitrite by IC

Sulfate by IC

Nitrate by IC

Nitrite by IC

Sulfate by IC

Nitrate by IC

Nitrite by IC

Sulfate by IC

Chloride by IC

Chloride by IC

WORK ORDER

Nitrite (as N)

Nitrate (as N)

Nitrite (as N)

Nitrate (as N)

Nitrite (as N)

Sulfate

Chloride

Sulfate

Chloride

Sulfate

0071316

46 **CHAIN OF CUSTODY RECORD** K9

RELINQUISHED BY:

C3

COC#

PAGE 1

RECEIVED BY:

ANALYTICAL SERVICES Caring About Results, Obviously.

Box 2703, Whitehorse, YT Y1A 2C6

COMPANY: Yukon Government, Dept of ENV

ADDRESS: Water Resources Branch (V-310)

CONTACT: Tyler Williams; Norbert Botca

TEL/FAX: 867-667-3512

DELIVERY METHOD: EMAIL X

REPORT TO:

Norbert Botca Digitally signed by Norbert Botca Date: 2018.10.19 11:00.43 -07:00' 17225 , _amonton, AB T5S 1H7 **INVOICE TO:** SAME AS REPORT TO COMPANY: Yukon Government, Dept of ENV ADDRESS: Water Resources Branch (V-310 Box 2703, Whitehorse, YT Y1A0K5 CONTACT: Holly Goulding TEL/FAX: 867-456-6538 COMMENTS: MAIL OTHER* DELIVERY METHOD: EMAIL X MAIL T OTHER* DATA FORMAT: FXCFI X WATERTRAX C FSdat C

TURNAROUND TIME REQUESTED: REGULATORY APPLICATION Routine: (5-7 Days) X Canadian Drinking Water Quality 🔽 BC WQG [Rush: 1 Day* 7 2 Day* 7 3 Day* 7 BC CSR Soil: WL T ALT PLT RL-LDT RL-HDT CLT ILT Other* BC CSR Water: AW | IW | LW | DW | CCME: DW *Contact Lab To Confirm. Surcharge May Apply Other: YT CSR DW

DATE: 2020-07-14

TIME: 12:30

PROJECT NUMBER / INFO: Marsh Lake Sewage Lagoon Audit

A: Biohazard D: Asbestos G: Strong Odour E: Heavy Metals F: Flammable

B: Cvanide H: High Contamination C: PCBs I: Other (please specify*) **ANALYSES REQUESTED:**

DATA FO EMAIL 1: EMAIL 2:			er.willia rbert.bo					sam turb	ples idit		Hg		A			, Nitrate	mmonia - N								HOLD
EMAIL 3:		PO #:								se silica gel on method	TOTAL	DISSOLVED				Nitrite,	otal A								
** If you	would like to sign up for ClientConnect and/or EnviroC	Chain, CARO's online				ase check here:					12	DIS				te, Z	s, Tc				a)				
SAMPL	ED BY: NB			ATRIX:	-1E.		SAN	APLIN		<u> </u>	HE HE	WATER			, DOC	Sulphate,	horu			ms	Grease	ΗVQ	Ž		
	SAMPLE ID - SAMPLE CLASS - STATIO	N CODE	DRINKING WATER	SOIL	OTHER CONTAINER	DATE YYYY-MM-DD	TIME	S ''' CHLORINATE	FILTERED	(e.g. flow/volume media ID/notes)	METALS - WAT	METALS - W/	pH, EC	TSS	TIC, TOC, DIC,	Chloride, Su	Total Phosphorus, Total Ammonia	Bromide	Alkalinity	Fecal Coliforms		BIEX/VPH	CEPH/HEPH/		HOLD
	2020T16-01-M-ML- 4			/	- 1	2020-07-13	11:00		1	1		1	1		-	✓	\dashv		1		V	/ 4	/ /		
2	2020T16-02-M-ML-4D			/	9	2020-07-13	11:00)	1	/		1	1	1	√	1	1	1	1		,	/ /	11		
3	2020T16-03-M-MW12-03ML		,	/	9	2020-07-13	12:30)	1	/		1	1	1	✓	1	1	1	✓		-	1 1	11		
Ц	2020T16-04-M-ML-8			/	6	2020-07-13	15:00)	1	/	1	1	1	1	1	1	✓	1	1				1		
5	2020T16-05-M-ML-3			/	9	2020-07-13	14:30)	1	/		1	1	1	1	1	1	✓	1			/ /	11		
b	2020T16-06-M-ML-7			/	6	2020-07-13	13:10)	1	/	1	1	1	1	1	1	1	1	1						
7	2020T16-07-M-ML-6		,	/	7	2020-07-13	12:15	5	1	/	1	1	1	1	1	1	1	1	1		\top		1		
8	2020T16-08-M-ML-9		1,	/	6	2020-07-13	11:11	ı	1	/	1	1	1	1	✓	1	1	1	1			+	+		
9	2020T16-09-M-ML-5		11,	/	7	2020-07-13	15:30)	1	/	1	1	1	1	1	1	1	✓	1	\top			1		
																1				\top		1	1		
	100000000000000000000000000000000000000																			\top					
																				+					+
SHIPPIN	7,000,000,000,000,000,000,000,000,000,0	E RETENTION: *	OTHER	INST	lUCTI	ONS:	1				1	_	l			J	\neg	SAN	VPLE	REC	EIPŢ	CON	DITIC	N:	

*********	INSTRUCTIONS:

Supplies Needed: Please return coolers. Thank you! 30 Days (default) 60 Days 7 90 Days 7

Other (surcharges will apply):

COOLER 3 (°C):

CUSTODY SEALS INTACT: NA TY

If you would like to talk to a real live Scientist about your project requirements, please check here:

Caring About Results, Obviously.

Box 2703, Whitehorse, YT Y1A 2C6

COMPANY: Yukon Government, Dept of ENV

ADDRESS: Water Resources Branch (V-310)

CONTACT: Tyler Williams; Norbert Botca

REPORT TO:

#110 #102-

17225

INVOICE TO:

CONTACT: Holly Goulding

COMPANY: Yukon Government, Dept of ENV

ADDRESS: Water Resources Branch (V-310_

Box 2703, Whitehorse, YT Y1A0K5

46

RELINQUISHED BY:

CHAIN OF CUSTODY RECORD COC#

DATE: 2020-07-14 | RECEIVED BY:

C3 ., _wmonton, AB T5S 1H7

Norbert Botca Digitally signed by Norbert Botca Date: 2018.10.19 11.00.43 - 07.00 TIME: 12:30 TURNAROUND TIME REQUESTED: REGULATORY APPLICATION: SAME AS REPORT TO Routine: (5-7 Days) 🔀 Canadian Drinking Water Quality 🕱 BC WQG [Rush: 1 Day* 7 2 Day* 7 3 Day* 7 BC CSR Soil: WL | AL | PL | RL-LD | RL-HD | CL | IL | BC CSR Water: AW | IW | LW | DW | *Contact Lab To Confirm. Surcharge May Apply CCME: DW Other: YT CSR DW PROJECT NUMBER / INFO: A: Biohazard D: Asbestos G: Strong Odour Marsh Lake Sewage Lagoon Audit B: Cyanide E: Heavy Metals H: High Contamination C: PCBs F: Flammable 1: Other (please specify*)

TEL/FAX: <u>867-667-3512</u>	EMAIL 1: tyler.williams@gov.yk.ca EMAIL 2: norbert.botca@gov.yk.ca EMAIL 3: PO #:					ANALYSES REQUESTED:																		
DELIVERY METHOD: EMAIL MAIL OTHER* DATA FORMAT: EXCEL WATERTRAX ESdat EQUIS BC EMS OTHER* EMAIL 1: norbert.botca@gov.yk.ca EMAIL 2: tyler.williams@gov.yk.ca EMAIL 3: ** If you would like to sign up for ClientConnect and/or Environ						COMMENTS: ML-8 and ML-3 samples had high turbidity Please use silica gel extraction method			TOTAL Hg	VED Hg			Nitrite, Nitrate	Fotal Ammonia - N										POSSIBLE SAMPLE HAZARD CODE(S)
SAMPLED BY: NB SAMPLE ID - SAMPLE CLASS - STATIO	GELVAN	ATER	NER QTY			1918		(e.g. flow/volume media ID/notes)	METALS - WATER TO	1.	pH, EC	TIC TOC DIC DOC	일을		Bromide	Alkalinity	Fecal Coliforms	Total Oil & Grease	втех/vpн	LEPH/НЕРН/РАН	EPH		НОГД	POSSIBLE SAMPLE
2020T16-01-M-ML- 4		1	9	2020-07-13	11:00		/ /			✓	✓	√ ∨	′ ✓	1	1	1			1	✓ .	1			
2 2020T16-02-M-ML-4D		1	9	2020-07-13	11:00	/	1			1	✓	✓	′ ✓	1	✓	1			✓	✓ ,	√			
3 2020T16-03-M-MW12-03ML		1	9	2020-07-13	12:30	/	1			1	1	V V	1	1	1	1			✓	1	1			
L 2020T16-04-M-ML-8		1	6	2020-07-13	15:00	✓	1		1	1	1	1	′ ✓	1	1	1								Г
5 2020T16-05-M-ML-3		1	9	2020-07-13	14:30	/	/ /	, , , , , , , , , , , , , , , , , , , ,		1	1	V	′ ✓	1	1	1			1	✓ ,	/			
(2020T16-06-M-ML-7		1	6	2020-07-13	13:10	/	1		1	1	1	1 1	/ /	1	1	1								
7 2020T16-07-M-ML-6		1	7	2020-07-13	12:15	1	/ /		1	1	1	1 1	/ /	1	1	1			\top		/			
? 2020T16-08-M-ML-9		1	6	2020-07-13	11:11	/	/ /		1	1	1	11	/ /	1	1	1			+			-		
9 2020T16-09-M-ML-5		1	7	2020-07-13	15:30	1	/ /		✓	1	1	11		1	1	1			1		/			
SHIPPING INSTRUCTIONS: Return Cooler(s) X SAMPLE	RETENTION: * OTH	DINET		ONG																	ION:			

Supplies Needed: Please return coolers. Thank you!

30 Days (default)

Other (surcharges will apply):

COOLER 3 (°C):

CUSTODY SEALS INTACT: NA F Y F

If you would like to talk to a real live Scientist about your project requirements, please check here: